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1 Problem

A Josephson junction' is formed when two superconducting wires are separated by an in-
sulating gap of capacitance C'. The quantum states v;, ¢ = 1,2 of the two wires can be
characterized by the numbers n; of Cooper pairs (charge 2e) and the phases 6;, such that
Y, = /n; €% (Ginzburg-Landau approximation). The (small) amplitude that a pair tunnel
across a narrow insulating barrier is —Ej/ng, where ng = n; + ny and E; is the so-called
Josephson energy.

The interesting physics is expressed in terms of the differences n = no—ny and ¢ = 0,—0;.
Consider a junction where ny &~ ny & ng/2.
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1.

2.

Deduce equations of motion for n and ¢.

Show that when the relative phase ¢ is nonzero a DC current Jg flows across the
junction. What is the maximum possible value of J,?

Deduce the natural oscillation frequency w; of the junnction (called the Josephson
plasma frequency). What is the equilibrium state about which the system oscillates?

Suppose a DC voltage V is applied across the junction by a battery. Show that this
leads to an oscillating pair current across the junction. Give an expression for the
angular frequency w of this oscillation.

Solution

This problem was suggested by N.P. Ong based on some notes by P.W. Anderson.

1.

When there exists a nonzero difference n = ny, — n; between the number of pairs of
charge —2e, where e > 0, on the two sides of the junction, the number of pairs on side
2is ng/2 +n/2 and that on side 1 is ng/2 —n/2. Then, there is net charge —nge — ne
on side 2 and net charge —nge + ne on side 1. Hence, a voltage difference AV =en/C
arises, where the voltage on side 1 is higher than that on side 2 if n > 0. Taking
the zero of the voltage to be at the center of the junction, the electrostatic energy
of a Cooper pair sf charge —2¢ on side 2 is ne?/2C, and that of a pair on side 1 is
—ne?/2C 2
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“The total electrostatic energy of a system of charged ¢; at potentials V; is U = Y. ¢;V;/2. For the
present example, U = (ng/2 + n/2)(ne?/2C) + (ng/2 — n/2)(—ne?/2C) = (ne)? /2C. This agrees with the
total electrostatic energy of the capacitor, U = CAV?/2 = Q?/2C = (ne)?/2C.



The equations of motion for a pair in the two-state system {1,2} are,
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Using 1, = /n; €% we find,
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where ¢ = 0 — 6;. Taking real and imaginary parts,
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Taking differences, we find the equations for n and ¢,
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noting that n; & ny ~ ng/2.3
2. We identify a pair (electrical) current from side 1 to side 2 as,
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3The sum of egs. (8) and (10) confirms that ng is constant.



using eq. (12), where the maximum current is,
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where, ¢, = h/2e is the flux quantum.

. To exhibit oscillatory behavior we use eq. (12) in the derivative of eq. (11) to find,
62EJ
h*C

If E; is positive, then there are oscillations about ¢ = 0 whose angular frequency is

given by,
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If E; is negative, then there are oscillations about ¢ = 7, since sin(m — ¢) = sin ¢ while
d*(m — ¢)/dt* = —¢. The frequency of oscillation is again given by eq. (16), now using
|Ey].

The form of eq. (15) suggests that —FE sin ¢ be considered as a generalized force with
respect to coordinate ¢. That is.
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for small amplitudes.
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so that.
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This further suggests that we reconsider the system in terms of coordinates n and ¢.
A Hamiltonian in terms of these coordinates would include the electrostatic energy
(ne)?/2C as well as the tunneling energy —FE;cos¢. We recall that E;/ng was the
amplitude for one out of the total of ny pairs to tunnel across the junction, so E; is
the normalized tunneling energy for the whole system. Then, a suitable Hamiltonian
is.
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We could then deduce the equations of motion for n and ¢ from H via,
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provided we know the commutation relation [¢, n]. Working backwards (or otherwise?)
we find that we need,
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which agrees with eq. (12), and,
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which agrees with the approximate form of eq. (11).

. If a voltage AV = V; — V4 is applied across the junction, we expect charge Q1 =V =
(—2e)(—n/2) = en to be held on side 1, and the negative of this on side 2. Then,
eq. (11) becomes,

b~ —% = —w, (24)
where,
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Equation (24) integrates to ¢ = —wt.

The battery holds the charge difference across the junction fixed at en = V' C, but can
be a source of sink of charge such that a current can flow in the circuit. The claim is
that in the present case, the current is given by eq. (13), so.

Js = —Jysinwt. (26)

A possible argument (https://www.feynmanlectures.caltech.edu/III_21 .html#Cth—SQ) is
that as ¢ moves off zero, eq. (13) describes the resulting current across the junction in
an isolated system. For a system hooked to a battery, this current flows through the
entire system, while the numbers of pairs n; and ny remain fixed at Fn/2 = FV C/2e.

Accepting this argument, the DC voltage of the battery results in an AC current in
the circuit of angular frequency (25).



