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1 Problem

In the Bohr model [1] of the hydrogen atom’s ground state, the electron moves in a circular
orbit of radius a0 = 0.53×10−10 m around the proton, which is assumed to be rigidly fixed in
space. Since the electron is accelerating, a classical analysis suggests that it will continuously
radiate energy, and therefore the radius of the orbit would shrink with time.

Considerations such as these in 1903 by J.J. Thomson [2, 3] led him to note that there
is no radiation if the charge is distributed in space so as to form steady currents.1 While a
spinning shell or ring of charge provides a model for the magnetic moment of an atom, such
charge configurations provide no restoring force against displacements of the center of the
shell/ring from the nucleus. The (continuous) charge distribution must extend all the way
to the nucleus if there is to be any possibility of classical electrostatic stability. A version
of these insights was incorporated in Thomson’s (not entirely self-consistent) model [2, 3]
of the atom as a kind of “plum pudding” where the nucleus had a continuous, extended
charge distribution in which more pointlike electrons were embedded. In this context, the
measurements of Geiger, Marsden and Rutherford [5, 6, 7, 8, 9, 10] of α-particle scattering,
which showed that the nucleus was compact, came as something of a surprise, and re-opened
the door to models such as that of Bohr [1] in which pointlike electrons orbited pointlike
nuclei, and radiation was suppressed by a “quantum” rule.

Note that the model of the atom that emerged following Schrödinger contains some
classically agreeable features if (ground states of) atoms are not to radiate: The electron in
an atom is considered to have a wavefunction that extends to the origin. The electric current
associated with the electron is steady, and hence would not radiate if this were a classical
current.

a) Assuming that the electron is always in a nearly circular orbit and that the rate of
radiation of energy is sufficiently well approximated by classical, nonrelativistic elec-
trodynamics, how long is the fall time of the electron, i.e., the time for the electron to
spiral into the origin?

b) The charge distribution of a proton has a radius of about 10−15 m, so the classical
calculation would be modified once the radius of the electron’s orbit is smaller than
this. But even before this, modifications may be required due to relativistic effects.

Based on the analysis of part a), at what radius of the electron’s orbit would its
velocity be, say 0.1c, where c is the speed of light, such that relativistic corrections
become significant? What fraction of the electron’s fall time remains according to part
a) when the velocity of the electron reaches 0.1c?

1Several subsequent authors have claimed the existence of radiationless orbital motion of classical charges.
However, these claims all appear to have defects. See, for example, [4].
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c) Do the relativistic corrections increase or decrease the fall time of the electron?

It suffices to determine the sign of the leading correction as the radial velocity of the
radiating electron approaches the speed of light.

A question closely related to the present one is whether the rate of decay of the orbit of
a binary pulsar system due to gravitational radiation is increased or decreased by special-
relativistic “corrections” as the orbital velocity becomes relativistic.

2 Solution

a) The dominant energy loss is from electric dipole radiation, which obeys the Larmor
formula [11] (in Gaussian units),

dU

dt
= −〈PE1〉 = −2e2a2

3c3
, (1)

where a is the acceleration of the electron. For an electron of charge −e and (rest) mass
m0 in an orbit of radius r about a fixed nucleus of charge +e, the radial component of
the nonrelativistic force law, F = m0a, tells us that,

e2

r2
= m0ar ≈ m0

v2
θ

r
, (2)

in the adiabatic approximation that the orbit remains nearly circular at all times. In
the same approximation, aθ � ar, i.e., a ≈ ar, and hence,

dU

dt
= − 2e6

3r4m2
0c

3
= −2

3

r3
0

r4
m0c

3. (3)

where r0 = e2/m0c
2 = 2.8 × 10−15 m is the classical electron radius. The total nonrel-

ativistic energy (kinetic plus potential) is, using eq. (2),

U = −e2

r
+

1

2
m0v

2 = − e2

2r
= −r0

r
m0c

2. (4)

Equating the time derivative of eq. (4) to eq. (3), we have,

dU

dt
=

r0

2r2
ṙm0c

2 = −2

3

r3
0

r4
m0c

3, (5)

or,

r2ṙ =
1

3

dr3

dt
= −4

3
r2
0c. (6)

Hence,
r3 = a3

0 − 4r2
0ct. (7)

The time to fall to the origin is,

tfall =
a3

0

4r2
0c

. (8)
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With r0 = 2.8 × 10−15 m and a0 = 5.3 × 10−11 m, tfall = 1.6 × 10−11 s.

This is of the order of magnitude of the lifetime of an excited hydrogen atom, whose
ground state, however, appears to have infinite lifetime.

Since the kinetic energy of the electron goes to infinity as it spirals into the nucleus,
the motion can be called a “runaway solution.”

b) The velocity v of the electron has components,

vr = ṙ = −4

3

r2
0

r2
c, (9)

using eq. (6), and,

vθ = rθ̇ =

√
e2

m0r
=

√
r0

r
c, (10)

according to eq. (2).

The azimuthal velocity is much larger than the radial velocity so long as r � r0. Hence,
v/c ≈ vθ/c equals 0.1 when r0/r ≈ 0.01, or r ≈ 100r0.

When r = 100r0 the time t is given by eq. (7) as,

t =
a3

0 − r3

4r2
0c

, (11)

so that,
tfall − t

tfall

=
r3

a3
0

=

(
2.8 × 10−13

5.3 × 10−11

)3

≈ 1.5 × 10−7. (12)

For completeness, we record other kinematic facts in the adiabatic approximation.

The angular velocity θ̇ follows from eq. (10) as,

θ̇ =

√
r0

r3
c. (13)

The second time derivatives are thus,

r̈ =
8

3

r2
0

r3
ṙc = −32

9

r4
0

r5
c2, θ̈ = −3

2

√
r0

r5
ṙc = 2

√
r0

r

r2
0

r4
c2. (14)

The components of the acceleration are,

ar = r̈ − rθ̇
2

= −32

9

r4
0

r5
c2 − r0

r2
c2 ≈ −r0

r2
c2 = −rθ̇

2
, (15)

aθ = 2ṙθ̇ + rθ̈ = −8

3

√
r0

r

r2
0

r3
c2 � ar. (16)
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c) We now examine the leading relativistic corrections to the nonrelativistic analysis of
part a).

First, we recall that the lab frame rate of radiation by an accelerated charge obeys the
Larmor formula (1) provided we use the acceleration in the instantaneous rest frame
rather than in the lab frame. This is true because both dU and dt transform like the
time components of a four-vector, so their ratio is invariant.

In the adiabatic approximation, the acceleration is transverse to the velocity. That is,
vr � vθ from eqs. (9) and (10), while ar � aθ from eqs. (15) and (16). Therefore,

a� = γ2a, (17)

where a is the lab-frame acceleration, a� is the acceleration in the instantaneous rest

frame, and γ = 1/
√

(1 − v2/c2) = 1/
√

1 − β2. Equation (17) holds because a� =
d2l�/dt�2, and dl� = dl for motion transverse to the velocity of the electron, while
the time-dilation is dt� = dt/γ. Thus, the rate of radiation of energy by a relativistic
orbiting electron is,

dU

dt
= −〈PE1〉 = −2e2a�2

3c3
= −2γ4e2a2

r

3c3
. (18)

[If the acceleration were parallel to the velocity, a�∗ = γ3a since now there would also
be the Lorentz contraction, dl = dl�/γ.]

The adiabatic orbit condition (2) for a relativistic electron becomes,

e2

r2
= γm0ar = γm0

v2
θ

r
≈ γm0

v2

r
. (19)

This can be thought of as the transform of the rest-frame relation eE�
r = dP �

r /dt� upon
noting that E�

r = γEr since the electric field is tranverse to the velocity, dt∗ = dt/γ,
and dP �

r = dPr = γm0dvr.

Combining eq. (18) with the first form of eq. (19), we have,2

dU

dt
= − 2γ2e6

3m2
0c

3r4
= −2

3
γ2r3

0

r4
m0c

3 . (20)

We also rewrite eq. (19) as,

e2

m0c2r
=

r0

r
= γ

v2

c2
= γβ2 ≈ γ

(
1 − 1

γ2

)
, (21)

and hence,

γ2 − γ
r0

r
− 1 = 0, (22)

2The result of eq. (20) was perhaps first given by Heaviside [12], before the theory of relativity was
developed. What we call “radiation,” Heaviside called “waste.”
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γ =

r0

r
+

√
r2
0

r2 + 4

2
=

√
1 +

r2
0

4r2
+

r0

2r
≈ 1 +

r0

2r
+

r2
0

8r2
. (23)

The total lab-frame energy is now,

U = γm0c
2 − e2

r
=

(
γ − r0

r

)
m0c

2 ≈
(

1 − r0

2r
+

r2
0

8r2

)
m0c

2, (24)

using eq. (23). Then,

dU

dt
≈

(
r0

2r2
− r2

0

4r3

)
ṙm0c

2 =
(
1 − r0

2r

) r0

2r2
ṙm0c

2

= −2

3
γ2r3

0

r4
m0c

3 , (25)

using eq. (20). Finally,

ṙ ≈ −4

3
γ2 r2

0

r2

c

1 − r0

2r

≈ −4

3

r2
0

r2
c

(
1 +

3r0

2r

)
, (26)

which is larger than the nonrelativistic result (6) by the factor 1 + 3r0/2r. Hence, the
fall time of the electron is decreased by the relativistic corrections.

We note that the relativistic corrections increased the rate of radiation, and decreased
the factor A in the relation dU/dt = Aṙ. Hence, both of these corrections lead to an
increase in the radial velocity ṙ, and to a decrease in the corresponding fall time of the
electron.

2.1 Where Does the Radiated Energy Come From?

Comments by Larmor on p. 512 of [11] suggest that he considered the energy radiated by
an accelerating charge to come from the kinetic energy of that charge. Similarly, in the last
paragraph of [12] one reads “The kinetic energy of molecules is the natural source of the
radiation....” And it can be that some people hold such views even today.

However, the present example illustrates what is called the “satellite paradox” [13, 14, 15]
that if an object is subject to “friction” when in orbit in a 1/r potential, then the kinetic
energy actually increases as a result. Since the radiation by a charge in a classical orbit
about a fixed positive charge is a kind of “friction,” and the Coulomb potential goes as 1/r,
the velocity and the kinetic energy of the charge increase with time. Hence, it does not seem
appropriate in this case to claim that the radiated energy came from the kinetic energy of
the moving charge.

We can say that the radiation lowers the total energy U of the charge −e, which for its
circular orbit about charge Ze, with potential φ = Ze/r is U = −Ze2/2r (since the kinetic
energy is −1/2 of the potential energy V = −Ze2/r). Hence, as U decreases due to the
emission of radiation, r becomes smaller and the potential energy V decreases. We might
then say that the radiated energy came from the potential energy.
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In Maxwell’s view, the potential energy V of charge −e together with nucleus of charge
Ze is the interaction energy of the electric field E = E−e + EZe of the system,

V = Uint =

∫
E−e · EZe

4π
dVol. (27)

So, our last view is that the radiated energy came from the interaction field energy.3

2.2 Effect of the Self Force/Radiation Reaction

In the preceding analysis we have ignored the self force 3e3 v̈/3c3 on the accelerated electron
(for v � c, as first deduced by Lorentz [21] in a model of an electron of finite radius, and
also found by Planck [22] who followed Poincaré [23] in supposing that there is reaction
force on the electron associated with its emission of electromagnetic radiation. It has been
argued [24] that if this self force/radiation reaction is included in the equations of motion
of the electron, it does not prevent a “runaway” solution (although the classical lifetime is
extended somewhat).
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