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1 Problem

The “science fact” section of the March 1965 issue of Analog magazine featured an article
by Richard P. McKenna that proposed a “motor” which would consist of a solenoid magnet
that can rotate about its axis, plus a radioactive source mounted on that axis [1]. When a
charged particle is emitted by a radioactive decay it traverses the solenoid field, which bends
the particle’s trajectory, giving it some angular momentum. By Newton’s 3rd law (argues
McKenna), the reaction force on the magnet creates a torque that will cause the solenoid to
spin in the opposite sense to that of the particle’s trajectory.

McKenna seemed to be aware that this proposal could not actually work, but he lacked a
consistent physical explanation as to why this would be so. Provide the missing explanation.

A side issue concerns the nature of the radioactive source, which must be charged before
and/or after the emission of the moving charge. Here it suffices to consider the source to
consist of a single charged particle that was introduced into the solenoid from infinity along
the axis, experiencing no force in this process. The radioactive decays results in a neutral
particle that can be ignored, plus the moving charge.
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2 Solution

A direct calculation (sec. 2.1) of the torque about the z-axis of the solenoid due to the
interaction of magnetic field of the moving charge with the currents in the solenoid shows
that this torque vanishes. Hence, there is no tendency for the coil to rotate, and the system
cannot be regarded as a motor.

However, this simple result is counterintuitive, because the solenoid coil does exert a
torque on the charged particle, which causes its trajectory to be curved. The particle takes
on (mechanical) angular momentum as a consequence. We expect that the total angular
momentum of the system to be constant, since there are no external torques about the
z-axis. Thus, it may seem that conservation of angular momentum is violated here.

But, properly considered, the charged particle has zero angular momentum at all times
in this example. Therefore, we need not expect the solenoid to exhibit any “reaction angular
momentum”.1

The needed insight is that the system of a moving charged particle plus magnetic field
contains both mechanical (angular) momentum as well as electromagnetic (angular) mo-
mentum. Because the system has azimuthal symmetry, the angular momentum of particle +
field about the axis of the solenoid is constant in time. Also, as there are no external torques
about the solenoid axis, the total angular momentum of the particle + field + solenoid about
this axis is constant in time. Since the angular momentum of the particle + field does not
change, neither does that of the solenoid.

The solenoid does NOT rotate in reaction to the deflection of the particle. Rather, the
reaction appears in the electromagnetic fields of the system, which store a quantity of angular
momentum equal and opposite to the mechanical angular momentum of the moving charge.

Section 2.2 considers electromagnetic (angular) momentum as part of the canonical an-
gular) momentum of a charged particle in an external electromagnetic field. Section 2.3
calculates the electromagnetic (angular) momentum from the Poynting vector. A compli-
cation is that the approximation of an infinite solenoid is not sufficiently accurate when
evaluating the electromagnetic angular momentum via the Poynting vector.2

The electromagnetic (angular) momentum is affected by possible shielding of the electric
and magnetic fields by the materials from which the magnet is constructed. To simplify the
discussion we consider two limiting cases:

• The magnet is made of nonconducting material, with relative dielectric constant and
magnetic permeability both equal to unity, which permits the electric and magnetic
fields to pass through the magnet without change. This could be arranged in principle
by constructing the magnet out of two concentric cylindrical shells of opposite surface
charge density that rotate in opposite senses, such that the magnet is electrically
neutral everywhere.

• The magnetic is encased in a grounded, conducting shield with unit magnetic perme-
ability. Then, charge e induces charges on the shell so as to eliminate the electric field

1The electric current that creates the magnetic field does have nonzero angular momentum. This angular
momentum is also unchanged by the motion of the charged particle. The currents do not change, and the
magnetic field due to these currents does not change.

2See also [2].
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outside the shell when the charge is inside, or to eliminate the electric field inside the
shell when the charge is outside. In this case we say that the magnet coil is shielded
from effects of the electric field, although the presence of the induced charge on the
shield leads to additional interactions with the charge e that must be considered.

This problem was drawn to my attention by Romer [3, 4] who considered McKenna’s
paradox only from the point of view of Poynting. Related discussions are given in [2, 5, 6].

2.1 Direct Calculation of the Torque on the Solenoid Coil

The moving charge creates a magnetic field Be that exerts a force on the currents in the
solenoid coil. These currents are purely azimuthal in the approximation of a long solenoid,
where the surface current density K in the coil is given by,

K = Kφφ̂ =
c

4π
B0φ̂. (1)

The magnetic force on a surface element of area r0 dφ dz, centered on the point (ρ = r0, φ, z)
in a cylindrical coordinate system whose axis coincides with a axis of the solenoid of radius
r0, is (in Gaussian units),

dF =
1

c
K ×Be(r0, φ, z) r0 dφ dz =

B0

4π
φ̂ × (Be,ρρ̂ + Be,φφ̂ + Be,zẑ) r0 dφ dz

=
B0

4π
(Be,zρ̂ −Be,ρẑ) r0 dφ dz, (2)

which has no azimuthal component. However, there must be an azimuthal force for there to
be a torque τ about the z axis,

dτ = r×dF = (ρρ̂+zẑ)×(dFρρ̂+dFφφ̂+dFzẑ) = −z dFφρ̂+(z dFρ−ρ dFz)φ̂+r dFφẑ. (3)

Thus, there is no torque on the coil about the z-axis in McKenna’s example, and the solenoid
coil does NOT rotate in reaction to the deflection of the charged particle.

The integral of the force (2) on the coil is nonzero, and if its axis is not restrained the
coil will move in reaction to the deflection of the charged particle. See also [6].

2.2 Solution via the Canonical Angular Momentum

An alternative solution is based on the concept of canonical angular momentum.
We recall [7] that the canonical momentum p of a particle of charge e and rest mass m

is (in rectangular coordinates and in Gaussian units),

p = P +
eA

c
, (4)

where P = mv/
√

1 − v2/c2 is the mechanical momentum of the particle, v is the particle’s
velocity, A is the vector potential of the magnetic field at the position of the particle, and c
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is the speed of light. Following Faraday3 and Maxwell [12], we identify,

PEMM
=

eA

c
(5)

as the electromagnetic momentum associated with the interaction of charge e with the mag-
netic field whose vector potential is A. The subscript M indicates that this interpretation is
due to Maxwell.

We are then led to identify the angular momentum about the origin of the particle +
field as,

l = r × p, (6)

where r is the position vector of the particle. As shown in Appendix A.1, if the electromag-
netic fields and their potentials have azimuthal symmetry, then the axial component of the
canonical angular momentum (6) is a conserved quantity.

We adopt a cylindrical coordinate system (ρ, φ, z) with the axis of the solenoid along the
z-axis. The radius of the solenoid is labeled r0 and the magnetic field strength is B = B0ẑ
for ρ < r0 and zero for ρ > r0 in the approximation of a long solenoid.

The magnetic field is related to the vector potential A according to B = ∇×A. Stokes’
theorem, along with the symmetry of the solenoid, then tells us that the only nontrivial
component of the vector potential is Aφ, as given by,

Aφ =

⎧⎨
⎩

ρB0

2
(ρ < r0),

r2
0B0

2ρ
(ρ > r0).

(7)

In particular, the vector potential vanishes on the axis ρ = 0.
The z-component of the canonical angular momentum can be written as,

lz = ρ
(
Pφ +

e

c
Aφ

)
= ρPφ + lEMM,z, (8)

where,

lEMM,z =
eρAφ

c
(9)

is the electromagnetic part of the canonical angular momentum of charge e.

2.2.1 Nonconducting Solenoid

The charge e is the only nontrivial charge distribution in the case of a nonconducting solenoid.
When the charged particle is emitted from the axis, its initial mechanical momentum P

is purely radial. So Pφ,initial = 0. As seen above, the initial vector potential on the axis is
also zero. Hence, the initial canonical angular momentum of the particle + field is also zero.

Since the canonical angular momentum of the particle + field is a conserved quantity
in this problem, it remains zero at all times during the particle’s motion. We verify this
explicitly in Appendix A.2.

3Electromagnetic momentum can be identified with the electro-tonic state, first discussed by Faraday in
Art. 60 of [8]. Other mentions by Faraday of the electrotonic state include Art. 1661 of [9], Arts. 1729 and
1733 of [10], and Art. 3269 of [11].

4



The z-component of the total angular momentum of the particle + field + solenoid is
also constant in time because there are no external torques about the z-axis. Hence, the
z-component of the angular momentum of the solenoid is constant, and it experiences no
rotation in reaction to the deflection of the particle.

The system does not act as a motor.

2.2.2 Grounded, Shielded Solenoid

If the solenoid coil is encased in a grounded, conducting shield, then charge −e is induced
on this shield at all times.

Since the shield is at radius r0 and has negligible thickness, the electromagnetic angular
momentum associated with the induced charge −e is, from eq. (9),

lEMM,z(shield) = −er0Aφ(r0)

c
= −eB0r

2
0

2c
, (10)

independent of the position of charge e. This constant angular momentum does not imply
any additional torque in the problem, so the magnet again does not rotate.

The total field angular momentum when charge e is at radius ρ is,

lEMM,z(ρ) =
e[ρAφ(ρ) − r0Aφ(r0)]

c
=

⎧⎨
⎩

eB0

2c
(ρ2 − r2

0) (ρ < r0),

0 (ρ > r0).
(11)

A particular feature of eq. (11) is that the field angular momentum vanishes when the charge
e is outside a shielded solenoid.

The field angular momentum (11) for a grounded, shielded solenoid differs by a constant
from eq. (10) as found for a nonconducting solenoid. Conservation of total angular momen-
tum, mechanical plus electromagnetic, is unaffected by the presence of a constant term, so
the solenoid does not rotate in reaction to the motion of charge e whether the solenoid is
nonconducting or shielded.

We conclude this section with some remarks about electromagnetic momentum.
The charge induced on the shield of the solenoid exerts an attractive electric force on

charge e, but this force is small compared to the magnetic force for any reasonable values of
v and B0. So, the motion of the charge is essentially the same for a nonconducting magnet
or a shielded magnet.

However, the charge induced on the shield makes a significant change to the electromag-
netic momentum PEMM

, namely,

PEMM
(shield) =

∫
σ(φ, z)

Aφ(r0)

c
φ̂ dArea =

B0r0

2c

∫
σ(φ, z)(− sinφ x̂ + cosφ ŷ) dArea

=
B0r0

2c
ŷ

∫
σ(φ, z) cosφ dArea, (12)

taking the charge e to be on the x axis, so that the induced charge distribution σ(φ, z) is
symmetric in azimuthal angle φ.
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To complete the calculation we need to know the φ dependence (but not the z dependence)
of the induced charge distribution. Now, a line of charge parallel to the axis of the magnet
leads to the same azimuthal distribution of induced charge as does the point charge e provided
the line charge passes through the point charge. We recall that the electric field of a grounded,
conducting cylinder of radius r0 plus a line charge e at radius ρ can be described by an image
method with an image line charge −e at radius ρ′ = r2

0/ρ [13]. Adding the electric fields
from these two line charges at (r0, φ) and dividing by 4π we obtain the azimuthal distribution
σ(φ) of induced charge. Using this, we define x = ρ/r0 if ρ < r0 and x = r0/ρ if ρ > r0 to
obtain,

PEMM
(shield) =

−eB0r0

4πc
ŷ

∫ 2π

0

cosφ dφ

√
1 − 2x cos φ + x2 cos2 φ + x

√
x2 − 2x cos φ + cos2 φ

1 − 2x cos φ + x2
. (13)

I believe that the integral in eq. (13) has the value 2πx, which implies that the total electro-
magnetic momentum associated with a grounded, shielded solenoid is zero.

2.3 Electromagnetic Momentum via the Poynting Vector

Another well-known representation of electromagnetic momentum is via the Poynting vector
[14], cE×B/4π, following the insight of Poincaré [15] that this also corresponds the volume
density of electromagnetic momentum when divided by c2. Hence, the total momentum
stored in the electromagnetic field is,

PEMP
=

∫
E(r′) × B(r′)

4πc
dVol′, (14)

where the subscript P indicates that this interpretation follows Poynting.
The angular momentum stored in the electromagnetic field can then be deduced from

the Poynting vector according to,

LEMP
=

∫
r′ × (E(r′) × B(r′))

4πc
dVol′. (15)

In Appendix A.3 we show that for static systems with charges and currents of finite
extent the same values of momentum and angular momentum are obtained using either the
canonical electromagnetic momentum or the Poynting vector. Here we verify this explicitly
for McKenna’s example, which will require care in dealing with a long solenoid.4

When the charge is still on the axis, and assuming that the solenoid is infinite, the Poynt-
ing vector of the system circulates about the z-axis in a negative sense, so that the electro-
magnetic angular momentum calculated according to eq. (15) has a negative z-component.
This is in contrast to the electromagnetic angular momentum of eq. (9), which vanishes when
the charge is on the axis. At the end of sec. 2.3.1 we show that no such discrepancy exists
for a finite solenoid.

4See also [2].
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The need for much more extensive discussion of electromagnetic momentum in static
examples via the approach of Poynting compared to that using canonical momentum suggests
to me that it is preferable to use the latter in these examples. The strength of Poynting’s
approach is realized in dynamical situations in which radiation is present and electromagnetic
energy and momentum are not localized to the vicinity of the charges and currents.

2.3.1 Nonconducting Solenoid

In the case of a nonconducting solenoid the only electric field is that associated with the
moving charge, Ee. The electric fields due to the two shells of charge that comprise the
solenoid cancel one another.

In the low-velocity limit the electric field of the charge e has no dependence on its velocity,
so the integrals (14) and (15) depend only on the position of the charge, which we can take
to be r = (ρ, 0, 0) without loss of generality. For an observation point r′ = (ρ′, φ′, z′), whose
rectangular coordinates are [x′, y′, z′] = [ρ′ cos φ′, ρ′ sinφ′, z′], the vector R from the charge
to the observer is,

R = r′ − r = [x′ − ρ, y′, z′] (16)

in rectangular coordinates. Then,

R = |R| =
√

(x′ − ρ)2 + y′2 + z′2 =

√
ρ2 + ρ′2 − 2ρρ′ cos φ′ + z′2, (17)

and the electric field at the observer is,

Ee(r
′) = e

R

R3
(18)

The total magnetic field is the sum of that due to the moving charge plus that due to the
solenoid, B = Be +B0ẑ. However, the inclusion of the field Be of the charge in the integrals
(14) and (15) leads to infinite “self-momentum” terms, which we “renormalize” to be part of
the finite “mechanical” momentum of the charge. Thus, we use only B(r′) = B0ẑ for ρ′ < r0

and B = 0 for ρ′ > r0 when calculating the (interaction) electromagnetic momenta in this
example.

In rectangular coordinates, we have that,

Ee(r
′) ×B0ẑ =

eB0

R3
[x′ − ρ, y′, z′] × [0, 0, 1] =

eB0

R3
[y′, ρ − x′, 0]. (19)

The x-component of eq. (19) is an odd function of y′, so the x-component of integral (14)
vanishes. All that remains is the y-component of integral (14), which we identify with the φ
component of the electromagnetic momentum,

PEMP ,φ =
eB0

4πc

∫
ρ − x′

R3
dVol′. (20)

Now,

ρ

∫
dVol′

R3
= ρ

∫ r0

0

ρ′ dρ′
∫ 2π

0

dφ′
∫ ∞

−∞

dz′

(ρ2 + ρ′2 − 2ρρ′ cosφ′ + z′2)3/2
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= ρ

∫ r2
0

0

dρ′2
∫ 2π

0

dφ′

ρ2 + ρ′2 − 2ρρ′ cosφ′ = 2πρ

∫ r2
0

0

dρ′2∣∣ρ2 − ρ′2∣∣
= 2π

⎧⎨
⎩ ρ ln ρ2

ρ2−r2
0

(ρ > r0),

ρ
∫ ρ2

0
dρ′2

ρ2−ρ′2 + ρ
∫ r2

0

ρ2
dρ′2

ρ′2−ρ2 (ρ < r0),
(21)

using Dwight 200.03 and 858.525 [16]. Also, using Dwight 858.536 we have,∫
x′ dVol′

R3
=

∫ r0

0

ρ′2 dρ′
∫ 2π

0

cos φ′ dφ′
∫ ∞

−∞

dz′

(ρ2 + ρ′2 − 2ρρ′ cosφ′ + z′2)3/2

=

∫ r2
0

0

ρ′ dρ′2
∫ 2π

0

cosφ′ dφ′

ρ2 + ρ′2 − 2ρρ′ cos φ′

= 2π

⎧⎨
⎩

1
rρ

∫ r2
0

0
ρ′2 dρ′2

ρ2−ρ′2 = ρ ln ρ2

ρ2−r2
0
− r2

0

ρ
(ρ > r0 > ρ′),

1
ρ

∫ ρ2

0
ρ′2 dρ′2

ρ2−ρ′2 + ρ
∫ r2

0

ρ2
dρ′2

ρ′2−ρ2 (ρ < r0).
(22)

Inserting eqs. (21) and (22) into (20) and recalling eq. (7), we find,

PEMP,φ =
eB0

2c

⎧⎨
⎩

r2
0

ρ
(ρ > r0)∫ ρ2

0
ρ−ρ′2/ρ

ρ2−ρ′2 dρ′2 = ρ (ρ < r0)

⎫⎬
⎭ =

eAφ(ρ)

c
. (23)

Thus, the electromagnetic momentum (23) calculated according to Poynting is equal to the
canonical electromagnetic momentum (5) for the vector potential (7).

We now evaluate the electromagnetic angular momentum (15) using eq. (19),

LEMP
=

∫
r′ × (Ee ×B0ẑ)

4πc
dVol′ =

eB0

4πc

∫
[x′, y′, z′] × [y′, ρ − x′, 0]

R3
dVol′

=
eB0

4πc

∫
(x′ − r)z′x̂ + y′z′ŷ + (x′ρ − ρ′2)ẑ

R3
dVol′ =

eB0

4πc
ẑ

∫
x′ρ − ρ′2

R3
dVol′.(24)

We have,∫
ρ′2 dVol′

R3
=

∫ r0

0

ρ′3 dρ′
∫ 2π

0

dφ′
∫ ∞

−∞

dz′

(ρ2 + ρ′2 − 2ρρ′ cosφ′ + z′2)3/2

=

∫ r2
0

0

ρ′2 dρ′2
∫ 2π

0

dφ′

ρ2 + ρ′2 − 2ρρ′ cosφ′ = 2π

∫ r2
0

0

ρ′2 dρ′2∣∣ρ2 − ρ′2∣∣
= 2π

⎧⎨
⎩ ρ2 ln ρ2

ρ2−r2
0
− r2

0 (ρ > r0),∫ ρ2

0
ρ′2 dρ′2

ρ2−ρ′2 +
∫ r2

0

ρ2
ρ′2 dρ′2

ρ′2−ρ2 (ρ < r0).
(25)

Inserting eqs. (22) and (25) into (24) and recalling eq. (7) we find,

LEMP
(r) =

eB0

2c
ẑ

⎧⎨
⎩ 0 (ρ > r0)∫ r2

0

ρ2
ρ′2−ρ2

ρ2−ρ′2 dρ′2 = ρ2 − r2
0 (ρ < r0)

⎫⎬
⎭ = ρ

eAφ(ρ)

c
ẑ + LEMP

(0)

= lEMM
(r) ẑ + LEMP

(0) (infinite solenoid), (26)
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where,

LEMP
(0) = −eB0r

2
0

2c
ẑ (infinite solenoid), (27)

is the electromagnetic angular momentum of an infinite solenoid when charge e is at the
origin. When the charge e is outside an infinite solenoid, the electromagnetic momentum
density is nonzero only inside the solenoid, where it has roughly the same direction every-
where; there is no moment of electromagnetic momentum (i.e., no electromagnetic angular
momentum) about the solenoid axis when ρ > r0.

The electromagnetic angular momentum (26) in McKenna’s example differs by a constant
from the electromagnetic part, (9), of the canonical angular momentum. Both forms imply
the same changes in angular momentum as the position of the charge changes, so both forms
are adequate to verify conservation of angular momentum during the particle’s motion.

McKenna’s example approximates a real, finite-length solenoid by an infinite solenoid. As
was remarked by Romer [4], and more explicitly by Johnson et al. [6], the weak magnetic field
outside a long, but finite solenoid contributes in significant measure to the electromagnetic
angular momentum, but not to the electromagnetic momentum, when an additional charge
is present. We now give a model of the magnetic field outside a long, but finite solenoid
which indicates that the electromagnetic angular momentum of a long solenoid plus charge
e is the same whether calculated by eq. (9) or by eq. (15).

A useful approximation to the field outside a solenoid of length L � r0 is to suppose
that a pair of magnetic charges of strength ±p, where,

p =
πr2

0B0

4π
=

B0r
2
0

4
, (28)

are located on the axis of the solenoid at z = ±L/2. The magnetic flux, 4πp, due to each of
the magnetic charges is equal to the flux contained within the solenoid, πr2

0B0, which flux
then spreads out over all space outside the solenoid. We thereby obtain an estimate for the
magnetic field near the plane z = 0 outside the solenoid,

Bz(ρ > r0, z ≈ 0) ≈ − p

L2(1 + 4ρ2/L2)3/2
= − r2

0B0

4L2(1 + 4ρ2/L2)3/2
. (29)

We can use this approximation to obtain corrections to eqs. (14) and (15) for the electro-
magnetic momentum and angular momentum. However, it is quicker to use the insight of
J.J. Thomson [17, 18, 19], that the electromagnetic momentum vanishes for a pair of electric
and magnetic charges, e and p respectively, but their electromagnetic angular momentum
according to eq. (15) is,

LEMP
=

ep

c
r̂ep, (30)

which is directed along the line from the electric charge to the magnetic charge. Then,
the electromagnetic angular momentum associated with the exterior magnetic field of the
solenoid, as represented by two magnetic charges ±p at z = ±L/2 when charge e is at
position (ρ, 0, 0), is,

LEMP
= 2

ep

c

L/2√
ρ2 + L2/4

ẑ ≈ 2
ep

c
ẑ =

eB0r
2
0

2c
ẑ (in exterior field of a long solenoid), (31)
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where the approximation holds for ρ � L. This result is the negative of eq. (27), so eq. (26)
is corrected to become

LEMP
(r) = ρ

eAφ(ρ)

c
ẑ = lEMM

(r) ẑ (long, but finite solenoid). (32)

2.3.2 Grounded, Shielded Solenoid

If the solenoid coil is encased in a grounded, conducting shield then charge −e is induced on
this shield independent of the position of charge e. We suppose that the shield has negligible
thickness, so the radial coordinate of the induced charge is r0. The induced charge has a
distribution in coordinates φ and z, and the extent of this distribution in z is of order |ρ − r0|
when charge e is at radius ρ.

The calculation of LEMP
for charge e did not depend on its position in φ or z, so the

contribution to the electromagnetic momentum from the charge −e induced at radius ρ = r0

can be found by appropriate use of the calculations for charge e in sec. 2.3.1.
When charge e is inside a shielded solenoid, an electric field exists only for ρ < r0, so there

is no contribution to the electromagnetic angular momentum from the region outside the
magnet. Therefore, the result of eq. (26) for ρ < r0 correctly describes the electromagnetic
angular momentum due to charge e for both an infinite shielded solenoid as well as a long,
but finite shielded solenoid. The electromagnetic angular momentum associated with the
charge −e that resides on the inner surface of the shield is also described by eq. (26) on
setting ρ to r0 (and changing e to −e), and hence this contribution is zero.

When the charge e is outside the shielded magnet, an electric field exists only for ρ > r0.
In the approximation of an infinite solenoid there is no electromagnetic angular momen-
tum. For a long, but finite solenoid we use eq. (31), but since the total charge is zero, the
electromagnetic angular momentum is zero.

In sum, for charge e in the vicinity of a grounded, shielded, finite solenoid the electro-
magnetic angular momentum is,

LEMP,z(ρ) =

⎧⎨
⎩

eB0

2c
(ρ2 − r2

0) (ρ < r0),

0 (ρ > r0).
=

e[ρAφ(ρ) − r0Aφ(r0)]

c
= lEMM,z(ρ), (33)

in agreement with eq. (11) obtained using the canonical electromagnetic momentum.

Turning to the electromagnetic momentum in the case of a shielded solenoid, we imme-
diately see that this is zero when charge e is outside the solenoid. Here, an electric field
exists only outside the solenoid, so eq. (23) does not apply when ρ > r0. Any electromag-
netic momentum would be due to the weak magnetic field exterior to the solenoid, but this
momentum is zero as argued at the end of sec. 2.3.1 [17, 18].

When charge e is inside a shielded solenoid the electromagnetic momentum is due to the
fields of this charge plus those of the charge −e induced on the inner surface of the shield.

The electromagnetic momentum associated with charge e is correctly given by eq. (23)
for ρ < r0, namely PEMP,φ(e) = eB0ρ/2c.

The electromagnetic momentum associated with the induced charge does not depend on
the location of this charge in z, so we can evaluate this momentum by supposing that charge
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e is spread over a line at radius ρ. Then, the electric field due to the induced charge on a
shielded solenoid is the same as the field inside a nonconducting solenoid from a line charge
−e at radius r2

0/ρ [13]. We can eq. (23) for ρ′ = r2
0/ρ > r0 and e′ = −e, since this evaluates

the electromagnetic momentum due only to fields inside the solenoid even when the charge
is outside. Thus, PEMP,φ(induced) = −eB0r

2
0/2cρ

′ = −eB0ρ/2c = −PEMP,φ(e).
The total electromagnetic momentum is zero for charge e either inside or outside of a

grounded, shielded, finite solenoid.

A Appendices

A.1 Azimuthal Symmetry Implies that lz Is Conserved

One way to deduce the conserved quantities for the particle’s motion is to consider its
Lagrangian or Hamiltonian. If an external electromagnetic field is present as well, with
electric potential V and vector potential A, the Lagrangian L of the particle can be written
as,

L = −mc2

γ
+

eA · v
c

− eV, (34)

where v = dr/dt is the particle’s velocity [7]. The canonical momentum associated with a
rectangular coordinate xi is therefore pi = ∂L/∂ẋi, leading to eq. (4). Then, the Hamiltonian
H of the system is,

H =

√
m2c4 +

(
p − eA

c

)2

+ eV. (35)

If the external electromagnetic fields have azimuthal symmetry, then the potentials V
and A do also. We consider a cylindrical coordinate system (r, φ, z) with the z axis being
the axis of symmetry of the fields. Then, both the Lagrangian and the Hamiltonian have no
azimuthal dependence,

∂L
∂φ

=
∂H
∂φ

= 0, (36)

so the equations of motion (and the identities r = ρρ̂ + zẑ, ṙ = v = ρ̇ρ̂ + ρφ̇φ̂ + żẑ) tell
us that the canonical momentum pφ is a constant of the motion (even for time-dependent
fields, so long as they are azimuthally symmetric),5

pφ =
∂L
∂φ̇

= ρ

(
γmρφ̇ +

eAφ

c

)
= ρ(p)φ = lz. (37)

We also see that the canonical momentum pφ can be interpreted as the z component of the
canonical angular momentum (6), so lz is also a constant of the motion.

For completeness, we verify that dlz/dt = 0 using the Lorentz force law,

dP

dt
= e

(
E +

v

c
×B

)
= e

(
−∇V − 1

c

∂A

∂t
+

v

c
× (∇×A)

)
. (38)

5Note that the definition (37) of the canonical momentum pφ leads to the awkwardness that pφ = ρ(p)φ,
where (p)φ is the φ component of the canonical momentum vector p of eq. (4).
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We begin with the ordinary angular momentum L = r × P, and consider the z component
of its time derivative,

dLz

dt
=

d(r × P)z

dt
=

(
r × dP

dt

)
z

= ρ

(
dP

dt

)
φ

. (39)

From eq. (38) we have, since ∂V/∂φ = ∂Ar/∂φ = ∂Az/∂φ = 0,(
dP

dt

)
φ

= −e

c

(
∂Aφ

∂t
+

ρ̇

ρ

∂(ρAφ)

∂ρ
+ ż

∂Aφ

∂z

)
= − e

cρ

(
∂(ρAφ)

∂t
+ ρ̇

∂(ρAφ)

∂ρ
+ ż

∂(ρAφ)

∂z

)

= − e

cρ

d(ρAφ)

dt
, (40)

where d
dt

when applied to a field such as the vector potential A is the convective derivative

associated with the moving particle. Noting that P = γm(ρ̇ρ̂ + ρφ̇φ̂ + żẑ) and ˙̂ρ = φ̇φ̂, we
also find, (

dP

dt

)
φ

=
dPφ

dt
+ φ̇Pr =

d(γmρφ̇)

dt
+ γmρ̇φ̇ =

1

ρ

d(γmρ2φ̇)

dt
=

1

ρ

d(ρPφ)

dt
. (41)

Combining eqs. (39)-(41), we have,

dLz

dt
=

d(ρPφ)

dt
= −e

c

d(ρAφ)

dt
. (42)

Hence,
d

dt

[
ρ
(
Pφ +

e

c
Aφ

)]
=

dlz
dt

=
dpφ

dt
= 0, (43)

as found by the Lagrangian method as well.

A.2 Verification That lz = 0 Throughout the Particle’s Motion

We look for possible changes in the canonical angular momentum as the particle traverses
the magnetic field.

If suffices to consider the case that the trajectory of the particle is in a plane perpendicular
to the magnetic axis, and that the velocity of the particle is small compared to the speed of
light.6

Inside the uniform solenoidal magnetic field B = B0ẑ, the trajectory of the particle is a
circle whose radius R can be obtained from the Lorentz force law F = ma = ev/c× B. For
motion in a plane perpendicular to the magnetic axis the acceleration is a = v2/R,

mv2

R
= e

v

c
B0, (44)

so that the radius of the circular motion is,

R =
cP

eB0
. (45)

6See [20] for a discussion of the general case of motion of relativistic charged particles in a solenoid field.
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When the charge particle has reached point (ρ, φ) its trajectory is an arc of angle θ on
a circle of radius R, as shown in the figure below. The azimuthal component Pφ of the
particle’s mechanical momentum is negative in the righthanded coordinate system, and is
given by,

Pφ = −P cos α, (46)

where angles α and φ are related by,

α =
π

2
− φ

2
. (47)

Thus,

Pφ = −P cos

(
π

2
− θ

2

)
= −P sin

θ

2
. (48)

The lengths ρ and R are related by,

ρ = 2R sin
θ

2
=

2cP

eB0
sin

θ

2
, (49)

using eq. (45) for R. The vector potential is, Aφ = ρB0/2 according to eqs. (7), so,

Aφ =
ρB0

2
=

cP

e
sin

θ

2
, (50)

Finally, the z-component of the canonical angular momentum (8) of the particle + field is,

lz = ρ
(
Pφ +

e

c
Aφ

)
= ρ

(
−P sin

θ

2
+

e

c

cP

e
sin

θ

2

)
= 0 (ρ < r0). (51)

We learn that the electromagnetic part of the particle’s angular momentum exactly can-
cels its mechanical part, and the total (canonical) angular momentum of the particle in the
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field is zero at any point inside the magnet.7

For completeness, we verify that lz = 0 for the particle’s motion outside the magnet.
Referring to the figure below, we again write,

Pφ = −P cos α. (52)

We now have,

r0 = 2R sin
θ

2
=

2cP

eB0
sin

θ

2
. (53)

We relate the distances ρ and r0 via the law of sines,

ρ

sin γ
=

r0

sinβ
, (54)

where,

β =
π

2
− α, γ = π − θ

2
. (55)

Hence,

ρ =
r0 sin θ

2

cosα
, (56)

7If the particle is created at a point not on the magnetic axis, its initial canonical angular momentum
is nonzero. However, this value does not change during the particle’s subsequent motion in the magnetic
field, so there is again no transfer of angular momentum between the particle and the solenoid during the
particle’s motion. There is, of course, a tiny “kick” given to the solenoid at the moment of the particle’s
creation if this occurs away from the magnetic axis. In the case of radioactive decay, the direction of this
initial “kick” is random, and the solenoid would not turn preferentially in one direction as is desirable for a
motor.
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For ρ > r0, the vector potential is, using eqs. (7), (53) and (56),

Aφ =
r2
0B0

2ρ
=

r0B0 cos α

2 sin θ
2

=
cP

e
cos α. (57)

Again, we find that the z-component of the canonical angular momentum of the particle +
field vanishes,

lz = ρ
(
Pφ +

e

c
Aφ

)
= ρ

(
−P cos α +

e

c

cP

e
cos α

)
= 0 (ρ > r0). (58)

A.3 Equivalence of the Maxwell and Poynting Forms of

Electromagnetic (Angular) Momentum for Static Fields

This Appendix is based on an argument by Vladimir Hnizdo. See also [21].
Static electromagnetic fields E and B can be characterized by the time-independent

Maxwell equations,
∇ · E = 4π�, ∇× E = 0, (59)

where � is the electric charge density, and,

∇ · B = 0, ∇ × B =
4π

c
J, (60)

which implies that the time-independent current density J satisfies ∇ · J = 0.
For present purposes we can avoid use of the current density J and instead consider the

vector potential A, which has zero divergence in the Coulomb gauge (and also in the Lorentz
gauge for static problems),

B = ∇× A, ∇ · A = 0. (61)

To confirm that the electromagnetic momentum,

PEMM
=

∫
�A

c
dVol (62)

is equal to,

PEMP
=

∫
E ×B

4πc
dVol, (14)

and that the electromagnetic angular momentum,

LEMM
=

∫
r × PEMM

dVol =

∫
r × eA

c
dVol (63)

is equal to,

LEMP
=

∫
r × (E × B)

4πc
dVol, (15)

we show that E×B is equal to �A plus the divergence of a vector field, and that r× (E×B)
is equal to r × �A plus the divergence of another vector field. Then, we transform the
volume integrals of the auxiliary vector field into surface integral using Gauss’ law, and if

15



the auxiliary field fall off sufficiently quickly with distance the equivalence of the various
forms of electromagnetic momenta is established.

Also, we are cautioned that the equivalence may not hold in idealizations such as an
infinite solenoid, in which the field does not fall off rapidly in all directions.

In addition to well-known vector calculus relations, it is useful to define a combined
operation,

∇ · ab ≡ (∇ · a)b + (a · ∇)b = (∇ · bxa) x̂ + (∇ · bya) ŷ + (∇ · bza) ẑ. (64)

Then,

E × B = E × (∇ × A) = ∇(A · E) − (A · ∇)E− (E · ∇)A− A× (∇ × E)

= (∇ ·E)A + ∇(A · E)− [(∇ ·E)A + (A · ∇)E] − [(∇ · A)E + (E · ∇)A]

= 4π�A + ∇(A · E) − ∇ · EA− ∇ · AE, (65)

so that,

PEMP
=

∫
E× B

4πc
dVol

=

∫
�A

c
dVol +

∮
(A · E) dArea −

∮
E(A · dArea) −

∮
A(E · dArea)

=

∫
�A

c
dVol = PEMM

. (66)

The surface integrals in eq. (66) are negligible when the charges and currents that create the
electric field E and the vector potential A lie within a finite volume that is small compared
to the volume of integration, and when radiation can be neglected.

We now evaluate eq. (15) by taking the cross product of eq. (65) with r and further
transforming the various terms. Thus,

r× ∇(A · E) = −∇× (A · E) r + ∇(A · E)∇ × r = −∇ × (A · E) r. (67)

Now,

[r× ∇ · EA]x = y∇ · (AzE) − z∇ · (AyE)

= ∇ · (yAzE) −AzE · ∇y − ∇ · (zAyE) + AyE · ∇z

= AyEz − AzEy + ∇ · (yAzE) − ∇ · (zAyE)

= [A× E]x + ∇ · ([r× A]xE), (68)

so,
[r ×∇ · AE]x = [E × A]x + ∇ · ([r × E]xA), (69)

and,
[r ×∇ · EA]x + [r× ∇ · AE]x = ∇ · ([r× A]xE) + ∇ · ([r × E]xA). (70)
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Hence,

LEMP
=

∫
r × (E × B)

4πc
dVol

=

∫
r × �A

c
dVol −

∮
(A · E) dArea× r −

∮
r × E(A · dArea) −

∮
r × A(E · dArea)

=

∫
r × �A

c
dVol = LEMM

. (71)

The arguments of the surface integrals in eq. (71) vanish less quickly with distance than
those in eq. (66), so in some cases (such as McKenna’s example) with sources of infinite
extent we may find that PEMP

= PEMM
but LEMP

�= LEMM
.

The equivalence of PEMP
and PEMM

extends to nonstatic systems in which the currents
do not satisfy ∇ · J = 0, so long as the velocities of all charges are low and radiation can be
neglected [22, 23].
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