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1 Problem

Gaussian beams provide the simplest mathematical description of the essential features of a
focused optical beam, by ignoring higher-order effects induced by apertures elsewhere in the
system.

Wavefunctions ψ(x, t) = ψ(x) e−iωt for Gaussian laser beams [1]-[13] of angular frequency
ω are typically deduced in the paraxial approximation, meaning that in the far zone the
functions are accurate only for angles θ with respect to the beam axis that are at most a few
times the characteristic diffraction angle,

θ0 =
λ

πw0

=
2

kw0

=
w0

z0

, (1)

where λ is the wavelength, k = ω/c = 2π/λ is the wave number, c is the speed of light, w0

is the radius of the beam waist, and z0 is the depth of focus, also called the Rayleigh range,
which is related by

z0 =
kw2

0

2
=

2

kθ2
0

. (2)

Since the angle with respect to the beam axis has unique meaning only up to a value of π/2,
the paraxial approximation implies that θ0 � 1, and consequently that z0 � w0 � λ.

The question arises whether there are any “exact” solutions to the free-space wave equa-
tion,

∇2ψ − 1

c2
∂2ψ

∂t2
= 0, (3)

for which the paraxial wavefunctions are a suitable approximation. For monochromatic
waves, it suffices to seek “exact” solutions to the Helmholtz wave equation,

∇2ψ + k2ψ = 0. (4)

This equation is known to be separable in 11 coordinate systems [14, 15], of which oblate
spheroidal coordinates are well matched to the geometry of laser beams, as shown in Fig. 1.

“Exact” solutions to the Helmholtz equation in oblate spheroidal coordinates were devel-
oped in the 1930’s, and are summarized in [16, 17, 18]. These solutions are, however, rather
intricate and were almost forgotten at the time of the invention of the laser in 1960 [19].

This problem does not explore the “exact” solutions,1 but rather asks you to develop
a systematic set of approximate solutions to the Helmholtz equation in oblate spheroidal
coordinates, which will turn out to be one representation of paraxial Gaussian laser beams.

1It is clear from Fig. 1 that the “exact” oblate-spheroidal wavefunctions do not apply in “free space,”
but for the case of a conducting plane with a circular aperture. See also [21].
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Figure 1: The x-z plane of an oblate spheroidal coordinate system (ζ, ξ, φ)
based on hyperboloids and ellipsoids of revolution about the z axis, with foci
at (x, z) = (±z0, 0). The coordinates have ranges 0 ≤ ζ < ∞, −1 ≤ ξ ≤ 1,
and 0 ≤ φ ≤ 2π).

The relation between rectangular coordinates (x, y, z) and oblate spheroidal coordinates2

(ζ, ξ, φ) is,

x = z0

√
1 + ζ2

√
1 − ξ2 cos φ, (5)

y = z0

√
1 + ζ2

√
1 − ξ2 sinφ, (6)

z = z0ζξ, (7)

where the length z0 is the distance from the origin to one of the foci of the ellipses and
hyperbolae whose surfaces of revolution about the z axis are surfaces of constant ζ and
ξ. Coordinate φ is the usual azimuthal angle measured in the x-y plane. For large ζ, the
oblate spheroidal coordinates are essentially identical to spherical coordinates (r, θ, φ) with
the identification ζ = r/z0 and ξ = cos θ.

An obvious consequence of the definitions (5)-(7) is that,

r⊥ =
√
x2 + y2 = z0

√
1 + ζ2

√
1 − ξ2. (8)

Combining eqs. (7) and (8), we find,

ζ =
r2 − z2

0 +
√

(r2 − z2
0)

2 + 4z2
0z

2

2z2
0

. (9)

Close to the laser focus, where r � z0, we have ζ ≈ z/z0 � 1.

2Oblate spheroidal coordinates are sometimes written with ζ = sinh u and ξ = cos v or sin v.
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It is clear that the oblate spheroidal wave functions will have the mathematical restriction
that the entire wave crosses the plane z = 0 within an iris of radius z0, the length used in the
definitions (5)-(7) of the oblate spheroidal coordinates. In effect, the plane z = 0 is perfectly
absorbing except for the iris of radius z0.

3

You will find that the length z0 also has the physical significance of the Rayleigh range
(depth of focus), which concept is usually associated with longitudinal rather than tranverse
behavior of the waves. Since the paraxial approximation that you will explore is valid only
when the beam waist w0 is small compared to the Rayleigh range, i.e., when w0 � z0,
the paraxial wave functions are not accurate descriptions of waves of extremely short focal
length, even though they will be formally defined for any value of w0.

The wave equation (4) is separable in oblate spheroidal coordinates, with the form

∂

∂ζ
(1 + ζ2)

∂ψ

∂ζ
+

∂

∂ξ
(1 − ξ2)

∂ψ

∂ξ
+

ζ2 + ξ2

(1 + ζ2)(1 − ξ2)

∂2ψ

∂φ2 + k2z2
0(ζ

2 + ξ2)ψ = 0. (10)

It is helpful to express the wave functions in radial and transverse coordinates that are
scaled by the Rayleigh range z0 and by the diffraction angle θ0, respectively. The oblate
spheroidal coordinate ζ already has this desirable property for large values. However, the
coordinate ξ is usefully replaced by,

σ =
1 − ξ2

θ2
0

=
z2
0

w2
0

(1 − ξ2) =
kz0

2
(1 − ξ2) =

r2
⊥

w2
0(1 + ζ2)

, (11)

which obeys σ ≈ (θ/θ0)
2 for large r and small θ, and σ ≈ (r⊥/w0)

2 near the beam waist
where ζ ≈ 0.

To replace ξ by σ in the Helmholtz equation (10), note that 2ξ dξ = −θ2
0 dσ. In the

paraxial approximation, ξ ≈ 1 (which implies that your solution will be restricted to waves
in the hemisphere z ≥ 0), you may suppose that,

dξ ≈ −θ
2
0

2
dσ. (12)

Find an orthogonal set of waves,

ψm
n = Zm

n (ζ)Sm
n (σ) e±imφ, (13)

which satisfy the Helmholtz equation in the paraxial approximation. You may anticipate
that the “angular” functions Sm

n (σ) are modulated Gaussians, containing a factor σm/2 e−σ.
The “radial” functions Zm

n are modulated spherical waves in the far zone, with a leading
factor eikr, and it suffices to keep terms in the remaining factor that are lowest order in the
small quantity θ0.

Vector electromagnetic waves E = E(x) e−iωt and B = B(x) e−iωt that satisfy Maxwell’s
equations in free space can be generated from the scalar wave functions ψm

n by supposing the
vector potential A has Cartesian components (for which (∇2A)j = ∇2Aj [15]) given by one

3Waves that have an axis must involve some physical entity that defines the axis. An iris is an obvious
example of the defining structure.
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or more of the scalar waves ψm
n e

−iωt. For these waves, the fourth Maxwell equation in free
space is c∇× B = ∂E/∂t = −ikE (Gaussian units), so both fields E and B can de derived
from the vector potential A according to,

E =
i

k
∇ × B = ikA +

i

k
∇(∇ · A), B = ∇ × A, (14)

since the vector potential obeys the Helmholtz equation (4).
Calculate the ratio of the angular momentum density of the wave in the far zone to its

energy density to show that quanta of these waves (photons with intrinsic spin S = 1) carry
orbital angular momentum in addition to the intrinsic spin. Show also that lines of the
Poynting flux form spirals on a cone in the far zone.

2 Solution

Aspects of this problem have been treated in [20].

2.1 The Paraxial Gaussian-Laguerre Wave Functions

2.1.1 Separation of the Approximate Helmholtz Equation

Using the approximation (12) when replacing variable ξ by σ, the Helmholtz equation (10)
becomes,

∂

∂ζ
(1 + ζ2)

∂ψ

∂ζ
+

4

θ2
0

∂

∂σ
σ
∂ψ

∂σ
+

1 + ζ2 − θ2
0σ

(1 + ζ2)θ2
0σ

∂2ψ

∂φ2 +
4

θ4
0

(1 + ζ2 − θ2
0σ)ψ = 0. (15)

This equation admits separated solutions of the form (13) for any integer m. Inserting this
in eq. (15) and dividing by ψ, we find

1

Z

∂

∂ζ
(1 + ζ2)

∂Z

∂ζ
+

4

θ2
0S

∂

∂σ
σ
∂S

∂σ
−m21 + ζ2 − θ2

0σ

(1 + ζ2)θ2
0σ

+
4

θ4
0

(1 + ζ2) − 4σ

θ2
0

= 0. (16)

The functions Z and S will be the same for integers m and −m, so henceforth we consider
m to be non-negative, and write the azimuthal functions as e±imφ. With λm as the second
separation constant, the ζ and σ differential equations are,

d

dζ
(1 + ζ2)

dZ

dζ
=

(
λm − 4

θ4
0

(1 + ζ2) − m2

1 + ζ2

)
Z, (17)

d

dσ
σ
dS

dσ
= −θ

2
0

4

(
λm − 4σ

θ2
0

− m2

θ2
0σ

)
S. (18)

2.1.2 The “Angular” Functions

The hint is that the wave functions have Gaussian transverse dependence, which implies
that the “angular” function S(σ) contains a factor e−σ = e−r2

⊥/w2
0(1+ζ2). We therefore write

S = e−σT , and eq. (18) becomes,

σ
d2T

dσ2
+ (1 − 2σ)

dT

dσ
+

(
1 +

θ2
0

4
λm − m2

4σ

)
T = 0. (19)
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The function T (σ) cannot be represented as a polynomial, but (like the radial Shrödinger
equation) this can be accomplished after a factor of σm/2 is extracted. That is, we write
T = σm/2L, or S = σm/2 e−σL, so that eq. (19) becomes,

σ
d2L

dσ2
+ (m+ 1 − 2σ)

dL

dσ
+ νL = 0, (20)

where,

ν =
θ2

0

4
λm −m− 1. (21)

If ν = 2n for integer n ≥ 0, this is the differential equation for generalized Laguerre polyno-
mials Lm

n (2σ) [22], where,

Lm
n (x) = m!n!

n∑
k=0

(−1)kxk

(m+ k)!(n− k)!k!
= 1 − nx

m+ 1
+

n(n − 1)x2

2(m+ 1)(m+ 2)
− ... (22)

By direct calculation from eq. (20) with ν = 2n, we readily verify that the low-order solutions
are,

Lm
0 = 1, Lm

1 (2σ) = 1 − 2σ

m+ 1
, Lm

2 (2σ) = 1 − 4σ

m+ 1
+

4σ2

(m+ 1)(m+ 2)
. (23)

Note that index m can be larger than index n.
The Laguerre polynomials are normalized to 1 at x = 0, and obey the orthogonality

relation, ∫ ∞

0

Lm
n (x)Lm

n′(x)xm e−x dz =
(m!)2n!

(m+ n)!
δnn′ . (24)

The “angular” functions Sm
n (σ) are thus given by,

Sm
n (σ) = σm/2 e−σLm

n (2σ), (25)

which obey the orthogonality relation,∫ ∞

0

Sm
n (σ)Sm

n′ (σ) dσ =
1

2m+1

∫ ∞

0

Lm
n (x)Lm

n′(x)xm e−x dz =
(m!)2n!

(m+ n)!2m+1
δnn′ . (26)

In the present application, 0 ≤ σ ≤ 1/θ2
0, on which interval the functions Sm

n are only ap-
proximately orthogonal. Because of the exponential damping of the Sm

n , their orthogonality
is nearly exact for θ0

<∼ 1/2.

2.1.3 The “Radial” Functions

We now turn to the “radial” functions Zm
n (ζ) which obey the differential equation (17) with

separation constant λm given by,

λm =
4

θ2
0

(2n +m+ 1), (27)
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using eq. (21) with ν = 2n. For large r the radial functions are essentially spherical waves,
and hence have leading dependence eikr. For small polar angles, where ξ ≈ 1, the relation
(7) implies that r ≈ z0ζ, and kr ≈ kz0ζ = 2ζ/θ2

0, recalling eq. (2). Hence, we expect the
radial functions to have the form,4

Z(ζ) = e2iζ/θ2
0F (ζ). (28)

Inserting this in eq. (17), we find that function F obeys the second-order differential equation,

(
1 + ζ2

)(d2F

dζ2 +
4i

θ2
0

dF

dζ

)
+ 2ζ

(
dF

dζ
+

2iF

θ2
0

)
=

(
4

θ2
0

(2n +m+ 1) − m2

1 + ζ2

)
F. (29)

In the paraxial approximation, θ0 is small, so we keep only those terms in eq. (29) that
vary as 1/θ2

0, which yields the first-order differential equation,

(
1 + ζ2

) dF
dζ

= − (ζ + i(2n +m+ 1))F. (30)

For m = n = 0 we write F 0
0 = f , in which case eq. (30) reduces to,

(
1 + ζ2

) df
dζ

= (ζ + i) (ζ − i)
df

dζ
= − (ζ + i)f, (31)

or,
df

f
= − dζ

ζ − i
. (32)

This integrates to ln f = lnC − ln (ζ − i). We define f(0) = 1, so that C = −i and,

f =
1

1 + iζ
=

1 − iζ

1 + ζ2 =
e−i tan−1 ζ√

1 + ζ2
. (33)

At large ζ, f ≈ 1/ζ ∝ 1/r, as expected in the far zone for waves that have a narrow waist
at z = 0. Indeed, we expect that Fm

n ∝ 1/ζ at large ζ for all m and n. This suggests that
Fm

n differs from f by only a phase change. A suitable form is,

Fm
n =

e−iam,n tan−1 ζ√
1 + ζ2

=

(
e−i tan−1 ζ

)am,n

√
1 + ζ2

=
1√

1 + ζ2

(
1 − iζ√
1 + ζ2

)am,n

=
(1 − iζ)am,n(

1 + ζ2
)(1+am,n)/2

.

(34)
Inserting this hypothesis in the differential equation (30), we find, that it is satisfied provided

am,n = 2n+m+ 1. (35)

Thus, the radial functions are,

Zm
n (ζ) = eikz0ζFm

n =
ei[kz0ζ−(2n+m+1) tan−1 ζ]√

1 + ζ2
. (36)

4It turns out not to be useful to extract a factor eikr/r from the radial functions, although these functions
will have this form asymptotically.
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2.1.4 The Gaussian-Laguerre Wave Functions in Oblate Spheroidal Coordinates

Using forms (25) and (36) in eq. (13), the paraxial Gaussian-Laguerre wave functions are,

ψm
n (σ, φ, ζ, t) = Zm

n S
m
n e±imφ e−iωt =

σm/2Lm
n (2σ) e−σ ei[kz0ζ−ωt−(2n+m+1) tan−1 ζ±mφ]√

1 + ζ2
. (37)

The factor e−i(2n+m+1) tan−1 ζ in the wave functions implies a phase shift of (2n+m+1)π/2
between the focal plane and the far field, as first noticed by Gouy [23], for whom this effect is
named. Even the lowest mode, with m = n = 0, has a Gouy phase shift of π/2. This phase
shift is an essential difference between a plane wave and a wave that is asymptotically plane
but which has emerged from a focal region. The existence of this phase shift can be deduced
from an elementary argument that applies Faraday’s law to wave propagation through an
aperture [24], as well as by arguments based on the Kirchhoff diffraction integral [11] as were
used by Gouy.

2.1.5 The Gaussian-Laguerre Wave Functions in Cylindrical Coordinates

It is useful to relate the coordinates σ and ζ to those of a cylindrical coordinate system
(r⊥, φ, z), in the paraxial approximation that ξ ≈ 1. For this, we recall from eqs. (7), (8)
and (11) that,

ξ = 1 − θ2
0σ ≈ 1, (38)

so,

ζ2 =
z2

z2
0ξ

2 ≈ z2

z2
0

(1 + θ2
0σ), (39)

and hence,

r2
⊥ = w2

0σ(1 + ζ2) ≈ w2
0σ

(
1 +

z2

z2
0

)
+ θ4

0σz
2 ≈ w2

0σ

(
1 +

z2

z2
0

)
, (40)

where we neglect terms in θ4
0 in the lowest-order paraxial approximation. Then,

σ ≈ r2
⊥

w2
0(1 + z2/z2

0)
, (41)

and,

ζ ≈ z

z0

(
1 +

θ2
0σ

2

)
≈ z

z0

(
1 +

θ2
0r

2
⊥

2w2
0(1 + z2/z2

0)

)
=

z

z0

(
1 +

r2
⊥

2(z2 + z2
0)

)
. (42)

For large z eq. (42) becomes,

ζ ≈ z

z0

(
1 +

r2
⊥

2z2

)
≈ z

z0

√
1 +

r2
⊥
z2

=
r

z0
, (43)

as expected. That is, the factor ei(kz0ζ−ωt) in the wave functions (37) implies that they are
nearly spherical waves in the far zone.
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The characteristic transverse extent of the waves at position z is sometimes called w(z).
For nonzero n or m the “angular” behavior of eq. (37) leads to intensity maxima, i.e., rings
in the radiation pattern, for which σ > 1 at the outermost ring. The leading behavior
of the Laguerre polynomial Lm

n (2σ) on this ring is therefore σn according to eq. (22), and
the “angular” factor is σm/2Lm

n (2σ) e−σ ∝ σn+m/2 e−σ. This implies that the outermost
maximum occurs for σ ≈ n+m/2. Then, eq. (41) indicates that the characteristic radius of
the outermost ring is

wm
n (z) =

√
n +m/2w0

0(z), where w0
0(z) = w0

√
1 +

z2

z2
0

=

√
2(z2 + z2

0)

kz0
. (44)

The paraxial approximation is often taken to mean that variable ζ is simply z/z0 every-
where in eq. (37) except in the phase factor eikz0ζ , where the form (42) is required so that
the waves are nearly spherical in the far zone. In this convention, we can write,

ψm
n (r⊥, φ, z, t) =

σm/2Lm
n (2σ) e−σ ei{kz[1+r2

⊥/2(z2+z2
0)]−ωt−(2n+m+1) tan−1(z/z0)±mφ}√

1 + z2/z2
0

. (45)

The wave functions may be written in a slightly more compact form if we use the scaled
coordinates,

ρ =
r⊥
w0

, ζ =
z

z0
, σ =

ρ2

1 + ζ2 . (46)

Then, the simplest wave function is,

ψ0
0(r⊥, φ, z, t) = e−ρ2/(1+ζ2) eikzr2

⊥/2z2
0(1+ζ2) ei(kz−ωt) e

−i tan−1 ζ√
1 + ζ2

= f e−ρ2(1−iζ)/(1+ζ2) ei(kz−ωt) = f e−fρ2

ei(kz−ωt), (47)

recalling eq. (2) and the definition of f(ζ) in eq. (33). In this manner the general, paraxial
wave function can be written as,

ψm
n (r⊥, φ, z, t) = fm+1ρmLm

n (2σ) e−fρ2

ei(kz−ωt±mφ−2n tan−1 ζ). (48)

It is noteworthy that although our solution began with the hypothesis of separation
of variables in oblate spheroidal coordinates, we have found wave functions that contain
the factors e−fρ2

and Lm
n (σ) that are nonseparable functions of r⊥ and z in cylindrical

coordinates.

2.1.6 Gaussian-Laguerre Wave Packets

The wave functions found above are for a pure frequency ω. In practice one is often interested
in pulses of characteristic width τ in time, whose frequency spectrum is centered on frequency
ω. In this case we can replace the factor ei(kz−ωt) in the wave function by g(ϕ) eiϕ, where the
phase is ϕ = kz − ωt, and still satisfy the wave equation (3) provided that the modulation
factor g obeys [12], ∣∣∣∣g′g

∣∣∣∣� 1. (49)
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An important example of a pulse shape that satisfies eq. (49) is,

g(ϕ) = sech
ϕ

ωτ
, (50)

so long as ωτ � 1, i.e., so long as the pulse is longer that a few periods of the carrier
wave. Perhaps surprisingly, a Gaussian temporal profile is not consistent with condition
(49). Hence, a “Gaussian beam” can have a Gaussian transverse profile, but not a Gaussian
longitudinal profile as well.

2.1.7 Gaussian-Laguerre Wave Functions for Large r in Spherical Coordinates

For z � z0 the coordinate σ is given by σ ≈ (r⊥/zθ0)
2 ≈ (θ/θ0)

2, and the wavefunctions
(45) become,

ψm
n (r, θ, φ, t) ≈ z0

(
θ

θ0

)m

Lm
n (2θ2/θ2

0) e
−θ2/θ2

0
ei[kr−ωt−(2n+m+1)π/2±mφ]

r
(z ≈ r � z0, θ0 � 1),

(51)
noting that r =

√
r2
⊥ + z2 ≈ z(1 + r2

⊥/2z
2).

The wavefront surface (i.e., surface of constant phase ϕ = kr ±mφ) is not spherical for
nonzero m, but has the form of a “hemispherical screw” of pitch mλ per turn. The wave
vector k, which is normal to the wavefronts, is given by,

k = ∇ϕ = k r̂ ± m

r⊥
φ̂ ≈ k

(
ẑ + θ r̂⊥ ± m

kr⊥
φ̂

)
, (52)

where for the paraxial waves at large r,

r = z ẑ + r⊥ r̂⊥ ≈ r(ẑ + θ r̂⊥). (53)

In this case the waves are not quite TEM, and the Poynting vector (energy flow vector) is not
radial but moves along a conical spiral path, as considered further in the following sections.

Since the radial spacing between wavefronts is λ, for m > 1 there are m interleaved
“hemispherical screw” wavefront surfaces.

The dispersion relation ω = kc can be written as ω(k) = krc in view of eq. (52), so that
the group velocity vector5 is vg = ∇kω(k) = c r̂, whose straight lines do not exhibit the
conical form of lines of the wave vector k.

Recasting the discussion around eq. (44) in terms of the far-zone angle θ, we see that
when either n or m are nonzero, the characteristic angle of the far fields is,

θ ≈
√
n+m/2 θ0. (54)

2.1.8 Gaussian-Laguerre Wave Functions Close to the Laser Focus

Close the the laser focus, where r � z0, we have,

ζ ≈ z

z0
� 1, σ ≈ ρ =

r⊥
w0

<∼ 1, (55)

5See, for example, sec. 2.1 of [25].
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and the wavefunctions (45) become,

ψm
n ≈ ρm/2 e−ρ2

Lm
n (ρ2) ei{[k−(2n+m+1)/z0]z−ωt±mφ} (r � z0). (56)

The wave vector is,

k ≈ ∇{[k − (2n +m+ 1)/z0]z − ωt±mφ} = [k − (2n +m+ 1)/z0] ẑ± m

r⊥
φ̂. (57)

For large indices m and n the z-component, kz = k − (2n + m + 1)/z0 of the wave vector
close to the focus is negative.

The dispersion relation can now be written as ω = kc = [kz + (2n +m+ 1)/z0]c, so the
group velocity vector is vg = ∇kω(k) = c ẑ. Thus, for high enough m and n, the laser focus
is a region where the group and phase velocities are in opposite directions.6

2.2 Electric and Magnetic Fields of Gaussian Beams

The scalar wave functions (48) can be used to generate vector electromagnetic fields that
satisfy Maxwell’s equations. For this, we use eqs. (14) with a vector potential A whose
Cartesian components are one or more of the functions (48).

If we wish to express the electromagnetic fields in cylindrical coordinates, then we im-
mediately obtain one family of fields from the vector potential,

Ax = Ay = A⊥ = Aφ = 0, Az =
E0

kθ0
ψm

n (r⊥, φ, z, t). (58)

The resulting magnetic field has no z component, so we may call these transverse magnetic
(TM) waves. If index m = 0 then A has no φ dependence, and the magnetic field has no
radial component; the magnetic field lines are circles about the z axis.

The lowest-order TM mode, corresponding to indices m = n = 0, has field components,

E⊥ = E0ρf
2 e−fρ2

g eiϕ + O(θ2
0),

Eφ = 0,

Ez = iθ0E0f
2(1 − fρ2) e−fρ2

g eiϕ + O(θ3
0).

B⊥ = 0,

Bφ = E⊥,

Bz = 0, (59)

as apparently first deduced in [27]. This is a radially polarized mode, for whichE⊥ necessarily
vanishes along the beam axis. In the far zone the beam intensity is largest on a cone of half
angle θ0 and is very small on the axis itself; the beam appears to have a hole in the center.

The radial and longitudinal electric field of the TM0
0 mode are illustrated in Figs. 2 and

3. Photographs of Gaussian-Laguerre laser modes from [28] are shown in Fig. 4.
As is well known, corresponding to each TM wave solution to Maxwell’s equations in free

space, there is a TE (transverse electric) mode obtained by the duality transformation,

ETE = BTM, BTE = −ETM. (60)

6In the ray-optics limit of very short wavelengths, i.e., very large k, this behavior can be neglected [26].

10



Figure 2: The electric field Er(r⊥, 0, z) of the TM0
0 radially polarized Gaussian

beam with diffraction angle θ0 = 0.45, according to eq. (59).

Since we are considering waves in free space where ∇ ·E = 0, the electric field could also be
deduced from a vector potential, and the magnetic field from the electric field, according to
the dual of eq. (14),

E = ∇ ×A, B = − i

k
∇ × E. (61)

Then, the TE modes can be obtained by use of the vector potential (58) in eq. (61).
The TM Gaussian-Laguerre modes emphasize radial polarization of the electric field, and

the TE modes emphasize circular polarization. In many physical applications, linear polar-
ization is more natural, for which the modes are well-described by Gaussian-Hermite wave
functions [2, 3, 5, 9]. Formal transformations between the Gaussian-Hermite wave functions
and the Gaussian-Laguerre functions have been described in [29]. Linearly polarized modes
can also be obtained by supposing the nonzero component of the vector potential in eq. (61)
is Ax or Ay rather than Az.
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Figure 3: The electric field Ez(r⊥, 0, z) of the TM0
0 radially polarized Gaussian

beam with diffraction angle θ0 = 0.45, according to eq. (59).

Figure 4: Photographs of Gaussian-Laguerre laser beams with 2n + m = 2.
(a) n = 2, m = 0, (b) n = 0, m = 2, e2iφ, (c) n = 0, m = 2, equal mixture of
e±2iφ modes, (d) mixture of {n = 2, m = 0} and both {n = 0, m = 2} modes.
From [28].

2.3 Energy, Momentum and Angular Momentum in the Far Zone

The electromagnetic field energy density,

u =
E2 +B2

8π
, (62)
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the field momentum density,

p =
E× B

4πc
, (63)

and the field angular momentum density,

l = r × p, (64)

are the same for a TM Gaussian-Laguerre mode and the TE mode related to it by the duality
transformation (60).

We consider the energy, momentum and angular momentum for TM waves in the far
zone, where ζ ≈ r/z0 � 1, and r⊥ ≈ rθ � r in terms of spherical coordinates (r, θ, φ).
Then, the waves are nearly spherical, and so have a phase factor eikr that implies the electric
field is related to the magnetic field by,7

E =
i

k
∇ × B ≈ B × k̂ ≈ B × r̂, (65)

such that E2 = B2. The time-averaged densities can therefore be written,

〈u〉 =
|B|2
8π

, (66)

〈p〉 =
Re[(B × r̂) ×B
]

8πc
=

|B|2 r̂ −Re[(B · r̂)B
]

8πc
=

〈u〉
c

(
r̂ − Re[(B · r̂)B
]

|B|2
)
. (67)

The TM waves are derived from the vector potential (58) whose only nonzero component
is Az. Then, the magnetic field components in cylindrical coordinates are,8

B⊥ =
1

r⊥

∂Az

∂φ
=

±imAz

r⊥
, Bφ = −∂Az

∂r⊥
= − 1

w0

∂Az

∂ρ
, Bz = 0, (68)

where ρ = r⊥/w0. Recalling eq. (38), the factors of Az that depend on ρ and σ ≈ ρ2z2
0/z

2

are,
Az ∝ ρm e−fρ2

Lm
n (2σ), (69)

where in the far zone, f(ζ) ≈ −iz0/r. Thus, writing dLm
n (x)/dx as L′m

n (x),

∂Az

∂ρ
=

[
m

ρ2
− 2f +

2z2
0

z2

L′m
n (2σ)

Lm
n (2σ)

]
ρAz ≈ 2i

z0

r
ρAz ≈ 2i

θ

θ0

Az, (70)

since in the far zone where z0/r � 1 the factor ρm e−fρ2 ≈ ρm e−ρ2/ζ2
implies that the wave

functions are large only for ρ ≈ √
m ζ ≈ √

m r/z0 � 1. Thus, in the far zone,

Bφ ≈ − 2i

w0

θ

θ0

Az � B⊥. (71)

7The approximation in eq. (65) implies that E is transverse to r̂ in the far field, which is not quite
correct. From eq. (77) we see that k̂ = ˆ〈p〉 ≈ r̂ ± m φ̂/kr⊥, so there exists a small longitudinal component
Er ≈ Ez ≈ ±mB⊥/kr⊥ ≈ im2Az/kr2

⊥ ∝ 1/rr2
⊥ that affects eqs. (77)-(78) only in a higher approximation.

8In spherical coordinates we have Bθ ≈ B⊥ and Br ≈ θB⊥ ≈ ±imAz/r ∝ 1/r2.
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Also,

|B|2 = |B⊥|2 + |Bφ|2 ≈ |Bφ|2 ≈ 4

w2
0

θ2

θ2
0

|Az|2 , (72)

since ρ = πrθ0/λθ � θ0/θ in the far zone. Using this in eq. (66), we have

〈u〉 ≈ 1

2πw2
0

θ2

θ2
0

|Az|2 . (73)

The radius vector is,
r = z ẑ + r⊥ r̂⊥ ≈ r(ẑ + θ r̂⊥), (74)

so B · r̂ ≈ θB⊥. Becasue this is small compared to Bφ, we approximate the momentum
density (67) as,

〈p〉 ≈ 〈u〉
c

(
r̂ − θRe(B⊥B


φ)

|B|2 φ̂

)
. (75)

From eqs. (68), (71) and (72) we have,

θRe(B⊥B

φ) ≈

∓2mθ2

r⊥w0θ0
|Az|2 ≈ ∓mw0θ0

2r⊥
|B|2 =

∓m
kr⊥

|B|2 , (76)

recalling that θ0 = 2/kw2
0 . Thus, the electromagnetic momentum density is,

〈p〉 ≈ 〈u〉
c

(
r̂ ± m

kr⊥
φ̂

)
≈ 〈u〉

c

(
ẑ + θ r̂⊥ ± m

kr⊥
φ̂

)
. (77)

Since kr⊥ � 1 in the far zone, the energy flow is largely radial outward from the focal
region. The small azimuthal component for nonzero index m causes the lines of energy flow
to become spirals, which lie on cones of constant polar angle θ in the far zone. The Poynting
vector is normal to the wavefront surfaces that were mentioned briefly in sec. 2.1.7.

The angular momentum density is,

〈l〉 = r × 〈p〉 = ∓〈u〉mr
kcr⊥

θ̂ = ∓〈u〉m
ωθ

θ̂ ≈ ±〈u〉m
ω

(
ẑ − 1

θ
r̂⊥

)
, (78)

noting that θ̂ ≈ r̂⊥ − θ ẑ. There is no net angular momentum in any plane of fixed z
coordinate. Of greater interest is the axial component of the (orbital) angular momentum,
which obeys,

〈lz〉
〈u〉 ≈ ±m

ω
, (79)

where the ± sign corresponds to azimuthal dependence e±imφ.
In a quantum view, the Gaussian-Laguerre mode with Az = ψm

n contains N = 〈u〉 /�ω
photons per unit volume of energy �ω each, so the classical result (79) implies that each of
these photons carries orbital angular momentum component lz = ±m�. Since the photons
have intrinsic spin S = 1, with Sz = ±1, we infer that the photons of a Gaussian-Laguerre
mode carry total angular momentum component Jz = ±m± 1. Since the index n can take
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on any nonnegative integer value for each value of index m, the index n is not a measure of
the total angular momentum of a photon of the mode.

The angular momentum of Gaussian-Laguerre modes has also been discussed in [30], in a
slightly different approximation. The first macroscopic evidence for the angular momentum
of light appears to have been given in [31], following suggestions by Poynting [32] and Epstein
[33].

3 Appendix: Ray Optics and Gaussian-Laguerre Beams

This Appendix was written in Jan. 2008, following e-discussions with Michael Berry.
While the Gaussian-Laguerre wave functions were deduced as approximate solutions to

Maxwell’s equations, it may be of interest to relate them to the older tradition of ray optics
(now often called Hamiltonian optics).9 Rays are lines of energy flow, i.e., of group velocity,
in the approximation that the wavelength and the extent of the source are small compared
to the distance to the observer. In a homogeneous medium, such as vacuum, the rays are
straight lines.

It turns out that when indices m and n are both large the Gaussian-Laguerre beams can
be described in terms of skewed bundles of straight rays [26]. Far from the “focal plane” z = 0
the lines of Poynting vector of any Gaussian-Laguerre mode are essentially straight (and they
apprear to emanate from the origin), so a kind of ray approximation holds for z � |z0|. In
the rest of this Appendix we discuss aspects of the slight depature from straightness of lines
of the Poynting vector.

Consider the behavior of the Poynting vector for the outermost ring of the Gaussian-
Laguerre mode of indices n and m. From eq. (44), the characteristc radius r⊥(z) of this ring
is,

r⊥(z) ≈ wm
n (z) =

√
n+m/2

√
2(z2 + z2

0)

kz0
. (80)

From eq. (77) we see that a unit vector in the direction of the Poynting vector has an
azimuthal component whose magnitude is m/kr⊥(z). Thus, as a line of the Poynting vector
advances by dz it skews azimuthally by mdz/kr⊥(z). The corresponding change dφ in the
azimuthal coordinate of the Poynting vector equals this skew divided by r⊥, so we have that,

dφ

dz
=

m

kr2
⊥(z)

≈ m

2n +m

z0

z2 + z2
0

. (81)

Integrating eq. (81) out from the “focal plane” at z = 0, we find the change in azimuth Δφ
of a line of Poynting vector to be,

Δφ(z) ≈ m

2n+m
tan−1(z/z0) ≤ π

2
. (82)

9The subject of ray optics is well reviewed by Landau and Lifshitz. although for the full benefit of their
insights one should consult both sec. 53 of [34] and sec. 67 of [35]. An introduction by the present author is
given in sec. 2.1 of [25].
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Thus, while lines of the Poynting vector are not straight, the lines associated with the
outermost ring of the mode skew by 90◦ or less between the focal plane and infinity,10 and
most of this skew occurs within a few Rayleigh ranges of z = 0.

Hence, lines of the Poynting vector are very close to being the straight rays of a beam as
in the view of geometric optics. If the Poynting vector at a point (r⊥(z), φ, z) in the far field
is extrapolated back to the “focal plane” z = 0, the intercept is at radius rintmz/kr⊥(z) ≈
m/kθ. For the outermost ring, θ ≈√n +m/2θ0, so the intercept is at radius,

rint ≈ m√
n+m/2

1

kθ0
=

√
m/2

1 + 2n/m
w0, (83)

which is less than or equal to the characteristic radius wm
n (0) of the mode at z = 0, recalling

eqs. (1) and (44). In the spirit of Keller’s geometrical theory of diffraction [38], we suppose
that a family of straight rays emanating from a ring of radius rint in the plane z = 0
“interferes” such that the most prominent rays are those with an azimuthal skew when the
index m is nonzero.11

It in noteworthy that the azimuthal skew (82) is proportional to the Gouy phase shift,

ΔφGouy(z) = (2n +m+ 1) tan−1(z/z0), (84)

found in eq. (37), defining ΔφGouy(0) to be zero.
A ray explanation of the Gouy phase has been suggested by Boyd [39]. As shown in

Fig. 5, an ideal straight ray that makes angle θ to the z axis would pass through the center
of the “focal plane” z = 0, while an actual diffracted ray follows the hyperbolic path,

r2
⊥ = w2 + θ2z2, (85)

where w = θz0 is the closest approach of the actual ray to the z axis.
The argument seems to be that the phase of the diffracted ray AB should be that of the

ideal straight ray AC which is asymptotically the same as z → −∞. Since the length of the
path AB is shorter than that of path AC by amount, say, ΔS, the phase of the diffracted
ray includes an extra term ΔφGouy = kΔS.

Measuring from the origin, the path length of the ideal ray is,

SC(z) =
z

cos θ
≈ z +

zθ2

2
, (86)

while that of the diffracted ray is,

SB(z) =

∫ z

0

√
1 + (dr⊥/dz)2 dz ≈

∫ z

0

[
1 +

1

2

(
dr⊥
dz

)2
]
dz = z +

θ2

2

∫ z

0

z2

z2 + z2
0

dz

= z +
zθ2

2
− θ2z0

2
tan−1 z

z0
. (87)

10The skew is greater on the inner rings that exist when n > 1, as discussed in [36, 37].
11As previously remarked, when indices m and n are both large, the beam can be represented in terms

of a skewed family of straight rays such that the Poynting vector is everywhere tangent to the hyperboloids
formed by the skewed rays [26].
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Figure 5: A diffracted ray AB and its corresponding ideal straight ray AC,
both of which make angle θ to the z axis at large z. The trajectory of the
diffracted ray, neglecting the small azimuthal skew, is given by eq. (85).

The estimate of the Gouy phase shift is then,

ΔφGouy(z) = k[SB(z) − SC(z)] =
kθ2z0

2
tan−1 z

z0
. (88)

This result has the correct dependence of the Gouy phase shift on z, although it predicts the
phase shift would vary with angle. Using the angle θ ≈ √

n+m/2w0/z0 of the outermost
ring of a mode with indices n and m and recalling eq. (2), we find,

ΔφGouy(z) ≈ (n+m/2) tan−1 z

z0
, (89)

which is half the nominal value (84). Thus, the ray explanation of the Gouy phase shift is
suggestive rather than definitive.12
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