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We follow an argument due to von Neumann1,2 to get a sense of how a particular quan-
tum system, say, one or more Qbits, might interact with a larger system to implement a
measurement described by hermitian operator M that acts on the particular system.

We suppose that there exists an intermediary object, which we will call the pointer that
can interact with the particular quantum system, and which is also very heavy so that
the position of the pointer is “well defined.” By the latter, we mean that the position of
the pointer can be determined to sufficient accuracy, as defined below, by apparatus whose
behavior is “classical” enough that we can leave the apparatus out of the quantum part of
the analysis.

The goal is to establish a quantum correlation between the measurable property of the
particular quantum state and the position of the pointer, and then to use a “classical”
measurement of the position of the pointer to infer the result of the quantum correla-
tion/measurement. Thus, the argument of von Neumann straddles the “quantum border”
shown below.

1This note is transcribed from Problem 5 of my course on the Physics of Quantum Computation [1].
2The argument we give is based on the last few pages of Mathematical Foundations of Quantum Mechan-

ics, J. von Neumann [2]; the German original was written in 1932, three years before Schrödinger coined the
term “entanglement.” See also sec. 3.1.1 of Preskill’s Lectures [3].
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To describe von Neumann’s argument we need to know something about the time evolu-
tion of a quantum system. Since the total probability of the quantum system to be in some
state remains constant over time, the time evolution of a quantum state |Ψ(t)〉 is described
by a unitary operator,

|Ψ(t′)〉 = U(t, t′)|Ψ(t)〉. (1)

Over a short time interval, t′ − t = δt, the unitary operator U cannot differ much from the
identity operator,

U(t, t+ δt) ≈ I + u(t)δt. (2)

That is,
|Ψ(t+ δt)〉 = U(t, t+ δt)|Ψ(t)〉 ≈ |Ψ(t)〉+ u(t)|Ψ(t)〉δt, (3)

which implies that,
∂|Ψ〉
∂t

= u|Ψ〉. (4)

The famous insight of Schrödinger is that if we write,

u = − i

�
H = −ih, (5)

then the operator H = �h is not the Hadamard transformation but is related to the Hamilto-
nian of the system in a well-defined manner. Thus, eq. (4) becomes Schrödinger’s equation,

i
d|Ψ〉
dt

= h|Ψ〉. (6)

Since the operator U ≈ I − ih δt is unitary, U−1 = U† ≈ I + ih†δt. Then,

1 = U−1U ≈ (I + ih†δt)(I − ihδt) ≈ I + i(h† − h)δt, (7)

so that we must have h† = h, i.e., the Hamiltonian operator is hermitian.
Returning to the case of a particular quantum system plus the pointer, we take the

Hamiltonian of the combined system to be of the form,

h = h0 +
p2

2m
+ λMp ≈ λMp, (8)

where h0 is the Hamiltonian of the particular system when in isolation, p = −i∂/∂x is
the momentum operator of the pointer (which can move only in the x direction), m is the
(large) mass of the pointer, λ is a coupling constant, and M is the measurement operator
that applies to the particular quantum system. The approximate form of the Hamiltonian
follows on noting that mass m is large, and that during the measurement the effect of the
interaction term λMp is much larger than that of isolated Hamiltonian h0 (otherwise the
measurement could not produce a crisp result3

The state of the particular system to be measured is,

|ψ〉 =
∑

j

ψj|j〉, (9)

3See, for example, [4].
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and the initial state of the pointer is |φ(x)〉, which is a Gaussian wave packet centered on,
say, x = 0, normalized such that

∫ |φ(x)|2 dx = 1. Since the pointer particle is heavy, its
wave packet |φ(x)〉 is narrow (but not so narrow that the wave packet spreads significantly
during the measurement). The initial state of the combined system is the direct product,

|Ψ(0)〉 = |ψ〉 ⊗ |φ(x)〉 =

(∑
j

ψj |j〉
)

⊗ |φ(x)〉. (10)

The basis [|j〉] for the particular system has been chosen so that the each basis state |j〉 has
a well-defined value mj of the measurement. That is, the measurement operator has the
projective form,

M =
∑

j

mj · |j〉〈j|. (11)

The Hamiltonian h ≈ λMp is time independent, so Schrödinger’s equation (6) has the formal
solution,

|Ψ(t)〉 = e−iht|Ψ(0)〉. (12)

Now,

e−iht =
∞∑

n=0

(−iht)n

n!
=

∞∑
n=0

1

n!

[
−iλ

∑
j

mj · |j〉〈j|
(
−i ∂
∂x

)
t

]n

=
∑

j

|j〉〈j|
∞∑

n=0

1

n!

(
−λmjt

∂

∂x

)n

, (13)

recalling that 〈j|k〉 = δjk, so that the lengthy products of bras and kets all collapse back
down to the projections |j〉〈j|. Inserting eqs. (10) and (13) into (12), we obtain,

|Ψ(t)〉 =
∑

j

|j〉〈j|
∑

k

ψk|k〉 ⊗
∞∑

n=0

1

n!

(
−λmjt

∂

∂x

)n

|φ(x)〉

=
∑

j

ψj|j〉 ⊗ |φ(x− λmjt)〉, (14)

noting that the Taylor expansion of φ(x− x0) is,

φ(x− x0) =
∞∑

n=0

1

n!

(
−x0

∂

∂x

)n

φ(x). (15)

The initial direct product state (10) has evolved into the entangled state (14) during the
course of the measurement.

The supposition is that the position of the pointer at time t of the observation can be
determined well enough to distinguish the j locations λmjt from one another. This is more
plausible for larger t: (accurate) measurements take time! If the pointer is found at (or
near) position λmjt, the particular system |ψ〉 must be in state |j〉 and the value of the
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measurement is mj. The probability that this is the outcome of the measurement is, of

course,
∣∣ψj

∣∣2 since
∫ |φ(x− λmjt)| dx = 1.

This argument does a nice job of explaining how to entangle the state |ψ〉 =
∑
ψj |j〉

with a pointer such that different positions of the pointer are correlated with different basis
states |j〉. However, it does not explain how the observation of the position of the pointer
to be, say, λmjt “collapses the wave function” of |ψ〉 to the basis state |j〉.4

Von Neumann’s argument indicates that underlying every measurement process is the
entanglement that bothered Einstein, Podolsky and Rosen (and Schrödinger, etc.) so much.
This deserves further discussion, some of which is given in Prob. 20 of [1].

References

[1] K.T. McDonald, Ph410: Physics of Quantum Computation (2004),
http://kirkmcd.princeton.edu/examples/ph410problems.pdf

[2] J. von Neumann, Mathematische Grundlagen der Qauntenmechanik (Springer, 1932),
http://kirkmcd.princeton.edu/examples/QM/vonneumann_grundlagen_32.pdf

Mathematical Foundations of Quantum Mechanics (Princeton U. Press, 1955),
http://kirkmcd.princeton.edu/examples/QM/vonneumann_55.pdf

[3] J. Preskill, Physics 219: Quantum Computation. Chapter 3. Foundations II: Measure-
ment and Evolution, (Oct. 2018), http://theory.caltech.edu/~preskill/ph219/chap3_15.pdf

[4] A. Peres and W.K. Wootters, Quantum measurements of finite duration, Phys. Rev. D
32, 1968 (1985), http://kirkmcd.princeton.edu/examples/QM/peres_prd_32_1968_85.pdf

4The transformation from |Ψ(0)〉 to |Ψ(t)〉 is unitary/reversible as eq. (14) is valid for both increasing
or decreasing t. The irreversible step in the measurement process is the “classical” reading of the position
of the pointer at time tmeas, which selects a value of x ≈ λmjtmeas and leaves the system in the state,

|Ψ(t > tmeas)〉 =
|j〉 ⊗ |φ(x − λmjtmeas)〉√

N
, (16)

where N is the number of possible positions of the pointer.
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