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1 Introduction

From Newton’s 3rd law of action and reaction, Fij = −Fji for any pair of masses i and j,
we infer that the total momentum of an isolated system must be zero. And, if Fij is along
the line of centers between i and j, we infer that the total angular momentum of a isolated
system is also zero.

A simple example of a violation of Newton’s 3rd law is sketched in the figure below.
Charge e1 moves with velocity v1 and charge e2 moves with velocity v2 that is not parallel
to v1. The sum of the Lorentz forces is,

F12 + F21 = e1e1

(v1

c
× B2(r1) +

v2

c
× B1(r2)

)
, (1)

in Gaussian units, with c as the speed of light in vacuum.

For low velocities where the Biot-Savart law is a good approximation, we have,

Bi(rj) =
eivi × r̂ij

c r2
ij

, (2)

where rij = rj − ri. Using this in eq. (1), we find,

F12 + F21 = e1e1

[
v1

c
×
(

v2 × r̂21

r2
21

)
+

v2

c
×
(

v1 × r̂12

c r2
12

)]
=

e1e2

c2r2
12

[(v2 · r̂12)v1 − (v1 · r̂12)v2], (3)

which is nonzero when v1 and v2 are not parallel.2

1This note expands on pp. 286-290 of http://kirkmcd.princeton.edu/examples/ph501/ph501lecture24.pdf
2Ampère was aware of results like this, but insisted that magnetism obey Newton’s 3rd law, and hence

rejected the Biot-Savart form, although he showed that the Biot-Savart force between closed, steady currents
was the same as that for the magnetic force law that he favored. Ampére’s insistence that magnetic forces
obey Newton’s 3rd law earned him the sobriquet by Maxwell, in Art. 528 of [1], of the “Newton of electricity”.
See, for example, historical appendix A.10 of [2].

Ampére’s authority held up acceptance of the “Lorentz” force law (stated obliquely by Maxwell in 1861 [3])
until efforts by Thomson [5] and Heaviside [7] in 1891 clarified that electromagnetic fields carry momentum
as well as energy (following the first clear statement of the “Lorentz” force law by Heaviside in 1885 [10].
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We wish to show that, although Newton’s 3rd law is violated in electromagnetism, the
total momentum of an isolated system is conserved once one considers electromagnetic mo-
mentum as well as mechanical momentum.

The concept of electromagnetic momentum was introduced by Maxwell in 1864, when he
identified this with Faraday’s “electronic state” in sec. 26 of [4], and clarified in sec. 57 that
the electromagnetic momentum of charge e in an external vector potential A is eA/c (in the
Coulomb gauge, as favored by Maxwell). For a collection of charges, we write,

P
(M)
EM =

∑
i�=j

eiA
(C)
j (rj)

c
, (4)

where superscript C is for Coulomb and M is for Maxwell. This formulation suggests that
electromagnetic momentum is a property of the charges, rather than of the electromagnetic
field.

As mentioned in footnote 2 above, in 1891 Thomson [5] and Heaviside [7] developed a
concept of electromagnetic momentum based on the electromagnetic fields E and B, relating
this to the Poynting vector S = (c/4π)E × B [11]. We write this formulation as,

P
(P)
EM =

∫
S

c2
dVol =

∫
E × B

4πc
dVol, (5)

but note that for a collection of (moving) point charges it includes (unphysical) infinite self
momenta. Hence, for point charges ei we consider only the interaction field momentum,

P
(P)
EM =

∑
i�=j

∫
Ei × Bj

4πc
dVol. (6)

That Maxwell’s electromagnetic momentum (4) is equivalent to the electromagnetic-field
momentum (6) of Thomson and Heaviside in quasistatic examples was first demonstrated
by Thomson [12]. See also [13].

In the rest of this note, we demonstrate that, for the example of two moving charges,

dPmech

dt
= F12 + F21 = −dPEM

dt
, (7)

to order v2/c2, which latter is often called the Darwin approximation [14].

2 The Darwin Approximation

The Lagrangian for a charge e of mass m (with no magnetic moment) that moves with
velocity v in an external electromagnetic field that is described by potentials V and A can
be written as (see, for example, sec. 65 of [15] and sec. 12.6 of [16]),),

L = −mc2
√

1 − v2/c2 − eV + e
v

c
· A. (8)
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Darwin [14] worked in the Coulomb gauge, and kept term only to order v2/c2. Then, the
scalar and vector potentials due to a charge e that has velocity v are (see sec. 65 of [15] or
sec. 12.6 of [16]),

V =
e

R
, A =

e[v + (v · R̂) R̂]

2cR
, (9)

where R̂ is directed from the charge to the observer, whose (present) distance from the
charge is R.

The electric and magnetic fields of charge e at distance R from an observer follow in the
Darwin approximation from the potentials (9),

E = −∇V − ∂A

∂ct
=

e

R2
R̂− e

2c2R

(
a + (a · R̂) R̂ − v2 − 3(v · R̂)2

R
R̂

)
, (10)

B = ∇ × A =
ev × R̂

cR2
, (11)

where a = dv/dt is the (present) acceleration of the charge.3 As the magnetic field (11) varies
as 1/R2, there is no radiation in the far zone in the Darwin approximation. However, the
Poynting vector S = (c/4π)E × B is nonzero, so there exists a flow of electromagnetic-field
energy around the moving charge.

The Lorentz force on a charge e1 with velocity v1 due to charge e2 with velocity v2 is, in
the Darwin approximation,

F12 = e1

(
E2 +

v1

c
× B2

)
=

e1e2

r3
12

[(
1 +

v2
2

2c2
− 3(r12 · v2)

2

2c2r2
12

)
r12 − r2

12 a2 + (a2 · r12) r12

2c2
+

v1 × (v2 × r12)

c2

]
. (12)

This force depends on the acceleration a2 of the source charge e2, but not on the acceleration
a1 of the charge e1, and has noncentral terms (not along r̂12).

4

The total force on the two charges is, noting that r21 = −r12,

F12 + F21 =
e1e2

2c2r3
12

[(
v2

2 − v2
1 +

3(r12 · v1)
2 − 3(r12 · v2)

2

r2
12

)
r12

−r2
12 (a1 + a2) − [(a1 + a2) · r12] r12 + 2(v1 × v2) × r12)

]
, (15)

using the vector identity a× (b× c) − b× (a× c) = (a× b) × c.

3Sec. 65 of [15] shows that in the Darwin approximation the Liénard-Wiechert potentials (Lorenz gauge)
reduce to V (L) = e/R + (e/2c2)∂2R/∂t2 and A(L) = ev/cR, from which eqs. (10)-(11) also follow.

4For comparison, the (central) force law of Weber [18] (1846) is,

FWeber
12 =

e1e2

r2
12

r̂12

[
1 +

1
c2

(
v2
1 + v2

2 − 2v1 · v2 − 3
2
[r̂12 · (v1 − v2)]2

)]
+

e1e2

c2r12
r̂12 [r̂12 · (a1 − a2)], (13)

while that of Clausius [19] (1876) is,

FClausius
12 =

e1e2

r2
12

r̂12

(
1 − v1 · v2

c2

)
− e1e2

c2r2
12

[r̂12 · (v1 − v2)](v1 − v2) +
e1e2

c2r12
(a1 − a2), (14)

both of which depend on the acceleration a1 of the observing charge e1.
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3 Use of P
(M)
EM

The electromagnetic momentum of the combined system of charges e1 and e2 is, according
to Maxwell and recalling eq. (9),

P
(M)
EM =

e1 A
(C)
2 (r1)

c
+

e2 A
(C)
1 (r2)

c
=

e1e2

2c2

[
v1 + v2

r12
+

[(v1 + v2) · r12] r12

r3
12

]
. (16)

To take the time derivative of eq. (16), we note that ṙi = vi, ṙ12 = v2 − v1, v̇i = ai and
ṙ12 = r̂12 · (v2 − v1) via r2

12 = r2
12. Then,

dP
(M)
EM

dt
=

e1e2

2c2

[
a1 + a2

r12

+
[(a1 + a2) · r12] r12 + [(v1 + v2) · (v2 − v1)] r12 + [(v1 + v2) · r12] (v2 − v1)

r3
12

−(v1 + v2)[r̂12 · (v2 − v1)]

r2
12

− 3[r̂12 · (v2 − v1)][(v1 + v2) · r̂12] r̂12

r3
12

]
.

=
e1e2

r3
12

[
r2
12a1 + a2 + [(a1 + a2) · r12] r12 + (v2

2 − v2
1) r12

2c2

+
r12 × (v1 × v2)

c2
− 3(r12 · v2)

2 − 3(r12 · v1)
2

2c2r2
12

r12

]
= −F12 − F21, (17)

which provides the first confirmation of eq. (7).

4 Use of P
(P)
EM

The demonstration of eq. (7) using the Poynting form (6) of electromagnetic momentum

is more intricate than that for P
(M)
EM , although we expect that P

(P)
EM = P

(M)
EM , as the present

example is “quasistatic” in the Darwin approximation.5

Our computation is to be accurate to order v2/c2, and since the magnetic field of eq. (11)
is of order v/c we need only consider the leading term in the electric field of eq. (10),

P
(P)
EM =

∫
E1 × B2 + E2 × B1

4πc
dVol =

e1e2

4πc2

∫
r × (v2 × r′) + r′ × (v1 × r)

r3r′3
dVol

=
e1e2

4πc2

∫
(r · r′) (v1 + v2) − (r′ · v1) r − (r · v2) r

′

r3r′3
dVol, (18)

where vector r(r′) is from charge 1(2) to the observation point.

5See, for example, [13].
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The first term of eq. (18) is independent of angle φ, and involves the factor r · r′ which
is related by,

r12 = r − r′, r2
12 = r2 + r′2 − 2r · r′, r · r′ =

r′2 + r2 − r2
12

2
. (19)

We adopt a spherical coordinate system (r, θ, φ) with origin at charge 1 and z-axis along
r12, for which the volume element is dVol = r2 dr sin θ dθ dφ. The distance r′ from the
observation point to charge 2 is related by r′2 = r2 − 2r r12 cos θ + r2

12, where r12 is constant
during the integration. A clever trick from [20] is to note that on a sphere of constant radius r
we have r′ dr′ = r r12 sin θ dθ, so we can write the volume element as dVol = r r′ dr dr′ dφ/r12.

The limits of the r′ integration depend on whether r is greater or less than r12,∫
dVol =

1

r12

∫ r12

0

r dr

∫ r12+r

r12−r

r′ dr′
∫ 2π

0

dφ +
1

r12

∫ ∞

r12

r dr

∫ r+r12

r−r12

r′ dr′
∫ 2π

0

dφ. (20)

Then, the first integral in eq. (18) is,

e1e2(v1 + v2)

4πc2
2π(v1 + v2)

∫ ∫
dr dr′

rr′

r12

r′2 + r2 − r2
12

2r3r′3
=

e1e2(v1 + v2)

4c2r12

∫
dr

r2

[
r′ − r2 − r2

12

r′

]r′max

r′min

=
e1e2

4c2r12

(∫ r12

0

dr

r2

[
r′ − r2 − r2

12

r′

]r12+r

r12−r

+

∫ ∞

r12

dr

r2

[
r′ − r2 − r2

12

r′

]r+r12

r−r12

)

=
e1e2(v1 + v2)

4c2r12

(∫ r12

0

dr

r2
(2r − 2r) +

∫ ∞

r12

dr

r2
(2r12 + 2r12)

)
=

e1e2(v1 + v2)

c2r12
. (21)

To evaluate the second integral in eq. (18) we take velocity v1 to be in the x-z plane.

Then,

r = r(sin θ cos φ, sin θ cos φ, cos θ), r′ = (r sin θ cosφ, r sin θ cos φ, r cos θ − r12), (22)

(r′ · v1) r = r(rv1x sin θ cosφ + rv1z cos θ − r12v1z)(sin θ cosφ, sin θ cos φ, cos θ). (23)

r′2 = r2 + r2
12 − 2rr12 cos θ, cos θ =

r2 + r2
12 − r′2

2rr12

. (24)

The integral of (r′ · v1) r over φ has (x, y, z) components
πr(rv1x sin2 θ, 0, 2rv1z cos2 θ − 2r12v1z cos θ), and its volume integral is,

− e1e2

4πc2

π

r12

∫ ∞

0

r dr

∫ r′max

r′min

r′ dr′
r(rv1x(1 − cos2 θ), 0, 2rv1z cos2 θ − 2r12v1z cos θ)

r3r′3

5



= − e1e2

4c2r12

∫ r12

0

dr

∫ r12−r

r12+r

dr′
[
v1x

r′2
− v1x(r

2 + r2
12 − r′2)2

4r2r′2r2
12

, 0,

v1z(r
2 + r2

12 − r′2)2

2r2r′2r2
12

− v1z(r
2 + r2

12 − r′2)
r2r′2

]

− e1e2

4c2r12

∫ ∞

r12

dr

∫ r−r12

r+r12

dr′
[
v1x

r′2
− v1x(r

2 + r2
12 − r′2)2

4r2r′2r2
12

, 0,

v1z(r
2 + r2

12 − r′2)2

2r2r′2r2
12

− v1z(r
2 + r2

12 − r′2)
r2r′2

]
. (25)

The third integral in eq. (18) is the same as the second but with index 1 → 2.
The remaining integrals are “elementary”, but very tedious to evaluate. So, we accept

without detailed confirmation that the result is P
(P)
EM = P

(M)
EM .6,7
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