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1 Problem

The concept of a rigid body is a familiar approximation in classical mechanics. That the speed
of sound in infinite in a rigid body illustrates that this concept is ultimately nonphysical,
but this is of little consequence in examples where all relevant speeds are small compared to
the speed of light.

It is well known that apparently simple rigid-body problems have no solution. The
classic example of this is a ladder leaning against a wall with friction. There are four scalar
unknowns, the horizontal and vertical components of the contact forces between the ladder
and the wall and the floor. But, there are only three static rigid-body equations that apply
here; the total horizontal and vertical forces on the ladder, and the total torque about an
axis perpendicular to the vertical plane of the ladder, are zero.

Consider the example illustrated in the figure below, in which mass m1 has initial velocity
v0 and impact parameter r1 with respect to the pivot point of a rod of length r and mass
m. A mass m2 is in contact with the rod at distance r2 from the pivot. The collisions of
mass m1 with the rod and of the rod with mass m2 are totally elastic. Can the final speeds
v1 and v2 of the masses, and the final angular velocity ω of the rod be determined?

There are three unknowns, v1, v2 and ω, but only two scalar equations that govern the
system: conservation of energy and conservation of angular momentum about the pivot
point. Momentum is not conserved because an impulsive force must be exerted on the pivot
point during the collision. Hence, in general there is no solution to this ill-posed problem.

However, we can suppose that the collisions occur in two steps: first mass m1 collides
with the rod, and then the rod collides with mass m2. In each of these collisions there are
only two unknown quantities in the final state, such that each collision can be analyzed
completely. But, the hypothesis that the problem can be decomposed into two collisions is
only consistent if the final velocity v1 of mass m1 is less than ωr1. Otherwise the rod strikes
mass m1 after the second collision.

For what ranges of parameters does this generally ill-posed problem have a solution via
the assumption that the collision occurs in two steps?
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2 Solution

2.1 Analysis of the First Collision

The moment of inertial of the rod about the pivot is I = mr2/3, and its angular velocity
after the first collision is denoted as ω1. The initial angular momentum of the system about
the pivot is,

L0 = m1v0r1, (1)

and the angular momentum just after the first collision is,

L1 = m1v1r1 + Iω1 = m1v1r1 +
mr2ω1

3
. (2)

Conservation of angular momentum in the first collision implies that,

ω1 =
3m1r1

mr2
(v0 − v1). (3)

The initial kinetic energy of the system is,

T0 =
m1v

2
0

2
, (4)

and the kinetic energy after the first collision is,
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+
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=
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2

2mr2
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Conservation of (kinetic) energy in the first collision leads to the quadratic equation,

(3m1r
2
1 + mr2)m1v

2
1 − 6m2

1r
2
1v0v1 + (3m1r

2
1 − mr2)m1v

2
0 = 0, (6)

whose solution is,

v1 =
3m1r

2
1 ± mr2

3m1r2
1 + mr2

v0 . (7)

The positive sign corresponds to the trivial solution that v1 = v0, so the nontrivial solution
is,

v1 =
3m1r

2
1 − mr2

3m1r2
1 + mr2

v0 , ω1 =
6m1r1

3m1r2
1 + mr2

v0 . (8)

Note that v1 = 0 if the moments of inertia of mass 1 and the rod are the same.

2.2 Analysis of the Second Collision

The angular momentum of the system just before the second collision is,

L1 = Iω1 =
2mm1r

2r1

3m1r2
1 + mr2

v0 , (9)
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and the angular momentum just after the second collision is,

L2 = Iω + m2v2r2 =
mr2ω

3
+ m2v2r2. (10)

Conservation of angular momentum in the second collision implies that,

ω =
6m1r1

3m1r2
1 + mr2

v0 − 3m2r2

mr2
v2 . (11)

The kinetic energy of the system just before the second collision is,

T1 =
Iω2
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and the kinetic energy after the second collision is,
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2
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(13)
Conservation of (kinetic) energy in the second collision leads to the quadratic equation,

m2(m2r
2 + 3m2r

2
2)

2mr2
v2

2 =
6m1m2r1r2

3m1r2
1 + mr2

v0v2, (14)

whose nontrivial solution is,

v2 =
12mm1r

2r1r2

(3m1r2
1 + mr2)(3m2r2

2 + mr2)
v0 , ω =

6m1r1(mr2 − 3m2r
2
2)

(3m1r2
1 + mr2)(3m2r2

2 + mr2)
v0 . (15)

Note that ω = 0 if the moments of inertia of mass 2 and the rod are the same. However,
this is not a complete solution unless v1 < 0, which requires that mr2 ≥ 3m1r

2
1.

2.3 Consistency of the First and Second Collisions

As noted in sec. 1, the analyses in secs. 2.1-2 are complete only if the rod does not strike
mass 1 again after the second collision, i.e., only if v1 < ωr1, which requires that,

m2r4 + 3mr2(m1r
2
1 + m2r

2
2) ≥ 27m1m2r

2
1r

2
2. (16)

This complicated condition is not satisfied in general, and a solution to the present problem
in the context of rigid-body dynamics exists only for a subset of parameters m, m1, m2, r,
r1 and r2.

The general sense of the constraint (16) is that the mass of the rod cannot be too small
compared to the masses of the “point” objects 1 and 2. For if the rod has low mass it will
bounce back and forth between masses 1 and 2 a large number (perhaps infinite) of times
until it no longer strikes those masses.

Note that eq. (16) is an equality if the two masses and the rod have the same moment of
inertia.
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2.4 Solution When Kinetic Energy is Not Conserved

When kinetic energy is not conserved a useful approximation is to suppose that the ratio
of the relative velocities (of the points of contact) after and before a 2-body collision has a
definite value, called the coefficient of restitution.

For the first collision, we suppose that,

c1 =
ω1r1 − v1

v0
, (17)

and for the second collision,

c2 =
v2 − ωr2

ω1r2
, (18)

are the known coefficients of restitution (with values between 0 and 1).
Then, eq. (17) can be written as,

ω1 =
c1v0 + v1

r1
, (19)

and combining this with the angular-momentum relation (3) we find,

v1 =
3m1r

2
1 − c1mr2

3m1r2
1 + mr2

v0 , ω1 = (1 + c1)
3m1r1

3m1r2
1 + mr2

v0 . (20)

If c1 = 1 then the results of the first collision are the same as eq. (8) when kinetic energy is
conserved. If c1 = 0 then mass 1 and the rod stick together, and ω1 = v1/r1.

Rewriting eq. (18) as,

ω =
v2

r2
− c2ω1, (21)

and combining this with the angular-momentum relation (11) we find,

v2 =
3mm1r

2r1r2[2 + c2(1 + c1)]

(3m1r2
1 + mr2)(3m2r2

2 + mr2)
v0 , ω =

6m1r1[mr2 − 3c2(1 + c1)m2r
2
2/2]

(3m1r2
1 + mr2)(3m2r2

2 + mr2)
v0 , (22)

which reduces to eq. (15) when c1 = 1 = c2. If c2 = 0 then mass 2 and the rod stick together,
and ω = v2/r2. However, the above analysis of the second collision is not correct when
c1 = 0 as it fails to consider mass 1 and the rod as a combined object. If c1 = 0 = c2 then
ω = 3mr2v0/(3m1r

2
1 + 3m2r

2
2 + mr2), v1 = ωr1 and v2 = ωr2.
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