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1 Problem

A neutral, conducting sphere of radius R with permanent magnetization density M0 = M0 ẑ
parallel to its axis when at rest is rotated about that axis with angular velocity ω = ω ẑ with
respect to the lab frame. Deduce the electric-charge distribution, the electric potential and
the electric field in the lab frame. Compare with the case that the sphere is nonconducting.

This configuration is a variant of unipolar induction, as discussed by Faraday in 1851 [1],
who also considered the case of the magnetized cylinder at rest while the voltmeter and
contact wires rotated around the axis of the cylinder.1

2 Solution

The case of a magnetized sphere was perhaps first considered by Swann [6]. See also, [7, 8, 9].
For the related cases of a rotating magnetized cylinder, and a conducting sphere rotating in
an external magnetic field, see [10, 11, 12].

A uniformly magnetized sphere of radius R that is at rest in an inertial frame is well
known to have electric fields E = 0 = D (and hence zero electric-polarization density P),

1See also, for example, [2]-[5].
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while the magnetic fields are given (in Gaussian units) by,

B(r > R) = H(r > R) =
3(m0 · r̂)r̂ − m0

r3
, B(r < R) =

8π

3
M0, H(r < R) = −4π

3
M0, (1)

where the magnetic moment m0 is given by,2

m0 =
4πR3

3
M0. (2)

However, it is not self-evident that these forms hold in the lab frame of the present
problem.

2.1 Analysis Using a Comoving Inertial Frame

As discussed in [14, 15, 16, 17], the best approach to an understanding of lab-frame electro-
dynamics of a rotating system is via a comoving inertial frame corresponding to some point
in the rotating system.

We follow Minkowski [14] in arguing that the local magnetization at a point P in the
rotating sphere equals the rest value M0 according to an observer in the inertial frame that is
instantaneously comoving with point P . That is M� = M0, where the superscript � indicates
quantities observed in the comoving inertial frame.

Similarly, we expect that the electric polarization P� near point P in the comoving inertial
frame equals that of the magnetized sphere in an inertial rest frame, namely P� = 0.

Writing v as the velocity of point P in the lab frame, the field transformations to the
comoving inertial frame are [18] (see also [19]), to order v/c where c is the speed of light in
vacuum,

B� = B − v

c
× E, D� = D +

v

c
× H, E� = E +

v

c
× B, H� = H − v

c
× D,

M� = M +
v

c
× P, P� = P − v

c
× M, (3)

and the inverse transformations are,

B = B� +
v

c
× E�, D = D� − v

c
×H�, E = E� − v

c
× B�, H = H� +

v

c
×D�,

M = M� − v

c
× P�, P = P� +

v

c
×M�. (4)

We now find the lab-frame polarization and magnetization densities inside the rotating sphere
(at point P = r r̂ = r in spherical coordinates in the lab frame) to be,

P(r < R) =
v

c
× M0 =

ω × r

c
× M0 =

ωM0

c
r⊥ =

rωM0

c

(
sin2 θ r̂ +

sin 2θ

2
θ̂

)
, (5)

M(r < R) = M0. (6)

2See, for example, sec. 5.10 of [13].
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Hence, there is a uniform bound volume-charge density inside the sphere given by,

ρbound(r < R) = −∇ · P = −2ωM0

c
. (7)

Likewise, there is a bound surface-charge density,

σbound(r = R) = P(R−) · r̂ =
ωRM0 sin2 θ

c
, (8)

where θ is the polar angle with respect to the z-axis. The total bound charge is zero,

Qbound =

∫
ρbound dVol+

∫
σbound dArea = −8πR3ωM0

3c
+

2πR3ωM0

c

∫ 1

−1

(1−cos2 θ) d cos θ = 0.

(9)

2.2 Analysis in the Rotating Frame

The principles of electrodynamics in a rotating frame are summarized in the Appendix.
We cannot assume without question that the magnetization of the cylinder is M0 accord-

ing to an observer at rest in the rotating frame. The best strategy is to use the comoving
analysis of sec. 2.1 to identify the fields in the lab frame, and then use the transformations
(39)-(40) to find the fields in the rotating frame, which we designate with a ′,

B′ = 4πM0, D′ = 0, E′ = 0, H′ = 0, P′ = 0, M′ = M0. (10)

As the rotating frame is the rest frame of the magnetized sphere, we might have näıvely
assumed these results to be obvious.

We can now consider Maxwell’s equations (45)-(48) for D′ and H′ in the rotating frame.
In the present example there are no free sources for D′ or H′, and also no “other” sources
according to eqs. (49)-(50). Thus, it is consistent with Maxwell’s equations in the rotating
frame that D′ = 0 = H′. Then, using P′ = 0 and M′ = M0 we have that E′ = 0 and
B′ = 4πM0.

Alternatively, we can consider Maxwell’s equations (51)-(52) for E′ and B′. On examining
the extensive list (53)-(56) of possible sources in the rotating frame, we see that the eqs. (51)-
(52) reduce to,

∇′ · E′ = 0, ∇′ × B′ = ∇′ × 4πM0, (11)

so that we again find E′ = 0 and B′ = 4πM0.
Transforming the fields from the rotating frame back to the lab frame we again obtain

the results of eqs. (5)-(6).3

Although the electric polarization, P′ = 0, vanishes in the rotating frame (since this
could only be due to a moving magnetization in this example), the bound charge density
(41) is nonzero,

ρ′
bound = −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′ = −2ωM0

c
= ρbound , (12)

3In particular, we find it completely consistent to use the transformation P = P′ + v/c × M′ from the
rotating frame to the lab frame, despite a claim to the contrary in [23].
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recalling eqs. (7)-(8). Similarly, there is a bound surface charge density on the outer circum-
ference of the sphere in the rotating frame given by,

σ′
bound =

ωRM ′

c
=

ωRM0

c
= σbound , (13)

also recalling eq. (8).
Thus, investigations of electromagnetism on the Earth’s surface are not subject to “fic-

titious” charge and current densities (55)-(55) as can occur in some examples of physics in
a rotating frame.

2.3 Nonconducting Sphere

If the sphere is nonconducting there are no free charges or currents.4

The electric field E can be deduced from a scalar potential V ,

E = −∇V = −∇Vρ − ∇Vσ, (14)

where the potential Vρ (continuous at r = R) due to the bound volume-charge density (7)
is,

Vρ(r < R) = −4πωM0

3c
(3R2 − r2), Vρ(r > R) = −8πR3ωM0

3cr
, (15)

and the potential Vσ (also continuous at r = R, and which obeys ∇2Vσ = 0 except at r = R)
due to the bound surface-charge density (8) can be written in the form,

Vσ(r < R) =
∑

n

An
rn

Rn
Pn(cos θ), Vσ(r > R) =

∑
n

An
Rn+1

rn+1
Pn(cos θ), (16)

where Pn is the Legendre polynomial of order n. Noting that,

P0 = 1, and P2 =
3cos2 θ − 1

2
= 1 − 3 sin2 θ

2
, (17)

the bound surface-charge density (8) is related to the potential Vσ by,

σbound =
ωRM0 sin2 θ

c
=

2ωRM0

3c
(P0 − P2)

=
Eσ,r(R

+) − Eσ,r(R
−)

4π
=

1

4π

(
∂Vσ(R−)

∂r
− ∂Vσ(R+)

∂r

)

=
∑

n

(2n + 1)
An

4πR
Pn. (18)

Hence, the Fourier coefficients An are all zero except that,

A0 =
8πR2ωM0

3c
, and A2 = −8πR2ωM0

15c
. (19)

4This case has been discussed in [24, 25].

4



Thus,

Vσ(r < R) =
8πωM0

3c

(
R2 − r2

5
P2

)
, Vσ(r > R) =

8πωM0

3c

(
R3

r
− R5

5r3
P2

)
. (20)

and the total electric potential is,

V (r < R) = −4πR2ωM0

3c
+

4πr2ωM0

5c
(2− cos2 θ), V (r > R) = −4πR5ωM0

15cr3
(3 cos2 θ− 1).

(21)
The difference ΔV in potential between points on the equator and on the “north” pole of
the sphere is,

ΔV = V (θ = 90◦) − V (θ = 0) =
4πR2ωM0

5c
. (22)

Note also that inside the sphere, V (r < R) �= V0 + V1r
2 sin2 θ = V 0 + V1r

2
⊥, so that the

electric field is not in the r⊥ direction, E(r < R) �= −2V1r⊥ r̂⊥.
The radial electric field is,

Er(r < R) = −8πrωM0

5c
(2 − cos2 θ), Er(r > R) = −4πR5ωM0

5cr4
(3 cos2 θ − 1), (23)

which obeys σbound = [Er(R
+) − Er(R

−)]/4π, and the θ-field is,

Eθ(r < R) = −4πrωM0

5c
sin 2θ, Eθ(r > R) = −4πR5ωM0

5cr4
sin 2θ. (24)

The electric-displacement field is D = E + 4πP, so outside the sphere
D(r > R) = E(r > R), while inside it,5

Dr(r < R) = −4πrωM0

5c
(3 cos2 θ − 1), Dθ(r < R) =

6πrωM0

5c
sin 2θ. (25)

The radial component of D is continuous at r = R, as expected.
The rotating bound-charge densities (which are proportional to ω/c) generate current

densities proportional to ω2/c, which generate magnetic fields proportional to ω2R2/c2. We
neglect these tiny magnetic fields as this analysis is accurate only to order v/c ≈ ωR/c.
In this approximation, the lab-frame magnetic fields are entirely due to the magnetization
M ≈ M0, so the magnetic fields are given by eq. (1).

2.4 Conducting Sphere

As for the nonconducting sphere, any currents in/on a conducting sphere, other than those
directly associated with the magnetization density M ≈ M0, are of order ω2R2/c2, and we
neglect the magnetic field which they generate. Then, the magnetic field in the lab frame is
again given by eq. (1).

5This case of a nonconducting, rotating sphere is an example where the free charge density is zero but
the electric-displacement field D is nonzero.
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The bound-charge distributions are the same for a conducting and a nonconducting
sphere, so the electric field has contributions (17)-(24) in both cases. These contributions
appear to have been ignored in all previous analyses, such as [6, 7, 8, 9]. However, as discussed
further below, once it is established that the magnetic field inside the sphere in the lab frame
is uniform (and parallel to the axis of rotation) the total electric-charge distribution and the
electric field E are the same as for a conducting sphere, with zero magnetization, that rotates
in a uniform, external magnetic field [12].

The free charges inside the sphere must be at rest relative to the rotating sphere. That
is, the electric field in the comoving frame must be zero at points inside the sphere; E� =
0 = E + v/c ×B, recalling eq. (3), so the lab-frame electric field for r < R is given by,

E(r < R) = −v

c
× B = −ω × r

c
× 8πM0

3
= −8πωM0

3c
r⊥. (26)

The total electric-charge density inside the sphere is therefore,

ρtotal =
∇ · E

4π
= −4ωM0

3c
= ρbound + ρfree, (27)

and hence the free-charge density is, recalling eq. (7),

ρfree =
2ωM0

3c
. (28)

From eq. (26) we deduce that the electric potential inside the sphere has the form,

V (r < R) = V0 +
4πωM0

3c
r2
⊥ = V0 +

4πωM0

3c
r2 sin2 θ = V0 +

8πr2ωM0

9c
[1 − P2(cos θ)], (29)

recalling eq. (17). As in eq. (16) the electric potential outside the sphere can be written as,

V (r > R) =
∑

n

An
Rn+1

rn+1
Pn(cos θ), (30)

The potential is continuous at r = R, so we learn that all An vanish except A0 and A2, and
that,

A2 = −8πR2ωM0

9c
. (31)

Assuming that the sphere is electrically neutral, coefficient A0 = 0. Hence the electric
potential outside the sphere is,

V (r > R) = −8πR5ωM0

9cr3
P2(cos θ), (32)

and the electric field outside the sphere is,

Er(r > R) = −8πR5ωM0

3cr4
P2(cos θ), Eθ(r > R) = −4πR5ωM0

3cr4
sin 2θ. (33)
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The difference ΔV in the external potential between points on the equator and on the “north”
pole of the sphere is,

ΔV = V (θ = 90◦) − V (θ = 0) =
4πR2ωM0

3c
, (34)

which is slightly larger that the result (22) for a nonconducting sphere.6 This is the open-
circuit voltage difference between the equator and the “north” pole. It is also the difference
in the interior potential (29), such that for any closed loop that includes both the “north”
pole and a point on the equation, we have that

∮
loop

E · dl = 0.7

For completeness, we note that the surface-charge density is given by,

σtotal =
Er(R

+) − Er(R
−)

4π
=

ωRM0

c

5 cos2 θ − 2

3
, σfree =

2ωRM0 cos2 θ

3c
. (35)

recalling the bound surface charge of eq. (8). Finally, the electric-displacement field D inside
the conducting, magnetized sphere is,

D(r < R) = E + 4πP =
4πωM0

3c
r⊥. (36)

2.5 Comments

In the above analysis we have ignored the correction to the magnetic field due to the rotating
charge distributions, as this is of order ω2R2/c2. We also ignore the effect of centrifugal forces
on the charge distributions. Furthermore, if the material is paramagnetic rather then having
strictly fixed magnetization, there results a small electric field even if the magnetization is
zero when at rest [20]. Some additional remarks on these topics appear at the end of [12].

If the conductor (and magnetization, if any) has axial symmetry, and the magnetic field
is uniform and parallel to the axis of rotation, the internal electric field will be in the r⊥-
direction. Then for a neutral conductor, the electric-dipole moment is zero, and the lowest
nonzero moment of the charge distribution is the quadrupole. Hence, the electric field falls off
as 1/r4 at large distances, no matter what is the shape of the axially symmetric conductor.8

A Summary of the Principles of Electrodynamics in a

Rotating Frame

For reference, we reproduce the principles of electrodynamics in the frame of a slowly rotating
medium where ε and μ differ from unity.9,10

6Of course, a rotating nonconducting sphere could not be used as a unipolar generator.
7It remains disconcerting to some people that nonetheless the rotating, conducting, magnetized sphere

could be used as a homopolar generator, driving a current through a load connected to the “north” pole and
the equator via sliding contacts.

8The case of a right-circular-cylinder conductor is reviewed in [10].
9This Appendix is from sec. 2.2.5 of [17].

10This case is discussed most thoroughly by Ridgely [21, 22], but primarily for the interesting limit of
steady charge and current distributions.
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The (cylindrical) coordinate transformation is,

r′ = r, φ′ = φ − ωt, z′ = z, t′ = t, (37)

where quantities in observed in the rotating frame are labeled with a ′. The transformations
of charge and current density are,

ρ′ = ρ, J′ = J − ρv, (38)

where v (v � c) is the velocity with respect to the lab frame of the observer in the rotating
frame. The transformations of the electromagnetic fields are,

B′ = B, D′ = D +
v

c
× H, E′ = E +

v

c
× B, H′ = H. (39)

The transformations of the electric and magnetic polarizations are,

P′ = P− v

c
× M, M′ = M, (40)

if we regard these polarizations as defined by D′ = E′ + 4πP′ and, B′ = H′ + 4πM′.
The lab-frame bound charge and current densities, ρbound = −∇·P and Jbound = ∂P/∂t+

c∇ × M transform to

ρ′
bound = −∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ × M′, (41)

J′
bound =

∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′. (42)

Force F is invariant under the transformation (37). In particular, a charge q with velocity
vq in the lab frame experiences a Lorentz force in the rotating frame given by,

F′ = q

(
E′ +

v′
q

c
× B′

)
= q

(
E +

vq

c
× B

)
= F, (43)

where v′
q = vq −v. Similarly, the Lorentz force density f ′ on charge and current densities in

the rotating frame is,

f ′ = ρ′E′ +
J′

c
× B′ = (ρ′

free + ρ′
bound) E′ +

J′
free + J′

bound

c
× B′. (44)

Maxwell’s equations in the rotating frame can be written as,

∇′ · B′ = 0, (45)

∇′ · D′ = 4πρ′
free,total = 4π (ρ′

free + ρ′
other) , (46)

∇′ × E′ +
∂B′

∂ct′
= 0, (47)

∇′ × H′ − ∂D′

∂ct′
=

4π

c
J′

free,total =
4π

c
(J′

free + J′
other) , (48)
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where ρ′
free = ρfree and J′

free = Jfree − ρfreev are the free charge and current densities, and the
“other” charge and current densities that appear to an observer in the rotating frame are,

ρ′
other = −v · J′

free

c2
+

ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
, (49)

J′
other = ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′
. (50)

The “other” charge and current distributions are sometimes called “fictitious” [26], but we
find this term ambiguous. For an example with an “other” charge density ω ·H′/2πc in the
rotating frame, see [27].

Maxwell’s equations can also be expressed only in terms of the fields E′ and B′ and
charge and current densities associated with free charges as well as with electric and magnetic
polarization,

∇′ · E′ = 4πρ′
total, (51)

and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c
J′

total, (52)

where,

ρ′
total = ρ′

free −
v

c2
· J′

free − ∇′ · P′ +
ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
= ρ′

free,total − ∇′ · P′

= ρ′
free + ρ′

bound + ρ′
more , (53)

ρ′
more = − v

c2
·
(
J′

free +
∂P′

∂t′
+ c∇′ × M′

)
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′
, (54)

J′
total = J′

free +
∂P′

∂t′
+ c∇′ × M′ + ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′

= J′
free,total +

∂P′

∂t′
+ c∇′ ×M′

= J′
free + J′

bound + J′
more , (55)

J′
more = v

(
ρ′

free − ∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ ×M′

)

+

(
E′

4π
· ∇

)
v − (v · ∇)

E′

4π
− v

4πc
× ∂B′

∂t′
. (56)

The contribution of the polarization densities to the source terms in Maxwell’s equations
in much more complex in the rotating frame than in the lab frame.Because of the “other”
source terms that depend on the fields in the rotating frame, Maxwell’s equations cannot be
solved directly in this frame. Rather, an iterative approach is required in general.

The constitutive equations for linear isotropic media at rest in the rotating frame are,

D′ = εE′, B′ = μH′ − (εμ − 1)
v

c
× E′, (57)
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in the rotating frame, and,

D = εE + (εμ − 1)
v

c
× H, B = μH − (εμ − 1)

v

c
× E, (58)

in the lab frame. The lab-frame constitutive equations (58) are the same as for a nonrotating
medium that moves with constant velocity v with respect to the lab frame.

We can also write the constitutive equations (57) for a linear isotropic medium in terms
of the fields B′, E′, P′ and M′ by noting that D′ = E′ + 4πP′ and H′ = B′ − 4πM′, so that,

P′ =
ε − 1

4π
E′,

M′ =

(
1 − 1

μ

)
B′

4π
−

(
ε − 1

μ

)
v

c
× E′

4π
=

(
1 − 1

μ

)
B′

4π
− εμ − 1

μ(ε− 1)

v

c
× P′. (59)

Similarly, the constitutive equations (58) in the lab frame can be written to order v/c as,

P =
ε − 1

4π
E +

(
ε − 1

μ

)
v

c
× B

4π
=

ε − 1

4π
E +

εμ − 1

μ − 1

v

c
× M,

M =

(
1 − 1

μ

)
B

4π
−

(
ε − 1

μ

)
v

c
× E

4π
=

(
1 − 1

μ

)
B

4π
− εμ − 1

μ(ε− 1)

v

c
× P. (60)

Ohm’s law for the conduction current JC has the same form for a medium with velocity
u′ relative to the rotating frame as it does for a medium with velocity u relative to the lab
frame,

J′
C = σ

(
E′ +

u′

c
× B′

)
= σ

(
E +

u

c
× B

)
= JC, (61)

where σ is the electric conductivity of a medium at rest.
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