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1 Problem

What is the shape of an asteroid of given uniform density and given total mass such that
the force of gravity is maximal for one point on its surface? Compare the maximal gravity
with that of a sphere of the same mass and density.

This problem is from Yakov Kantor’s Physics Quiz site, Feb. 2002,
http://www.tau.ac.il/~kantor/QUIZ/

See also prob. 15 at http://webdev.physics.harvard.edu/academics/undergrad/problems.html

2 Solution

If the asteroid is spherical with radius a and mass M , the force of gravity on a test mass m
is,

F =
GMm

a2
, (1)

everywhere on the surface, where G is Newton’s constant of gravitation.
Can some other shape of the asteroid result in a larger force? Let the test mass be at

the origin, which is on the surface of the asteroid, and define the z axis to be along the
direction of the desired maximal force on the test mass. It is “obvious” that this z axis is
an axis of symmetry of the asteroid: if the asteroid were not symmetric about the z axis,
the z component of the vector force Gmm′r̂/r2 would be increased by moving material from
larger to smaller transverse distances from the axis, until the asteroid is axially symmetric.

We seek the functional form x = x(z), where 0 < z < z0, that generates a surface of
revolution about the z axis, the surface of the asteroid, that maximizes the (axial) force on
test mass m at the origin. The axial force due to a ring of extent dx dz that passes through
point (x, z) is,

Gmρ 2πx dx dz
1

x2 + z2

z√
x2 + z2

, (2)

so the total force is,

F = 2πGmρ

∫ z0

0

dz

∫ x(z)

0

x dx
z

(x2 + z2)3/2
=

3GMm

2a3

∫ z0

0

dz

(
1 − z

(x2(z) + z2)1/2

)
, (3)

where we suppose that the asteroid has the same density as a sphere of radius a and mass
M , i.e., ρ = 3M/4πa3. Hence, the volume of the asteroid is constrained to have value,

V = π

∫ z0

0

dz x2(z) =
4πa3

3
. (4)

1



This suggests use of the calculus of variations, although there is the complication that
the value of the endpoint z0 is unknown.

In principle, the shape x(z) might involve nonzero values at z = 0 and z0, i.e., planar
surfaces that bound the asteroid. However, we readily convince ourselves that such a geom-
etry could not maximize the z component of the gravitational force; material in the plane
z = 0 contributes nothing to the z component of the force, while material at x > 0 in the
plane z = z0 would be more useful if it were moved to a smaller z. Thus, we understand
that x(0) = 0 = x(z0) for the desired shape function.

2.1 An Intuitive Solution

However, we first consider the related question: what is the shape of a thin shell of matter
such that all points on the shell contribute the same axial force on our test mass at the
origin? For a shell described by x(z), the answer is already contained in the form of integral
(3). Namely, we desire that,

z

(x2(z) + z2)3/2
= const. =

1

z2
0

, (5)

where we have evaluated the constant at the intercept z0 of the shell with the z axis. On
rearranging eq. (5), we have,

x2(z) = z2/3z
4/3
0 − z2. (6)

It is noteworthy that this form also intersects the z axis at the origin, so is a satisfactory
candidate for the shape of the asteroid (whose surface surely must touch the test mass at
the origin). Inserting this form in eq. (4) for the volume, we find that z0 = 3

√
5a = 1.7a.

Using eq. (6) in eq. (3) for the axial force, we find,

F =
3GMmz0

5a3
=

3 3
√

5GMm

5a2
= 1.026

GMm

a2
. (7)

This argument does not prove that eq. (6) describes the shape of the maximal gravity
asteroid, but it does show that the shape is not a sphere. The simplicity of the argument
suggests that the result is in fact correct, but a proof of this is still desired.

2.2 Solution via the Calculus of Variations

We wish to find the form x(z) that maximizes integral F of eq. (3) subject to the constraint
that integral V of eq. (4) has the stated value, while permitting the endpoint z0 to vary. To
proceed via the calculus of variations, we consider the integral,

I =

∫ z0

0

f(z, x(z)) dz, (8)

where,

f = 1 − z

(x2 + z2)1/2
− λx2, (9)

which combines the integrands of eqs. (3) and (4) using the Lagrange multiplier λ.
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For a fixed endpoint z0, integral I is at an extremum provided f obeys the Euler-Lagrange
equations,

∂f

∂x
=

d

dz

∂f

∂x′ . (10)

Since f does not depend on x′ = dx/dz in this problem, we simply have,

0 =
∂f

∂x
=

xz

(x2 + z2)3/2
− 2λx, (11)

or,
z

(x2 + z2)3/2
= 2λ. (12)

As in eq. (5), the constant 2λ is clearly 1/z2
0 , since x(z0) = 0. Again, we obtain eq. (6) as

the shape of the asteroid. And again, the constant z0 (i.e., the multiplier λ) must be set to
3
√

5ato satisfy the volume constraint (4), which completes the solution.
The shape (6) of the maximal gravity asteroid is shown below. It is noteworthy that

there is no cusp at either z = 0 or z0.
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Shape of a maximal gravity asteroid for z 0 = 1.

2.3 A Mathematical Footnote

We have not directly included in our calculus of variations the fact that the endpoint z0 is
free to move along the z axis, i.e., along the curve g(z) = 0. In, for example, sec. 4.3 of [1]
we read that the freedom to vary the endpoint in the maximization of integral I leads to the
additional relation

f + (g′ − x′)
∂f

∂x′ = 0, (13)

at the variable endpoint z0, where g(z) describes the curve on which the endpoint z0 can
vary. Applying this to the present problem, we must have f(z0) = 0, which requirement is
satisfied by the condition x(z0) = 0 that has already been included in the analysis of sec. 2.2.
However, it is pleasant to have a formal confirmation of our earlier “intuitive” justification
of this condition.
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2.4 Further Comment on the Shape the Asteroid

The form (6) for the shape of a maximal gravity asteroid differs only slightly from that of a
sphere, as shown in the figure on p. 3. Starting from a sphere, the force of gravity at, say,
the “north” pole is increased by moving material from the “southern” hemisphere into the
“northern” hemisphere.

We verify that this is the right thing to do by a simple calculation. Namely, we compare
the z component of the force of gravity at the north pole due to a point mass on the surface
of a sphere of radius a at polar angle θ with that due to a point mass at angle π − θ. The
claim is that the point at θ contributes more to the force than the point at π − θ, so that it
would be favorable to move some of the mass to θ < π/2.

The distance from the pole to the point at angle θ is r = 2a sin θ/2. The z component of
the force of gravity due to a point mass at angle θ is proportional to,

Fz(θ) ∝ Δz

r3
=

a(1 − cos θ)

8a3 sin3 θ/2
=

1

4a2 sin θ/2
, (14)

so that the force due to a point at angle π − θ is related by,

Fz(π − θ) ∝ 1

4a2 cos θ/2
. (15)

The ratio,
Fz(π − θ)

Fz(θ)
= tan θ/2, (16)

is less than one for all θ < π/2. Thus, the force of gravity at the north pole would be
increased by moving mass from angle π − θ to angle θ on the surface of the asteroid, as
claimed.

While this argument gives a qualitative feel as to how a spherical asteroid should be re-
shaped to become a maximal-gravity asteroid, it does not provide a quantitative prescription
of how much mass should be moved. For that, the arguments of secs. 2.1 and 2.2 are better.
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