
Torricelli’s Law for Large Holes
Johann Otto
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Torricelli’s law appeared on pp. 191-192 of [1] (1644), where he observed
that a water jet, which emerges from a small, upwards facing hole B in a
suitable projection from the bottom of a tank A, rises to the same height C
as the water level D in the tank. The upwards velocity at B is the same as
the downwards velocity at E, namely

√
2gh, where g is the acceleration due

to gravity, and h is the height of the water level D above points B and E.

Torricelli’s law was first explained by D. Bernoulli, p. 37 of [2],1 via an energy argument
that will be reviewed below. Nowadays, Torricelli’s law is typically presented as an example
of the steady-state Bernoulli equation, which does lead to the prediction that the water
emerges from a hole with velocity v =

√
2gh when the hole is at depth h below the water

level in the tank. However, if the area a of the hole (in the bottom of the tank) is the same as
the cross-sectional area A of the tank, the water simply falls out of the tank with acceleration
g due to gravity, and velocity at the bottom of the tank given by v =

√
2g(h0 − h), where

h0 is the initial depth of water in the tank.
That is, water flowing from a tank is not a steady process, and so Bernoulli’s equation

applies only in the limit of very small holes, for which the flow is essentially steady.

1 Bernoulli’s Analysis for Large Holes

Bernoulli’s original analysis of Torricelli’s example did not assume that the area a of the hole
was small compared to the cross-sectional area A of the water tank

We follow Bernoulli in assuming that the exit hole is at the center of the bottom of
a right-circular-cylindrical tank. We further assume that the flow velocity in the tank is
essentially vertical, and ignore the small, horizontal component of the water-flow velocity.
As such, Bernoulli’s solution (and the alternative solutions presented in this note) cannot be
correct in all detail.

We also suppose that the water is incompressible, and inviscid (so that no energy is lost
to friction during the flow). Then, the continuity equation relates the (vertical) velocity v
of water in the tank to the (vertical) velocity V of the water at the exit hole according to,

v =
aV

A
. (1)

Also, the velocity v is the rate of change with respect to time t of the depth h of water in
the tank,

v = −dh

dt
≡ −ḣ =

aV

A
. (2)

1See also [3].
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Bernoulli’s method (an innovation in 1738) was to set the rate at which work is done by
gravity on the water in the tank equal to the rate of change of kinetic energy of the water
in the tank plus the rate at which kinetic energy exits the tank through the hole. That is,
the method is based on conservation of energy.

The rate dW/dt of gravitational work on the water in the tank at time t is the product
of the rate ρgv of gravitational work per unit volume, and the volume Ah of the water in
the tank,

dW

dt
= ρgvAh = ρgV ah, (3)

where ρ is the mass density of the water.
The total kinetic energy of the water in the tank is the product of the kinetic energy per

unit volume ρv2/2 and by the volume of the water in the tank,

KEtank =
ρv2

2
Ah =

ρV 2

2

a2

A
h, (4)

dKEtank

dt
=

ρV 2

2

a2

A

dh

dt
+ ρV

dV

dt

a2

A
h = −ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h, (5)

using eq. (2) to obtain the last form of eq. (5).
The rate at which kinetic energy exits the tank, with velocity V , is given by,

dKEexit

dt
=

dmexit

dt

V 2

2
= ρV a

V 2

2
. (6)

Conservation of energy now implies that,

dW

dt
= ρgV ah =

dKEtank

dt
+

dKEexit

dt
= −ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h + ρV a

V 2

2
. (7)

If we divide eq. (7) by ρV a, we obtain, noting from eq. (2) that V = −Aḣ/a, V̇ = −Aḧ/a,

gh =

(
1 − a2

A2

)
V 2

2
+

a

A
h
dV

dt
=

ḣ2

2

(
A2

a2
− 1

)
− hḧ. (8)

Time t can be replaced as the independent variable in this equation by the depth h, by
combining the first form of eq. (8) with eq. (2) to yield,2

dV

dt
=

dV

dh

dh

dt
= − a

A
V

dV

dh
= −1

2

a

A

dV 2

dh
, (9)

2gh =

(
1 − a2

A2

)
V 2 − a2

A2
h
dV 2

dh
. (10)

Equation (10) tells us that the velocity V of the effluent stream from the tank is a function
of the area ratio a/A, the water depth h, and the initial conditions v0 = 0 = V0 at time

2The last term in eq. (10) involves the derivative of V 2 with respect to h, which term captures the effect
of the fluid acceleration in the tank that is omitted in the steady-flow version of the Bernoulli equation.

Equation (10) is consistent with the so-called extended Bernoulli equation presented in Appendix A.
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t = 0, when depth of the (inviscid) water in the tank is h0. The solution to this equation,
subject to these initial conditions, is given by,3

V (h) =

√
2gh

1 − (h/h0)
1−2r

r

1 − 2r
=

√
2gh0

√
h

h0

1 − (h/h0)
1−2r

r

1 − 2r
(0 ≤ h ≤ h0), (16)

where r = (a/A)2. For the limiting cases in which r = 0+ or 1, this solution reduces to,4

V (h, r = 0+) =
√

2gh, V (h, r = 1) =
√

2g(h0 − h). (17)

For the case of r = 1 (i.e., the case in which the exit-hole area is equal to the tank area),
the above equation for the efflux velocity V is, as expected, just that predicted for free fall.

Results from eq. (16) for the efflux V 2, normalized by 2gh0, as a function of the (di-
mensionless) fluid-depth ratio h/h0 and the (dimensionless) area ratio a/A are shown in the

3We follow, for example, https://en.wikipedia.org/wiki/Linear_differential_equation, in the section on
First-order equation with variable coefficients, and write eq. (10) as,

dV 2

dh
= V 2 1 − r

hr
− 2g

r
, (11)

with r = a2/A2. The solution is,

V 2 = eF

(
C − 2g

r

∫
e−F dh

)
, (12)

where C is a constant and,

F =
∫

1 − r

hr
dh =

1 − r

r
lnh, eF = h

1
r−1,

∫
e−F dh =

∫
h1− 1

r dh =
r

2r − 1
h2− 1

r . (13)

Hence,
V 2 = h

1
r −1

(
C +

2g

1− 2r
h2−1

r

)
=

(
Ch

1
r−1 +

2gh

1 − 2r

)
=

(
Ch h

1
r−2 +

2gh

1 − 2r

)
. (14)

Since V 2 = 0 when h = h0, C = −2gh
2− 1

r
0 /(1 − 2r), and finally,

V 2 =
2gh

1 − 2r

(
1 − (h/h0)

1−2r
r

)
. (15)

4For r = 0 exactly there is no hole in the tank and V = 0.
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figure on the left of the previous page (note that time increases from right to left in the
figure).5

In all cases, the efflux velocity V is equal to zero initially (i.e., when h = h0), and then
rises rapidly as the fluid, both inside the tank and in the efflux, accelerates. However, as the
depth h of fluid in the tank decreases, the efflux velocity V passes through a maximum and
decreases thereafter. Eventually, as the fluid depth h approaches zero, the efflux velocity V ,
of course, also drops to zero. In the case of a/A = 1, the maximum velocity is attained just
as the tank reaches empty.6

1.1 Draining a Tank through a Small Hole

For a small hole, a � A, the acceleration ḧ can be neglected in eq. (8), which can then be
written as,

ḣ√
h

= −
√

2g

A2/a2 − 1
,

√
h =

√
h0 −

√
g

2(A2/a2 − 1)
t, (20)

5The figure on the right is from [2], with horizontal axis V 2 and vertical axis h0 − h. Curve 1 is for a
small hole, and curve 4 is for a large one.

6It may also be of interest to consider the exit velocity normalized to the instantaneous depth h(t) of
fluid in the tank, rather than to the depth h0 at time zero.

According to the results in the figure, for (small) values of the area ratio a/A less than 0.5, the dimensionless
efflux velocity V/

√
2gh levels off to a constant value as the depth h of fluid in the tank decreases. The smaller

the value of a/A, the more rapidly the dimensionless velocity levels off. From our analytic solution, eq. (16),
the value to which V/

√
2gh levels off is given by,

V (h → 0)√
2gh

=

√
1

1 − 2(a/A)2
. (18)

For the case of a/A = 0.2, for example, we see from the figure above that, once the depth h has decreased
to about 80% of the initial depth h0, the velocity has already leveled off.

For small values of a/A, eq. (18) can be expressed, to order r = (a/A)2 by,

V (h → 0; r � 1)√
2gh

≈ 1 +
a2

A2
. (19)
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noting that ḣ is negative. The time td for the tank to drain (to h = 0) is,

td =

√
2h0

g

√
A2

a2
− 1 ≈

√
2h0

g

A

a
. (21)

Many quantitative experimental studies of the draining of a tank exist, including [4]-
[23]. Only two experiments [14, 15] report good agreement with eq. (21),7 while it is more
typically found that the tank drains roughly 1.4 times more slowly. This is partly attributable
to energy dissipation by viscous effects [6], which we ignore in this note. Also, the tank never
actually drains completely but ends with a water level Δh above the outlet, as surface tension
exerts a small force to keep water in the tank [18, 23]; this effect can be accommodated by
replacing h0 with h0 −Δh in eq. (21).

Even for liquid with very low viscosity and low surface tension, the empirical evidence
[11, 12, 16, 20] is that drainage time is better represented as,

td ≈
√

2h0

g

A

Cd a
, (22)

where the so-called coefficient of discharge Cd is roughly 1/2.
This is related to a comment by Borda (1766) [24] that if one supposes the water at the

small hole to be at atmospheric pressure, there is a conflict between the energy analysis of
Bernoulli and a momentum analysis, in which the velocity V should be smaller by a factor
of

√
2 than that found in the energy analysis.8 Borda argued that this difficulty is resolved

by the vena contracta, the reduction in the area of the water jet to a′ ≈ 0.64a (apparently
first observed by Torricelli), with the implication that the velocity (and momentum) of the
water at the hole is roughly 1/

√
2 that a short distance away from the hole.

Stated another way, the velocity V =
√

2gh found by the energy analysis for a small
hole applies not at the hole itself, but at a distance roughly one diameter

√
a/π away from

the hole,9 and is valid for predicting the trajectory of the efflux when the hole is in the
vertical wall of the tank. However, if one wishes to emphasize the flow rate, then the energy
argument must be corrected for the vena contracta, while a momentum analysis can be used
without mention of it (although the momentum argument must be corrected for the vena
contracta to describe the trajectory of an efflux whose initial velocity is horizontal).

1.2 Force on the Water in the Tank (Sept. 12, 2024)

A question of possible interest is what are the forces on the water inside the tank.
This force F includes the force of gravity on the water inside the tank, ρA gh, the upward

normal force N of the tank on the water, and possible other forces, Fother, including the

7In [14], the tank was a right circular cylinder and the drain was a tube of length larger than its diameter.
In [15], the tank was an inverted 2-liter soda bottle (whose shape tapers towards the cap) with a 7.2-mm-
diameter hole in its cap. It seems that these variants on the nominal case of a right-circular-cylinder tank
with a sharp-edged hole happened to compensate for the “corrections” that apply to the nominal case.

8For a review of this argument, see [25].
9This result was stated by Newton on p. 333 of [26], following an argument in which part of the water

in the tank could be ice.
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(downward) tensile force of the water just below the aperture on the water just above.10

The “other” force, Fother, does not include an upward “rocket/recoil” force as these would
be located at the upper (free) surface of the water in the tank, which cannot sustain such an
upward force [28].11,12 We ignore the tiny forces due to atmospheric pressure on the top of,
and on the hole in the bottom of, the water in the tank, as well as effects of friction/viscosity
and surface tension, and write

F = ρA gh + N + Fother =
dp

dt
, (23)

where p is the momentum of the water in the tank.
We evaluate the total force F = dp/dt in the approximation that all the water in the

tank has the same (downward) velocity v given by eq. (2), and that force, momentum and
velocity are positive when downward. Then, the vector equation (23) can be written as the
scalar equation,

F = ρAgh −N + Fother =
dp

dt
, (24)

where the minus signs indicate that we take the normal force N to be positive when directed
upwards.

When there is no hole in the bottom of the tank, Fother = 0 and the normal force is
simply N = ρAgh. For a small hole, the water pressure at the bottom of the tank is
approximately uniform, with value ρgh. Then, for a first approximation, the upward normal
force is N ≈ ρgh(A − a). However, the pressure near the edge of the hole will be less than
ρgh, which indicates that the next approximation is

N ≈ ρgh(A − a) −O(ρgha). (25)

In the first approximation, the momentum p of the water in the tank is vertical, with

p = mv = ρAhv = ρahV, (26)

recalling eq. (1). The rate of change of the momentum p of water inside the tank is the sum
of ∂p/∂t and the rate dpleaving/dt of momentum of water leaving the tank,13

dp

dt
=

∂p

∂t
+

dpleaving

dt
. (27)

For the latter, we note that the mass of the water leaving the tank (with velocity V
through the hole of area a) during time dt is dm = ρ aV dt, and the momentum that leaves
the tank during time dt is,

dpleaving = dm V = ρ aV 2 dt,
dpleaving

dt
= ρ aV 2. (28)

10This tensile force is important in a siphon [27].
11The downward force −N of the water pressure on the tank could be called a “recoil” force as it is due

to bouncing of water molecules off the wall of the tank [28]. We avoid this usage here.
12In the case of a fire hose, there is no “reaction/recoil” force at the nozzle, but there is on the wall of

the hose at a bend some distance back from the nozzle [29].
13The quantity dpleaving/dt is called a “thrust” in Sec. 3.1 of [30], and implied to be a “rocket force”.

Discussion of such awkward usage is given in [28].
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From eq. (26),

∂p

∂t
= ρaḣV + ρah

dV

dt
= −ρa2V 2

A
+ ρah

dV

dt
, (29)

recalling eq. (2). From eq. (10) or (11) and (27),

dV 2

dh
= 2V

dV

dh
= 2V

dt

dh

dV

dt
=

2V

ḣ

dV

dt
= −2A

a

dV

dt
= V 2 1 − r

hr
− 2g

r
, (30)

dV

dt
= − a

2A

dV 2

dh
= −aV 2

2A

1 − r

hr
+

ag

Ar
, (31)

∂p

∂t
= −ρa2V 2

A
− ρa2V 2(1 − r)

2Ar
+

ρa2gh

Ar
= −ρa2V 2

A
− ρAV 2(1 − r)

2
+ ρAgh, (32)

with r = a2/A2. Then, from eqs. (27)-(28) and (32),

dp

dt
= −ρa2V 2

A
− ρAV 2(1 − r)

2
+ ρAgh + ρaV 2. (33)

In the limiting case of a small hole, r = 0+, for which V =
√

2gh,14

dpr=0+

dt
= 2ρagh, (34)

keeping only the term of order a. In the other limiting case that a = A, r = 1, and the water
simply falls out of the tank,

dpr=1

dt
= ρAgh. (35)

For the general case, we can use V from eq. (16) in eq. (33).
The force F of eq. (24) can be measured by weighing the leaky tank, say, by suspending

the tank from a spring scale as reported in [31]. The height h of the water in the tank can
also be measured as the tank is being weighed, such that the weight ρAgh of the water is
the tank is also known. It was found in Fig. 4 of [31] that F = ρAgh − N + Fother ≈ 2ρagh
(downward) for a small hole. If, for example, the normal force according to eq. (25) were
N = ρgh(A − 2a), then the data would indicate that Fother = 0. It remains that Fother can
be of order ρgha, which is a plausible value for the tensile force on the surface of the hole
due to the falling water below.15

A Appendix: Use of the Extended Bernoulli Equation

The nominal form of Bernoulli’s equation is for steady, incompressible, inviscid fluid flow
in an inertial frame of reference, relating the fluid pressure P and velocity u at two points

14We can confirm eq. (34) by noting that for a small hole eq. (26) tells us that p ≈ ρAhv = ρahV ≈
ρah

√
2gh = ρa

√
ghh3/2, so ∂p/∂t = (3/2)ρa

√
2gh ḣ = −(3/2)ρa2

√
2gh V/A, which is neglible. Then,

dp/dt ≈ dpleaving/dt = ρaV 2 ≈ 2ρagh.
15As discussed in sec. 2.1 of [27], the tensile force in the falling fluid below the outlet of a siphon falls to

zero over a vertical distance of order
√

a.
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along a streamline via conservation of energy,

P1 +
ρu2

1

2
+ ρgh1 = P2 +

ρu2
2

2
+ ρgh2 (steady Bernoulli), (36)

where h is the height of a point in a gravitational field with acceleration g. Bernoulli’s equa-
tion can be extended to the case of nonsteady, compressible, rotational, elasto-viscoplastic
flow in a noninertial reference frame by the addition of a “correction” term obtained by an
appropriate integration along the streamline,

P1 +
ρu2

1

2
+ ρgh1 = P2 +

ρu2
2

2
+ ρgh2 +

∫ 2

1

“correction”, (extended Bernoulli), (37)

where the (complicated) “correction” term is displayed in eq. (12) of [32].
In the present example of unsteady, but incompressible flow, in an inertial frame where

rotation of the fluid is neglected, only a single “correction” applies,16

P1 +
ρu2

1

2
+ ρgh1 = P2 +

ρu2
2

2
+ ρgh2 +

∫ 2

1

ρ
∂u

∂t
· dl, (38)

where we make the approximation that u(r, t) = ḣ ẑ, with the z-axis vertical and upwards, is
the unsteady velocity of the fluid in the system (which ignores the small horizontal velocity
of the water inside the tank). Taking point 1 at the center of the upper surface of the water
in the tank (z = h), and point 2 at the center of the hole at the bottom of the tank (z = 0),
we ignore the tiny difference in atmospheric pressure between these points, and note that
u1 = ḣ = −aV/A, u2 = −V , and,∫ 2

1

ρ
∂u

∂t
· dl = ρ

∫ 0

h

d2h

dt2
dz = −ρh

d2h

dt2
= ρ

a

A
h
dV

dt
. (39)

Then, eq. (38) becomes, after dividing by ρ,

gh =

(
1 − a2

A2

)
V 2

2
+

a

A
h
dV

dt
. (40)

as previously found in eq. (8). As remarked after eq. (10) above, the “correction” term in
the extended Bernoulli equation is the last term of eq. (40), which is negligible for a small
hole in the tank is small, a/A � 1, in which case V 2 ≈ 2gh, as first found by Torricelli [1],
and argued in most textbooks on the basis of the (steady) Bernoulli equation (36).

A.1 Another Example (Jan. 8, 2022)

We review the example in [33], which discussion contains some typos.17

A tank of area A1 perpendicular to the vertical contains (incompressible) water of density
ρ. An aperture of area A2 � A1 at depth h below the initial water level in the tank is

16This relatively simple form of the extended/unsteady Bernoulli equation is deduced from Euler’s equa-
tion in [33].

17Thanks to Vedat Batu for pointing this out.
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connected to a horizontal pipe of length L (and area A2) whose far end is open to the air.
The aperture A2 is initially closed, but is opened at time t = 0.

The unsteady Bernoulli equation (38) relating points 1 (at h1 = h and u1 ≈ 0) and 3 (at
h3 = 0, u3 = V and P3 ≈ P1) is,

P1 +
ρu2

1

2
+ ρgh1 = P3 +

ρu2
3

2
+ ρgh3 +

∫ 2

1

ρ
∂u

∂t
· dl +

∫ 3

2

ρ
∂u

∂t
· dl. (41)

For A2 � A1 the velocity of the water in the tank along path 1-2 is small compared to the
(mean) velocity V of the water in the horizontal exit pipe, which velocity is constant along
that pipe (in the approximation of incompressible water). Hence, eq. (41) simplifies to,

gh ≈ V 2

2
+ L

dV

dt
,

dV

2gh − V 2
≈ dt

2L
,

1√
2gh

tanh−1 V√
2gh

≈ t

2L
, (42)

using Dwight 140.02 [34], noting that V starts from zero at time t = 0 and increases to the
steady-state value

√
2gh. Finally,

V√
2gh

≈ tanh
t

τ
, where τ =

2L√
2gh

. (43)

The exit velocity V takes on the steady-state value
√

2gh very quickly for a short pipe.

B Appendix: A Lagrangian Approach

A Lagrangian approach to variable-mass problems has been given in [35, 36].
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For the present example, it seems appropriate to consider the system to be only the water
still in the tank, which can be characterized by a single coordinate q = h. The velocity V
of the efflux of water from the tank is related by the continuity equation for incompressible
fluids, as in eq. (1) above,

V =
av

A
= −aḣ

A
. (44)

The kinetic energy of the system is,

T =
ρAhḣ2

2
. (45)

While one can give an expression for the gravitational potential energy of this system, the
force on the system is not simply related to this potential energy, so the latter is not used in
the method of [35]. Rather, one uses a generalized force, Qh as was introduced by Lagrange.

We recall that for a system with a set of coordinates qk (which could be functions of time
t) and kinetic energy T (qk, q̇k, t), Lagrange’s equations can be written as,18

d

dt

∂T

∂q̇k

− ∂T

∂qk

= Qk =
∑

i

Fext
i · ∂ri

∂qk

=
∑

i

Fext
i · ∂ṙi

∂q̇k

(46)

where ri is the (x, y, z) coordinate of the ith particle in the system, and Fext
i is the external

force on particle i.19 The forms for the generalized force given in eq. (46) follow from
arguments by d’Alembert [38]. If the external forces are deducible from potentials, Fi =
−∂Vi/∂ri, then the first form of eq. (37) simplifies to,

Qk = −∂V

∂qk
, (47)

where V =
∑

i Vi.
In a variable-mass problem such as the present example, the flow of water out of the hole

in tank is associated with a reaction force on the water still in the tank. In the Newtonian
approach, this reaction force must be included in the equation(s) of motion, but in Lagrangian
approach the reaction force is not considered to be an external force, and so is not to be
included in the generalized forces.

In the present example, a water molecule i has position (xi, yi, zi) that does not depend
directly on h, so the generalized force would be Qh = 0 according to the first form of eq. (46).
The velocity of a water molecule is, to a good approximation (0, 0, ḣ), and the external force
on this molecule is Fext = −mmol g ẑ, so the generalized force Qh according to the second
form of eq. (46) is given by,

Qh = −
∑

i

mmol,i g ẑ · ∂ṙi

∂ḣ
= −

∑
i

mmol,i g ẑ · ẑ = −mg = −ρAgh. (48)

18See, for example, p. 41 of [37]. The fact that ∂ri/∂qk = ∂ṙi = ∂q̇k is deduced on p. 40 of [37].
19We recall that Lagrange’s method distinguishes between external and constraint forces. In the present

example, the upward normal force on the bottom of the tank, which holds it at rest, is a constraint force,
and so is not included in the computation of the generalized force.
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The potential energy of the water in the tank is V = ρAh2g/2 with respect to the bottom of
the tank, so according to eq. (47), the generalized force is Qh = −ρAhg = −mg as in eq(48).
Since taking Qh = 0 would lead to no dependence of the motion on g, we accept that the
generalized force is given by eq. (48).20

In the method of [35, 36], the left side of eq. (46) is modified for a variable-mass system,
whose (control) volume has velocity w, according to eq. (5.6) of [35] and eq. (1) of [36],21

d

dt

∂Tw

∂q̇k
− ∂Tw

∂qk
+

∫
∂T̃

∂q̇k
(v − w) · dArea−

∫
T̃

∂(v −w)

∂q̇k
· dArea = Qk, (49)

where Tw is the kinetic energy within the control volume, T̃ is the kinetic energy per unit
volume, and v is the velocity of the material at a point in the system.

In the present example, the control volume is the bucket and water therein, w = 0,
v = ḣ ẑ and T̃ = ρḣ2/2 in the interior of the system, but on its surface v and T̃ are zero
except at the hole, where v = −V ẑ = Aḣ ẑ/a and T̃ = ρV 2/2 = ρḣ2A2/2a2. Then, from
eq. (45),

d

dt

∂Tw

∂ḣ
= ρAhḧ + ρAḣ2,

∂Tw

∂h
=

ρAḣ2

2
, (50)

and at the hole, where the area vector is direction outwards with dArea = −a ẑ,

T̃ = ρḣ2 A2

2a2
,

∂T̃

∂ḣ
= ρḣ

A2

a2
, v =

A

a
ḣ ẑ,

∂v

∂ḣ
=

A

a
ẑ, w = 0 =

∂w

∂ḣ
. (51)

Hence, the equation of motion (49) for the coordinate h is,

ρAhḧ + ρAḣ2 − ρAḣ2

2
− ρ

A3

a2
ḣ2 +

ρA3ḣ2

2a2
= −ρAgh, (52)

hḧ −
(

A2

a2
− 1

)
ḣ2

2
= −gh, (53)

as previously found in eq. (8). If we make the substitutions ḣ = −(a/A)V and ḧ =
−(a/A)dV/dt, we arrive at,

a

A
h
dV

dt
+

(
1 − a2

A2

)
V 2

2
= gh, (54)

as previously found in eqs. (8) and (40).
While the approach of [35, 36] leads to a reasonable analysis of the present problem, it

seems that there is no single Lagrangian approach that applies to all variable-mass prob-
lems.22 However, other “Lagrangian” approaches have been discussed.

20It appears that when eq. (47) it applicable, it should be used. For an example where use of either form
of eq. (46) leads to zero generalized force, in contrast to use of eq. (47), see sec. 2.4 of [40].

21An earlier discussion of Lagrange’s equations for systems of variable mass was given in [39] (1947),
where the context was rocket motion. It was noted that although the system of rocket plus fuel has variable
mass, the center of mass of this system remains constant to a reasonable approximation, relative to the
system, which permits a simpler form of the equations of motion than eq. (49).

22An example where the method of [35, 36] fails has been pointed out by the author of [41]. A snowball
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B.1 Another Variant of the Lagrangian Approach

A recent paper [41] presents a Lagrangian approach close to the above, but with a slightly
different notation, and traces this approach to an early paper on variable-mass systems by
Cayley [42] (1857).

The equations of motion are written in [41] in the form,

d

dt

∂̇S

∂̇q̇k

− ∂̇S

∂̇qk

+
∂̇σ

∂̇q̇k

= Qk, (56)

where S is the same as the kinetic energy of the system called T previously, σ = ṁeV
2/2

describes the rate of kinetic energy ejected from the system (at velocity V ), the partial
derivative operations ∂̇/∂̇qk and ∂̇/∂̇q̇k on f(m, qk, q̇k, t) act only on the dependence of f on
qk and q̇k (and not on the dependence on mass m), and Qk is the generalized (external) force
associated with coordinate k.

For the present example of the leaky tank, with only a single coordinate h,

S =
mḣ2

2
=

ρAhḣ2

2
= T, m = ρAh, σ =

ṁeV
2

2
=

ṁeḣ
2A2

2a2
, ṁe = ρaV = −ρAḣ, (57)

with the convention that ṁe > 0 when mass is ejected from the system. As before, the
generalized force is,

Qh = −mg = −ρAgh. (58)

The equation of motion according to eq. (56) is then,

d

dt
mḣ − 0 + ṁeḣ

A2

a2
= ρAhḧ + ρAḣ2 − ρAḣ2A2

a2
= −ρAgh, (59)

hḧ + ḣ2

(
1 − A2

a2

)
= −gh, (60)

a

A
h
dV

dt
+

(
1 − a2

A2

)
V 2 = gh, (61)

The second terms in eqs. (60)-(61) are a factor of 2 larger than that found in eqs. (8), (40)
and (53), and implies that V 2 = gh rather than 2gh as in the energy analysis. That is,
application of eq. (56) to the present example seems to lead to the result of an momentum

slides on snow-covered ice, subject to no external force,and accumulates mass at rate ṁ = kv, i.e., m(t) =
m0 + kx. Conservation of horizontal momentum implies that m(t)v(t) = m(t + dt)v(t + dt)
= (m + kv dt)(v + v̇ dt) ≈ m(t)v(t) + (mv̇ + kv2) dt, such that the equation of motion is mv̇ = −kv2 .

Taking the control volume to be the moving mass, with coordinate q = x and q̇ = v, the velocity of the
control volumes is w = v, the generalized force Q is zero, and the kinetic energy of the control volume is
Tw = m(t)v2/2. Then, the equation of motion according to eq. (49) would be just

d

dt

∂Tw

∂v̇
= mv̇ + kv2 =

∂Tw

∂x
=

kv2

2
, mv̇ = −kv2

2
, (55)

in disagreement with the momentum analysis.
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analysis, rather than an energy analysis. If one then considers the vena contracta at the
outlet, which increase the velocity of the efflux by ≈ √

2 over a short distance, agreement
with the energy analysis is obtained.

The limitations of the method of [41] are illustrated, for example, by the uncoiling of
a tape [40], including the variant in sec. V.D of [41] which we consider to be misanalyzed
there.

B.2 Yet Another Variant of a Lagrangian Approach

Yet another Lagrangian approach is given in [43] for systems in which the variable mass
depends on position, as is the case of the present example if we take the system to be the
mass m = ρAh of water in the leaky bucket.

According to eq. (19) of [43] the equation(s) of motion of the system can be written as,

d

dt

∂T

∂q̇k
− ∂T

∂qk
= Q̂k =

∑
i

{
(fi + ṁiwi) · ∂ri

∂qk
+

1

2

d

dt

(
∂mi

∂q̇k
v2

i

)
− 1

2

∂mi

∂qk
v2

i

}
, (62)

where T is the kinetic energy of the system, whose particles at positions ri have masses
mi(qk, q̇k, t), velocities vi, fi is the “active” force on particle i, and ṁiwi is a “nonconservative
force, proportional to the rate of variation of mass with respect to time and to the velocity
of the expelled (or gained) mass”.23

In the present example with a single coordinate h, T = ρAhḣ2/2 as before, the first term
of Q̂h is the generalized force Qh = −ρAgh, the velocity of all particles in the system is
vi = ḣ ẑ, and

∑
i mi = ρAh. Possibly,

∑
i

ṁiwi · ∂ri

∂h
= ρAḣ(−V ẑ) · ẑ = −ρAḣV = −ρA2ḣ2

a
. (63)

If so, the equation of motion according to eq. (62) would be,

ρAhḧ + ρAḣ2 − ρAḣ2

2
= −ρAgh − ρA2ḣ2

a
+ 0 − ρAḣ2

2
(64)

hḧ + ḣ2

(
1 +

A

a

)
= −gh. (65)

Or, if we ignore the term in ṁiwi, the equation of motion would be,

hḧ + ḣ2 = −gh. (66)

??? However, neither eq. (65) nor (66) agree with the equation of motion found previously
in eqs. (8) and (53)??

23The meaning of this phrase is unclear to the authors.
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C Appendix: The Leaky Tank is Also Being Filled

(Mar. 30, 2022)
Suppose the leaky tank is also being filled at a constant rate, such that in the absence of

a leak the height/depth h of the water in the tank rose at rate ḣ = u.
We ignore the effects of the pressure generated by the water falling onto the upper surface

of the water tank, and of the increase in the temperature of the water in the tank due to
the energy of the falling water that is dissipated in the tank. Then, eq. (1) still holds, with
v = aV/A as the vertical velocity of the water in the tank, where again V is the velocity
of the water at the exit hole of area a and A is the horizontal area of the tank. However,
eq. (2) is now,

ḣ = u − v = u − aV

A
, V =

A

a
(u − ḣ), V̇ = −Aḧ

a
. (67)

As before, the rate dW/dt of gravitational work on the water in the tank at time t is the
product of the rate ρgv of gravitational work per unit volume, and the volume Ah of the
water in the tank,

dW

dt
= ρgvAh = ρgV ah, (68)

where ρ is the mass density of the water.
The total kinetic energy of the water in the tank is the product of the kinetic energy per

unit volume ρv2/2 and by the volume of the water in the tank,

KEtank =
ρv2

2
Ah =

ρV 2

2

a2

A
h, (69)

dKEtank

dt
=

ρV 2

2

a2

A

dh

dt
+ ρV

dV

dt

a2

A
h =

ρV 2a2u

2A
− ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h, (70)

using eq. (67) to obtain the last form of eq. (70).
The rate at which kinetic energy exits the tank, with velocity V , is given by,

dKEexit

dt
=

dmexit

dt

V 2

2
= ρV a

V 2

2
. (71)

Conservation of energy now implies that,

dW

dt
= ρgV ah =

dKEtank

dt
+

dKEexit

dt
=

ρV 2a2u

2A
− ρV 3

2

a3

A2
+ ρV

dV

dt

a2

A
h + ρV a

V 2

2
. (72)

If we divide eq. (72) by ρV a, we obtain, recalling eq. (67),

gh =
V au

2A
+

(
1 − a2

A2

)
V 2

2
+

a

A
h
dV

dt
=

u(u − ḣ)

2
+

(u − ḣ)2

2

(
A2

a2
− 1

)
− hḧ. (73)

Time t can be replaced as the independent variable in this equation by the depth h, by
combining the first form of eq. (73) with eq. (67) to yield,
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dV

dt
=

dV

dh

dh

dt
=

(
u− a

A
V

) dV

dh
= u

dV

dh
− 1

2

a

A

dV 2

dh
, (74)

2gh =
V au

A
+

(
1 − a2

A2

)
V 2 + 2hu

dV

dh
− a2

A2
h
dV 2

dh
. (75)

It seems difficult to integrate either eq. (73) or (75) analytically. Of course, there is the
special case that u = v = aV/A such that ḣ = 0 and V 2 = 2gh is constant in time (even for
a = A). And, for very small holes we have V 2 ≈ 2gh ≈ 2g(h0 + u t).

Sept. 27, 2024. This issue is also discussed in [44].
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