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1 The Paradox

Vladimir Onoochin has drawn our attention to a paradox related to the apparatus shown in
the figure below. Two electric charges −q are forced to execute uniform circular motion with
speed v such that their azimuthal angles are always 90◦ apart. The apparatus, including the
motors which drive the motion, is mounted on a frictionless platform such that there are no
external forces on the system that have components in the horizontal (x-y) plane. Therefore,
we expect that the center of mass of the system would remain at rest. However, the magnetic
Lorentz forces of the moving charges on each other are not equal and opposite, so the sum
of the internal forces is nonzero. In particular, the total (magnetic) Lorentz force has a
component in the −x direction at all times during the motion. Hence, we are led to conclude
that the center of mass of this system is accelerated monotonically in the −x direction by
its own internal forces, in contradiction to the principles of Newtonian mechanics.

The sum of the (magnetic) Lorentz forces on the two charges is (in Gaussian units) of order
q2v2/c2r2, where c is the speed of light and r is the average distance between the two charges.
For any reasonable tabletop apparatus the apparently offending Lorentz force is extremely
tiny. Thus, the issue is primarily one of principle: Are the laws of electromagnetism are
compatible with the laws of mechanics?1

1For a review of related proposals for “bootstrap spaceships,” see [1].
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2 Ampère, Biot, Savart and Lorentz

Concerns such as those raised by Onoochin appear to have influenced Ampère in 1822 [2, 3]
when he wrote the force between two circuits that carry currents I1 and I2 as2

F =
I1I2

c2

∮ ∮ [
dl1 · dl2 − 3

2
(r̂ · dl1)(r̂ · dl2)

]
r̂

r2
(Ampère), (1)

in preference to the (now) more familiar Biot-Savart law (as later expressed by Grassmann
[10]),

F =
I1I2

c2

∮ ∮
dl1 × dl2 × r̂

r2
(Biot-Savart-Grassmann), (2)

because the integrand of eq. (1), but not that of eq. (2), lies along the line joining current
elements in the two circuits, and implies that the forces of a pair of current elements on each
other are equal and opposite. However, the Biot-Savart law (2) is more compatible with the
concept of the magnetic field,3,4

F =

∮
I1dl1

c
× B, B =

∮
I2dl2

c
× r̂

r2
(Ampère-Biot-Savart). (3)

The magnetic term in the Lorentz force law [15] follows from eq. (3) upon replacement of a
current element Idl by the product qv of an electric charge q and its velocity v,

F = qE + q
v

c
× B, B = q

v

c
× r̂

r2
(Lorentz). (4)

As the extrapolation (4) of the Biot-Savart law to isolated current elements leads to apparent
contradictions with Newton’s laws of mechanics, Ampère seems to have concluded that
isolated current elements could not exist.

Maxwell did little to change this view of Ampère, since he considered electric charge to be
a continuously distributed density ρ related to strain in an æther according to ρ = ∇ ·D/4π,
where D is the electric displacement field.

An electrodynamics based on charged particles could be developed in a manner consistent
with Newtonian mechanics only after the efforts of Thomson [16] and Poynting [17] who
showed that electromagnetic fields can carry energy and momentum.5 The Lorentz force on

2Extensive discussion in English of Ampère’s attitudes on the relation between magnetism and mechanics
is given in [4, 5, 6]. Historical surveys of 19th-century electrodynamics are given in [7, 8]. See also [9], sec. IIA
regarding Ampère.

3The earliest version of of eq. (3) may have been given, without attribution, as eq. (11) of Art. 603 of
Maxwell’s Treatise [11]. It was given by Heaviside in 1886, p. 551 and 559 of [12], in the form dF = ρE+Γ×H,
where ρ is the electric charge density and Γ = ∇×H = J+∂D/∂t, where J is the conduction current density
J and ∂D/∂t is the “displacement current” density. However, the present view is that the “displacement
current” does not experience a magnetic force.

4The earliest description of eq. (3) as the Biot-Savart law may be in sec. 2 of [13], with the earliest such
usage in English in sec. 7-6 of [14].

5That a moving charge interacting with thermal radiation should feel a radiation pressure was anticipated
by Stewart in 1871-3 [18], who inferred that both the energy and the momentum of the charge would be
affected. In 1873, Maxwell discussed the pressure of light on conducting media at rest, and on “the medium
in which waves are propagated” ([11], Arts. 792-793).
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a charged particle was first discussed somewhat indirectly by Maxwell secs. 63-65 of [19] and
in Arts. 598-988 of [11],6 and then more explicitly by Thomson in sec. 5 of [16]. For a review
by Lorentz, see [21].

However, the doubts of Ampère as to the compatibility of the Lorentz force law with New-
ton’s laws are seldom addressed explicitly in the electrodynamic theory of charged particles,
so that examples such as that of Onoochin may well appear paradoxical.

3 The Lorentz Force of a Pair of Charges to Order 1/c2

A paper by Page and Adams [22] provides good insight as to the resolution of Onoochin’s
paradox: at order 1/c2 both the electric and the magnetic fields of a pair of charges contribute
to the nonzero total Lorentz force. For another viewpoint, see Appendix B.

For calculations of the Lorentz force to be accurate to order 1/c2, it suffices to use eq. (4)
for the magnetic field. However, to maintain the desired accuracy the electric field of a
moving charge must include effects of retardation, as can be obtained from an expansion of
the Liénard-Wiechert fields [23, 24] (for details, see the Appendix of [25]),

E ≈ q
r̂

r2

(
1 +

v2

2c2
− 3

(r̂ · v)2

2c2

)
− q

2c2r
[a + (a · r̂)r̂], B ≈ q

v × r̂

cr2
, (5)

where a is the acceleration of the charge at the present time.7 Then, the total electromagnetic
force FEM on a pair of accelerating charges separated by distance r = r2 − r1 is, to order
1/c2,

FEM = − q1q2

2c2r

{
a1 + a2 + [(a1 + a2) · r̂]r̂− r̂

r

[
v2

1 − v2
2 − 3(r̂ · v1)

2 + 3(r̂ · v2)
2
]

−2r̂

r
× (v1 × v2)

}
, (6)

where the triple cross product describes the effect of the magnetic field.
Onoochin’s example involves uniform circular motion, v1 = v2 = v and a1 = a2 = v2/R,

where the radius R of the circle is smaller than the distance r between the two charges.
Hence, the largest contribution to the total electromagnetic force is from the terms in the
electric fields involving the acceleration. It turns out that some of these terms exactly cancel
the force due to the magnetic fields, thereby resolving Onoochin’s paradox.

It may be useful to evaluate eq. (6) in greater detail for Onoochin’s example in the case
that the separation between the centers of the two rotating disks is D ŷ where R � D. We
will evaluate the force (6) to order R/D.

6See secs. A.23.3.7 and A.23.4.7-8 of [20].
7Expression (5) may be counterintuitive in that a more usual expression for the part of the electric field

that varies as 1/r is −q[a⊥/c2r]ret = −q[(a − (a · r̂)r̂)/c2r]ret, with acceleration a evaluated at the retarded
time t′ = t−r/c. Nonetheless, expression (5) is the result of the conversion to present quantities of the usual
form that involves retarded quantities. Note that the Poynting vector deduced from eqs. (4) and (5) varies as
1/r3, so that the phenomenon of radiation does not appear in the present approximation. Radiation appears
only when higher-order terms are considered [26].
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The positions, velocities and accelerations of the two charges can be written as,

r1 = R sin
vt

R
x̂ + R cos

vt

R
ŷ, r2 = D ŷ + R cos

vt

R
x̂− R sin

vt

R
ŷ, (7)

v1 = v cos
vt

R
x̂ − v sin

vt

R
ŷ, v2 = −v sin

vt

R
x̂ − v cos

vt

R
ŷ, (8)

a1 = −v2

R
sin

vt

R
x̂− v2

R
cos

vt

R
ŷ, a2 = −v2

R
cos

vt

R
x̂ +

v2

R
sin

vt

R
ŷ. (9)

For this example, the terms in eq. (6) involving the velocities are of order R/D times
the leading terms in the accelerations. Hence, to maintain accuracy to order R/D it suffices
to approximate r by D and r̂ by ŷ in the terms involving the velocities. However, we must
keep the first corrections to r and r̂ in the terms involving the accelerations. Therefore, we
record the relations,

r = r2 − r1 = D

[
ŷ +

R

D

(
cos

vt

R
− sin

vt

R

)
x̂ − R

D

(
cos

vt

R
+ sin

vt

R

)
ŷ

]
, (10)

1

r
=

1

D
√

1 − 2R
D

(
cos vt

R
+ sin vt

R

)
+ 2R2

D2

≈ 1

D

[
1 +

R

D

(
cos

vt

R
+ sin

vt

R

)]
, (11)

r̂ =
r

r
≈ ŷ +

R

D

(
cos

vt

R
− sin

vt

R

)
x̂, (12)

a1 + a2 + [(a1 + a2) · r̂]r̂
r

≈ − v2

DR

[(
cos

vt

R
+ sin

vt

R

)
x̂ + 2

(
cos

vt

R
− sin

vt

R

)
ŷ

+
2R

D
x̂ +

3R

D
cos

2vt

R
ŷ

]
, (13)

r̂

r2

[
v2

1 − v2
2 − 3(r̂ · v1)

2 + 3(r̂ · v2)
2
] ≈ −3v2

D2
cos

2vt

R
ŷ, (14)

2r̂

r2
× (v1 × v2) ≈ −2v2

D2
x̂, (15)

and we find that equation (6) can be approximated as,

FEM ≈ q1q2

2DR

v2

c2

[(
cos

vt

R
+ sin

vt

R

)
x̂ + 2

(
cos

vt

R
− sin

vt

R

)
ŷ +

6R

D
cos

2vt

R
ŷ

]
. (16)

The magnetic force term (15) is canceled by a correction of order R/D to the much larger
part of the electric force associated with the acceleration of the charges, as seen in eq. (13).
Thus, the most dramatic aspect of Onoochin’s paradox is resolved; the total electromagnetic
force is purely oscillatory. However, the net electromagnetic force (16) on the (isolated)
system is nonzero, so there remains the paradox of Ampère that Newton’s third law is not
obeyed by the Lorentz force between pairs of moving charges.
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4 Electromagnetic Momentum

Following Poynting [17],8 we now consider the momentum in the electromagnetic fields,
calculated according to,

1

4πc

∫
E × B dVol. (17)

However, we cannot distinguish the “self-momentum”
∫

Ej ×Bj dVol/4πc from the mechan-
ical momentum of particle j.9 Rather, we need to consider the interaction momentum,

PEM =
1

4πc

∫
(E1 × B2 + E2 × B1) dVol. (18)

Keeping terms only of order 1/c2, the relevant electromagnetic momentum is [22],

PEM =
q1q2

4πc2

∫
r̂2 × (v1 × r̂1) + r̂1 × (v2 × r̂2)

r2
1r

2
2

dVol =
q1q2

2c2r
[v1 +v2 +((v1 +v2) · r̂)r̂]. (19)

While strictly speaking the electromagnetic momentum is a property of the system as a
whole, the terms in eq. (19) containing vj can be identified as the interaction momentum
associated with particle j.

Taking the time derivative of eq. (19), we find that,

dPEM

dt
= −FEM, (20)

on comparing with eq. (6). Thus, a calculation of the electromagnetic momentum according
to eqs. (18)-(19) provides us with a solution to the equation of motion (20).10

For related discussion of some additional examples, see [30].

5 Two Interacting But Otherwise Free Charges

If the only forces on the two charges are their electromagnetic forces on each other, then
Newton’s second law tells us that,

dPmech

dt
= FEM, (22)

8O. Heaviside independently invented in 1885 [27] what is now called the Poynting vector, following his
invention in 1882 of modern vector notation [28]. The dual role of the Poynting vector as both electromagnetic
energy flux and electromagnetic momentum density was first pointed out by Abraham [29].

9To order 1/c2, the mechanical momentum of a particle of (rest) mass m and velocity v is Pmech =
mv(1 + v2/2c2). Use of this form in the equation of motion (20) includes the effects of the electromagnetic
“self-momentum”.

10This result should not come as a surprise in that one version of Poynting’s argument transforms the
Lorentz force FEM on a system of charges according to,

FEM =
∮ ↔

T · dArea − 1
4πc

d

dt

∫
E × B dVol, (21)

where
↔
T is the Maxwell stress tensor. See, for example, sec. 10 of [21]. For a bounded system of charges for

which radiation can be neglected the integral of the stress tensor vanishes as the surface/volume of integration
grow large, leading to eq. (20). Radiation can be neglected in the present analysis, which is accurate to order
1/c2, because radiation effects are of order 1/c3 according to the Larmor formula, dU/dt = 2q2a2/3c3.
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where Pmech is the combined mechanical momentum of the two particles. Then, with eq. (20)
we have,

dPtotal

dt
=

dPmech

dt
+

dPEM

dt
= 0. (23)

In this case the center of mass of the two particles can move as a result of their Lorentz
forces on each other, but the center of momentum of the system remains fixed (or in a state
of uniform motion).

6 Resolution of Onoochin’s Paradox

Turning to Onoochin’s example in which the two charges undergo uniform circular motion,
there are other forces on the charges besides the Lorentz force. The motion, and hence also
the mechanical momentum Pmech of the charges, its rate of change dPmech/dt, and the total
force Ftotal on the charges are known (to a first approximation), so we write,11

dPmech

dt
= Ftotal = FEM + Fother. (24)

We should also consider the possible motion of the (frictionless) supporting platform, which
is subject to the reaction force −Fother, assuming that the forces between the platform and
the charges obey Newton’s 3rd law. The equation of motion of the platform can therefore
be written as,

dPplatform

dt
= −Fother. (25)

The combined equation of motion for the platform plus the charges follows from eqs. (24)-(25)
and eq. (20) as,

dPmech

dt
+

dPplatform

dt
= FEM = −dPEM

dt
. (26)

Hence, the total momentum of the system, PEM +Pmech +Pplatform, is constant as expected.
For the example of Onoochin’s paradox with velocities described by eq. (8) the electro-

magnetic momentum (19) is (recalling eqs. (11)-(12) and calculating to order 1/c2 and to
order R/D),

PEM = −Pmech − Pplatform

≈ q1q2v

2c2D

[(
cos

vt

R
− sin

vt

R

)
x̂ − 2

(
cos

vt

R
+ sin

vt

R

)
ŷ − R

D

(
1 + 3 sin

2vt

R

)
ŷ

]
.(27)

We readily see that the time derivative of eq. (27) is the negative of the force FEM found in
eq. (16).

However, the presence of the constant term, −(q1q2vR/2c2D2) ŷ, in eq. (27) is surprising.
This suggests that there is a kind of “hidden” mechanical momentum in the system that is
equal and opposite to this constant term.

11The constraint forces Fother are due to electromagnetic interactions among molecules near various
mechanical interfaces in the apparatus.
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When the total energy of the system is constant, the electrostatic energy q1q2/r of a
pair of charges q1 and q2 must be compensated by a change in their effective mechanical
masses of −q1q2/2c

2r for each charge. This tiny change is a relativistic effect of order 1/c2.
If the charges have velocities v1 and v2 their mechanical momentum is changed by amount
−q1q2(v1 + v2)/2c

2r. This small difference is sometimes called the “hidden” mechanical
momentum Ph of the system [31, 32, 33].

In the present example, we calculate the “hidden” momentum using eqs. (8), (11) and
(12),

Ph = − q1q2

2c2r
(v1 + v2)

≈ −q1q2v

2c2D

[
1 +

R

D

(
cos

vt

R
+ sin

vt

R

)] [(
cos

vt

R
− sin

vt

R

)
x̂−

(
cos

vt

R
+ sin

vt

R

)
ŷ

]

= −q1q2v

2c2D

{(
cos

vt

R
− sin

vt

R

)
x̂ −

(
cos

vt

R
+ sin

vt

R

)
ŷ

+
R

D

[
cos

2vt

R
x̂ −

(
1 + sin

2vt

R

)
ŷ

]}
. (28)

The constant term in the “hidden” mechanical momentum (28) is indeed equal and opposite
to the constant term in the electromagnetic momentum (27).

It is perhaps noteworthy that the “hidden” mechanical momentum in this example is not
simply the negative of the electromagnetic momentum, although the total momentum is zero.
The “hidden” mechanical momentum has the form Ph = − ∫

φJ dVol [34, 35, 36], while the
electromagnetic momentum can be rewritten (in the low-velocity limit) as PEM =

∫
φJt dVol

where the so-called transverse current Jt is that part of the total current that obeys ∇·Jt = 0
[37]. In examples with steady currents the condition ∇ ·J = 0 holds and Ph = −PEM. Here,
the two charges execute periodic motion, but the corresponding currents are not divergence
free and so Ph �= −PEM.12

The “visible” momentum, Pv = msystemvCM, of the disks + platform does not include
the “hidden” momentum (28), and is given by,

Pv = msystem
drCM

dt
= Pmech + Pplatform − Ph = −PEM − Ph

=
q1q2v

2c2D

{(
cos

vt

R
+ sin

vt

R

)
ŷ +

R

D

[
cos

2vt

R
x̂ + 2 sin

2vt

R
ŷ

]}
. (29)

The center-of-mass motion rCM(t) of the system can be obtained by integration of eq. (29),
which yields,

rCM =
q1q2

msystemc2

[
R

2D

(
sin

vt

R
− cos

vt

R

)
ŷ +

R2

4D2

(
sin

2vt

R
x̂− 2 cos

2vt

R
ŷ

)]
. (30)

This motion is periodic but somewhat complicated, with an extremely small amplitude.

12In sec. 4.1.4 of [38] it is argued that for “quasistatic” systems, Ph = −PEM. We infer that the present
example is not a “quasistatic” system, although the motion of the charges is fairly simple. A “quasistatic”
system is one for which ∇ · J ≈ 0, which is not satisfied in the present example.
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A Appendix: Electrical Interactions of Circuits

Does the force between two current-carrying circuits include terms due to the retarded electric
fields of the moving charges that are of similar size to the magnetic force? If so, Ampère’s
analysis of magnetism would be incorrect.

An important difference between a current-carrying wire and an isolated moving charge is
that the wire is electrically neutral (in the first approximation). So, there is no net Coulomb
electric field due to the charges in the wire. However, there is a nonzero electric field
associated with the wire because only the moving charges generate the retarded corrections
of order 1/c2 to their Coulomb fields. But, this nonzero electric field produces no net force
on a second circuit if that circuit is also electrically neutral.

Are current-carrying wires actually electrically neutral?13 If the wire has nonzero electri-
cal conductivity σ, and carries current density J, then there must be a longitudinal electric
field E inside the wire according to Ohm’s law, J = σE. This longitudinal electric field is
created and shaped by the presence of a nonzero surface charge density whose magnitude
varies (approximately) linearly along the wire (so that the magnitude of E is independent
of position). The charge density per unit length is approximately IRz [36], where R is the
resistance per unit length along the wire. The numerical value of R is a fraction of an Ohm
per cm. Recall that in Gaussian units, 1/c = 30 Ohm. Hence, the net charge per unit length
of a current-carrying wire is of order I/c. As the total surface charge is approximately zero,
the surface charge distribution has a dipole character, so its electric field outside the wire
falls off as R/r3 rather than 1/r2, where R is a characteristic radius of the circuits.

Hence, the electrical force between a pair of circuits separated by distance r due to their
surface charge distributions scales as I1I2R

3/c2r3 and can be neglected compared to the
magnetic forces that scale as I1I2R

2/c2r2 according to Ampère.
There also exist electrical forces between current-carrying circuits of order I1I2vR2/c3r2,

being the product of a net charge of order I1R/c in one circuit times the retarded correction
of order I2vR/c2r2 to the electric field of the moving charges in the other circuit. This
correction to Ampère’s analysis is of order v/c compared to the magnetic force, and hence
is negligible for ordinary circuits.14

B Appendix: Resolution via the Darwin Lagrangian

An alternative (and more formal) approach to that given in secs. 3-4 can be based on the
approximate Lagrangian of Darwin [41] (see also sec. 65 of [42] and sec. 12.6 of [43]), which
describes the interaction of charged particles via their electromagnetic potentials in the
Coulomb gauge, accurate to order 1/c2.

Here, it suffices to note that the vector potential A1 of an electric charge q1 with velocity

13Most discussions of the net charge of a current-carrying wire focus on a very small effect (see, for
example, [39]). Namely, that the volume charge density of the moving electrons must be ≈ 1 + v2/c2 times
that of the fixed positive charges, so that the conduction electrons experience no net radial force. However,
the net charge density due to this effect is v/c times smaller than the surface charge density required to
shape the longitudinal field inside the wire.

14For a discussion of the electric self force on a current loop, see [40].

8



v1 at distance r is (to order 1/c2 in the Coulomb gauge),15

A1 =
q1

2cr
[v1 + (v1 · r̂)r̂]. (31)

The canonical momentum p2 of a charge q2 in the field of charge 1 is then,

p2 = Pmech,2 + q2
A1

c
, (32)

where the term q2A1/c is often called the electromagnetic momentum of charge 2.16

The electromagnetic momentum of the combined system of charges q1 and q2 is therefore,

PEM =
q1q2

2c2r
[v1 + v2 + (v1 · r̂)r̂ + (v2 · r̂)r̂], (33)

as found previously in eq. (19).
The total canonical momentum of an isolated system is, of course, constant in time,

which again leads to the conclusions of secs. 5 and 6.
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53, 106 (1898), http://kirkmcd.princeton.edu/examples/EM/lienard_ee_16_5_98.pdf

[24] E. Wiechert, Elektrodynamishe Elementargesetze, Arch. Néerl. 5, 549 (1900); Ann.
Phys. 309, 667 (1901), http://kirkmcd.princeton.edu/examples/EM/wiechert_ap_309_667_01.pdf

[25] K.T. McDonald, Mechanics and Electromagnetism,
http://kirkmcd.princeton.edu/examples/ph501/ph501lecture24.pdf

[26] N. Itoh, Radiation reaction due to magnetic dipole radiation, Phys. Rev. A 43, 1002
(1991), http://kirkmcd.princeton.edu/examples/EM/itoh_pra_43_1002_91.pdf

[27] O. Heaviside, On the Transmission of Energy through Wires by the Electric Current,
The Electrician 14, 178 (1885); reprinted in [12], pp. 434-441,
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrician_14_178_85.pdf

[28] O. Heaviside, The Universal Relation Between a Vector and its Curl, Electrician 10, 6
(1882); reprinted in [12], pp. 195-201,
http://kirkmcd.princeton.edu/examples/EM/heaviside_electrical_papers_1.pdf

[29] M. Abraham, Prinzipien der Dynamik des Elektrons, Ann. Phys. 10, 105 (1903),
http://kirkmcd.princeton.edu/examples/EM/abraham_ap_10_105_03.pdf

[30] T.H. Boyer, Illustrations of the Relativistic Conservation Law for the Center of Energy,
Am. J. Phys. 73, 953 (2005), http://kirkmcd.princeton.edu/examples/EM/boyer_ajp_73_953_05.pdf

[31] W. Shockley and R.P. James, “Try Simplest Cases” Discovery of “Hidden Momentum”
Forces on Magnetic Currents, Phys. Rev. Lett. 18, 876 (1967),
http://kirkmcd.princeton.edu/examples/EM/shockley_prl_18_876_67.pdf

11



[32] S. Coleman and J.H. Van Vleck, Origin of “Hidden Momentum” Forces on Magnets,
Phys. Rev. 171, 1370 (1968),
http://kirkmcd.princeton.edu/examples/EM/coleman_pr_171_1370_68.pdf

[33] V. Hnizdo, Hidden momentum and the electromagnetic mass of a charge and current
carrying body, Am. J. Phys. 65, 55 (1997),
http://kirkmcd.princeton.edu/examples/EM/hnizdo_ajp_65_55_97.pdf

[34] W.H. Furry, Examples of Momentum Distributions in the Electromagnetic Field and in
Matter, Am. J. Phys. 37, 621 (1969),
http://kirkmcd.princeton.edu/examples/EM/furry_ajp_37_621_69.pdf

[35] M.G. Calkin, Linear Momentum of the Source of a Static Electromagnetic Field, Am.
J. Phys. 39, 513 (1971), http://kirkmcd.princeton.edu/examples/EM/calkin_ajp_39_513_71.pdf

[36] K.T. McDonald, Hidden Momentum in a Coaxial Cable (Mar. 28, 2002),
http://kirkmcd.princeton.edu/examples/hidden.pdf

[37] J.D. Jackson, Relation between Interaction terms in Electromagnetic Momentum∫
d3xE × B/4πc and Maxwell’s eA(x, t)/c, and Interaction terms of the Field La-

grangian Lem =
∫

d3x [E2 − B2]/8π and the Particle Interaction Lagrangian, Lint =
eφ − ev ·A/c (May 8, 2006), http://kirkmcd.princeton.edu/examples/EM/jackson_050806.pdf

[38] K.T. McDonald, On the Definition of “Hidden” Momentum (July 9, 2012),
http://kirkmcd.princeton.edu/examples/hiddendef.pdf

[39] K.T. McDonald, Charge Density in a Current-Carrying Wire (Dec. 23, 2010),
http://kirkmcd.princeton.edu/examples/wire.pdf

[40] K.T. McDonald, The Electric Self Force on a Current Loop (Jan. 8, 2019),
http://kirkmcd.princeton.edu/examples/loop_force.pdf

[41] C.G. Darwin, The Dynamical Motions of Charged Particles, Phil. Mag. 39, 537 (1920),
http://kirkmcd.princeton.edu/examples/EM/darwin_pm_39_537_20.pdf

[42] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon,
1975), http://kirkmcd.princeton.edu/examples/EM/landau_ctf_75.pdf

[43] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999),
http://kirkmcd.princeton.edu/examples/EM/jackson_ce3_99.pdf

[44] J. Larsson, Electromagnetics from a quasistatic perspective, Am. J. Phys. 75, 230
(2007), http://kirkmcd.princeton.edu/examples/EM/larsson_ajp_75_230_07.pdf

12


