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1 Problem

A Josephson junction1 is formed when two superconducting wires are separated by an in-
sulating gap of capacitance C . The quantum states ψi, i = 1, 2 of the two wires can be
characterized by the numbers ni of Cooper pairs (charge 2e) and the phases θi, such that
ψi =

√
ni e

iθi (Ginzburg-Landau approximation). The (small) amplitude that a pair tunnel
across a narrow insulating barrier is −EJ/n0, where n0 = n1 + n2 and EJ is the so-called
Josephson energy.

The interesting physics is expressed in terms of the differences n ≡ n2−n1 and φ ≡ θ2−θ1.
Consider a junction where n1 ≈ n2 ≈ n0/2.

1. Deduce equations of motion for n and φ.

2. Show that when the relative phase φ is nonzero a DC current Js flows across the
junction. What is the maximum possible value of Js?

3. Deduce the natural oscillation frequency ωJ of the junnction (called the Josephson
plasma frequency). What is the equilibrium state about which the system oscillates?

4. Suppose a DC voltage V is applied across the junction by a battery. Show that this
leads to an oscillating pair current across the junction. Give an expression for the
angular frequency ω of this oscillation.

2 Solution

This problem was suggested by N.P. Ong based on some notes by P.W. Anderson.

1. When there exists a nonzero difference n = n2 − n1 between the number of pairs of
charge −2e, where e > 0, on the two sides of the junction, the number of pairs on side
2 is n0/2 + n/2 and that on side 1 is n0/2 − n/2. Then, there is net charge −n0e− ne
on side 2 and net charge −n0e+ ne on side 1. Hence, a voltage difference ΔV = en/C
arises, where the voltage on side 1 is higher than that on side 2 if n > 0. Taking
the zero of the voltage to be at the center of the junction, the electrostatic energy
of a Cooper pair sf charge −2e on side 2 is ne2/2C , and that of a pair on side 1 is
−ne2/2C .2

1B. Josephson, Possible New Effects in Superconducting Tunneling, Phys. Lett. 1, 231 (1962),
http://kirkmcd.princeton.edu/examples/QM/josephson_pl_1_231_62.pdf

2The total electrostatic energy of a system of charged qi at potentials Vi is U =
∑

i qiVi/2. For the
present example, U = (n0/2 + n/2)(ne2/2C) + (n0/2 − n/2)(−ne2/2C) = (ne)2/2C. This agrees with the
total electrostatic energy of the capacitor, U = CΔV 2/2 = Q2/2C = (ne)2/2C.
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The equations of motion for a pair in the two-state system {1, 2} are,

i�
dψ1

dt
= U1ψ1 −

EJ

n0

ψ2 = −ne
2

2C
ψ1 −

EJ

n0

ψ2, (1)

i�
dψ2

dt
= U2ψ2 −

EJ

n0
ψ1 =

ne2

2C
ψ2 −

EJ

n0
ψ1. (2)

Using ψi =
√
ni e

iθi we find,

i�

(
ṅ1

2
√
n1

eiθ1 + iθ̇1
√
n1 e

iθ1

)
= −ne

2

2C

√
n1 e

iθ1 − EJ

n0

√
n2 e

iθ2, (3)

i�

(
ṅ2

2
√
n2
eiθ2 + iθ̇2

√
n2 e

iθ2

)
=

ne2

2C

√
n2 e

iθ2 − EJ

n0

√
n1 e

iθ1 , (4)

or,

i�
ṅ1

2
− �n1θ̇1 = −ne

2

2C
n1 − EJ

n0

√
n1n2 e

iφ, (5)

i�
ṅ2

2
− �n2θ̇2 =

ne2

2C
n2 − EJ

n0

√
n1n2 e

−iφ, (6)

where φ = θ2 − θ1. Taking real and imaginary parts,

θ̇1 =
ne2

2�C
+
EJ

�n0

√
n2

n1
cos φ, (7)

ṅ1 = − EJ

�n0

√
n1n2 sinφ, (8)

θ̇2 = − ne2

2�C
+
EJ

�n0

√
n1

n2
cos φ, (9)

ṅ2 =
EJ

�n0

√
n1n2 sinφ. (10)

Taking differences, we find the equations for n and φ,

φ̇ = θ̇2 − θ̇1 = −ne
2

�C
− EJ

�n0

(√
n2

n1

−
√
n1

n2

)
cos φ ≈ −ne

2

�C
= −eΔV

�
, (11)

ṅ = ṅ2 − ṅ1 = +
2EJ

�n0

√
n1n2 sinφ ≈ EJ

�
sinφ, (12)

noting that n1 ≈ n2 ≈ n0/2.
3

2. We identify a pair (electrical) current from side 1 to side 2 as,

Js = (−2e)
ṅ

2
= −eEJ

�
sinφ ≡ J0 sinφ, (13)

3The sum of eqs. (8) and (10) confirms that n0 is constant.
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using eq. (12), where the maximum current is,

J0 =
eEJ

�
=

2πeEJ

h
=
πEJ

ϕ0

, (14)

where, ϕ0 = h/2e is the flux quantum.

3. To exhibit oscillatory behavior we use eq. (12) in the derivative of eq. (11) to find,

φ̈ ≈ −e
2EJ

�2C
sinφ, (15)

If EJ is positive, then there are oscillations about φ = 0 whose angular frequency is
given by,

ωJ =

√
e2EJ

�2C
(16)

for small amplitudes.

If EJ is negative, then there are oscillations about φ = π, since sin(π−φ) = sinφ while
d2(π−φ)/dt2 = −φ̈. The frequency of oscillation is again given by eq. (16), now using
|EJ |.
The form of eq. (15) suggests that −EJ sinφ be considered as a generalized force with
respect to coordinate φ. That is.

Fφ ∝ −EJ sin φ = −∂U
∂φ

, (17)

so that.
U ∝ −EJ cos φ+ ... (18)

This further suggests that we reconsider the system in terms of coordinates n and φ.
A Hamiltonian in terms of these coordinates would include the electrostatic energy
(ne)2/2C as well as the tunneling energy −EJ cos φ. We recall that EJ/n0 was the
amplitude for one out of the total of n0 pairs to tunnel across the junction, so EJ is
the normalized tunneling energy for the whole system. Then, a suitable Hamiltonian
is.

H =
(ne)2

2C
−EJ cos φ. (19)

We could then deduce the equations of motion for n and φ from H via,

ṅ =
i

�
[H, n] =

i

�

∂H

∂φ
[φ, n], φ̇ =

i

�
[H, φ] =

i

�

∂H

∂n
[n, φ], (20)

provided we know the commutation relation [φ, n]. Working backwards (or otherwise?)
we find that we need,

[n, φ] = i. (21)

Thus,

ṅ =
i

�
(EJ sin φ)(−i) =

EJ sinφ

�
, (22)
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which agrees with eq. (12), and,

φ̇ =
i

�

ne2

C
(i) = −ne

2

�C
(23)

which agrees with the approximate form of eq. (11).

4. If a voltage ΔV = V1 −V2 is applied across the junction, we expect charge Q1 = V C =
(−2e)(−n/2) = en to be held on side 1, and the negative of this on side 2. Then,
eq. (11) becomes,

φ̇ ≈ −eV
�

≡ −ω , (24)

where,

ω =
2eV

�
. (25)

Equation (24) integrates to φ = −ωt.
The battery holds the charge difference across the junction fixed at en = V C , but can
be a source of sink of charge such that a current can flow in the circuit. The claim is
that in the present case, the current is given by eq. (13), so.

Js = −J0 sinωt. (26)

A possible argument (https://www.feynmanlectures.caltech.edu/III_21.html#Ch21-S9) is
that as φ moves off zero, eq. (13) describes the resulting current across the junction in
an isolated system. For a system hooked to a battery, this current flows through the
entire system, while the numbers of pairs n1 and n2 remain fixed at ∓n/2 = ∓V C/2e.
Accepting this argument, the DC voltage of the battery results in an AC current in
the circuit of angular frequency (25).
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