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1 Problem

Calculate the Poynting vector of the fields of a Hertzian oscillating dipole at all points in
space. Show that the time-averaged Poynting vector has the same form in the near zone as
it does in the far zone, which confirms that radiation exists both close to and far from the
source.1

2 Solution

2.1 Hertzian Electric Dipole

The electric and magnetic fields of an ideal, point Hertzian electric dipole p can be written
(in Gaussian units) as,

E = k2p(r̂ × p̂) × r̂
ei(kr−ωt)

r
+ p[3(p̂ · r̂)r̂ − p̂]

(
1

r3
− ik

r2

)
ei(kr−ωt), (1)

B = k2p(r̂ × p̂)

(
1

r
− 1

ikr2

)
ei(kr−ωt), (2)

whose real parts are,

E = k2p(r̂ × p̂) × r̂
cos(kr − ωt)

r
+ p[3(p̂ · r̂)r̂ − p̂]

[
cos(kr − ωt)

r3
+

k sin(kr − ωt)

r2

]
, (3)

B = k2p(r̂ × p̂)

[
cos(kr − ωt)

r
− sin(kr − ωt)

kr2

]
, (4)

where r̂ = r/r is the unit vector from the center of the dipole to the observer, p = p cos ωt p̂
is the electric dipole moment vector, ω = 2πf is the angular frequency, k = ω/c = 2π/λ is
the wave number and c is the speed of light [1, 2].

We say that the radiation part of these fields are the terms that vary as 1/r,

Erad = k2p(r̂ × p̂) × r̂
cos(kr − ωt)

r
, (5)

1Some additional details, including discussion of the scalar and vector potentials of a Hertzian dipole in
both the Coulomb and Lorenz gauges, are given in prob. 2 of
http://kirkmcd.princeton.edu/examples/ph501set8.pdf
Some consideration of Hertz vectors and scalars is given in the Appendix of
http://kirkmcd.princeton.edu/examples/smallloop.pdf
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Brad = k2p(r̂ × p̂)
cos(kr − ωt)

r
. (6)

In the near zone of the dipole, where kr <∼ 1, the radiation fields are smaller that the other
components of E and B. The most prominent feature of the fields in the near zone is that
the electric field looks a lot like that of an electrostatic dipole, as shown in the figure below.
Because field patterns that look like radiation are discernable only for r >∼ λ, there may be
an impression that the radiation is created at some distance from an antenna, rather than
at the antenna itself.

Since the radiated power comes from the antenna (from the power supply that drives
the antenna), there must be a flow of energy out from the surface of the antenna into the
surrounding space. The usual electrodynamic measure of energy flow is Poynting’s vector
[3] (in a medium with unit relative permeability),

S =
c

4π
E× B. (7)
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When we use the fields (3)-(4) to calculate the Poynting vector we find six terms, some
of which do not point along the radial vector r̂,

S =
c

4π

{
k4p2[(r̂ × p̂) × r̂] × (r̂ × p̂)

[
cos2(kr − ωt)

r2
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kr3

]
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[
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k

r3
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=
c
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[
cos2(kr − ωt)

r2
− cos(kr − ωt) sin(kr − ωt)

kr3

]
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[
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, (8)

where θ is the angle between vectors r and p. As well as the expected radial flow of energy,
there is a flow in the direction of the dipole moment p. Since the product cos(kr−ωt) sin(kr−
ωt) can be both positive and negative, part of the energy flow is inwards at times, rather
than outwards as expected for pure radiation.

However, we obtain a simple result if we consider only the time-averaged Poynting vector,
〈S〉. Noting that 〈cos2(kr − ωt)〉 =

〈
sin2(kr − ωt)

〉
= 1/2 and 〈cos(kr − ωt) sin(kr − ωt)〉 =

(1/2) 〈sin 2(kr − ωt)〉 = 0, eq (8) leads to,

〈S〉 =
ck4p2 sin2 θ

8πr2
r̂. (9)

The time-average Poynting vector is purely radially outwards, and falls off as 1/r2 at all
radii, as expected for a flow of energy that originates in the oscillating point dipole. The
time-average angular distribution d 〈P 〉 /dΩ of the radiated power is related to the Poynting
vector by,

d 〈P 〉
dΩ

= r2 r̂ · 〈S〉 =
ck4p2 sin2 θ

8π
=

p2ω4 sin2 θ

8πc3
, (10)

which is the expression usually derived for dipole radiation in the far zone. Here we see that
this expression holds in the near zone as well.

We conclude that radiation, as measured by the time-averaged Poynting vector, exists in
the near zone of an antenna as well as in the far zone.

The question sometimes arises as to whether the fields of an antenna could be pure
radiation, with no nonpropagating near fields (that take energy to maintain). It is clear
that a small oscillating dipole will generate nearby, quasistatic dipole fields. See sec. 6 of [4]
for a kind of inverse argument, that any dipole radiation fields in the far zone imply, via a
diffraction integral, that nonradiation fields are present in the near zone.
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2.2 Hertzian Magnetic Dipole

If E(r, t) and B(r, t) are solutions to Maxwell’s equations in free space (i.e., where the charge
density ρ and current density J are zero), then the dual fields,

E′(r, t) = −B(r, t), B′(r, t) = E(r, t), (11)

are solutions there also. The Poynting vector is the same for the dual fields as for the original
fields,2,3

S′ =
c

4π
E′ × B′ = − c

4π
B× E = S. (12)

Taking the dual of fields (3)-(4) with the change of notation p → m, we find the fields,

E′ = −k2m(r̂ × m̂)

(
1

r
− 1

ikr2

)
ei(kr−ωt), (13)

B′ = k2m(r̂× m̂) × r̂
ei(kr−ωt)

r
+ m[3(m̂ · r̂)r̂ − m̂]

(
1

r3
− ik

r2

)
ei(kr−ωt), (14)

whose real parts are,

E′ = −k2m(r̂× m̂)

[
cos(kr − ωt)

r
− sin(kr − ωt)

kr2

]
, (15)

B′ = k2m(r̂×m̂)× r̂
cos(kr − ωt)

r
+m[3(m̂ · r̂)r̂−m̂]

[
cos(kr − ωt)

r3
+

k sin(kr − ωt)

r2

]
, (16)

which are also solutions to Maxwell’s equations. These are the fields of an oscillating point
magnetic dipole, whose peak magnetic moment is m. In the near zone, the magnetic field
(16) looks like that of a (magnetic) dipole.

While the fields of eqs. (3)-(4) are not identical to those of eqs. (15)-(16), the Poynting
vectors are the same in the two cases. Hence, the time-average Poynting vector, and also the
angular distribution of the time-averaged radiated power are the same in the two cases. The
radiation of a point electric dipole is the same as that of a point magnetic dipole (assuming
that m = p), both in the near and in the far zones. Measurements of only the intensity of
the radiation could not distinguish the two cases.

However, if measurements were made of both the electric and magnetic fields, then the
near zone fields of an oscillating electric dipole, eqs. (3)-(4), would be found to be quite
different from those of a magnetic dipole, eqs. (15)-(16). This is illustrated in the figure on
p. 5, which plots the ratio E/H = E/B of the magnitudes of the electric and magnetic fields
as a function of the distance r from the center of the dipoles.

To distinguish between the cases of electric and magnetic dipole radiation, it suffices
to measure only the polarization (i.e., the direction, but not the magnitude) of either the
electric of the magnetic field vectors.

2The energy radiated by a Hertzian magnetic dipole was first calculated by Fitzgerald in 1883 [5], prior to
Hertz’ calculations for electric dipoles. Apparently Fitzgerald considered atoms to involve charges oscillating
in circles, and hence he thought that atoms would emit magnetic dipole radiation. He seems not to have
noticed that such classical atoms would be unstable due to this radiation. See, for example, [7].

3An application of the concept of dual field to macroscopic, planar antennas is given in [6].
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A Appendix: Self-Dual Antennas

Heaviside introduced the concept of dual electromagnetic fields in the 1880’s while also
considering magnetic charges and currents, ρe and Jm, that are conceptually the “dual” of
electric charges and currents, ρe and Je. In general, if fields E and B are generated by electric
charges and currents ρe and Je, then the dual fields E′ and B′ of eq. (11) are generated by
the dual magnetic charges ρ′

m = ρe and J′
m = Je. Since it appears that there are no magnetic

charges and currents in Nature, it will not be possible in general to generate the dual fields E′

and B′. However, if only magnetic dipoles (or higher multipoles) are needed to generate the
dual fields, it may be possible to do so with appropriate configurations of electric currents.

According to the definition (11) the dual fields cannot equal the original fields. However,
it is possible that the dual fields are equal to the original fields to within a phase factor ±i,
in which case the fields are said to be self dual. That is,

E′ = −B = αE, B′ = E = αB, requires that α2 = −1, (17)

such that,
E = ±iB, B = ∓iE, (self dual). (18)

Perhaps the most familiar examples of self-dual electromagnetic fields are circularly po-
larized plane waves, such as,

E = E0(x̂ ± i ŷ) ei(kz−ωt), B = x̂ × E = E0(ŷ ∓ i x̂) ei(kz−ωt) = ∓iE. (19)

A set of self-dual fields (Esd,Bsd) can be formally generated from any solution (E,B) to
Maxwell’s equations according to,

Esd = E ∓ iE′ = E ± iB, Bsd = B ∓ iB′ = B ∓ iE = ∓iEsd. (20)

Of course, in general it will not be possible physically generate these fields with only electric
charges and currents. However, we can make a self-dual antenna by combining a Hertzian
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electric dipole antenna of moment p with a Hertzian magnetic dipole antenna of moment
m = ±ip. In this case, the far-zone electric field of waves emitted in direction has r̂ has
direction Esd ∝ r̂× [(r̂× p̂)± i p̂] = (r̂ · p̂)r̂− p̂± i r̂× p̂. Thus, when r̂ is perpendicular to
p̂, the electric field has direction −p̂± i r̂× p̂, so that the radiation emitted in this direction
is circularly polarized (and therefore self dual as noted in eq. (19)).
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