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1 Problem

Show that electromagnetic field momentum can be written for static fields in four equivalent
forms,

PEM =

∫
�A(C)

c
dVol =

∫
E × B

4πc
dVol =

∫
V (C)J

c2
dVol =

∫
J · E
c2

r dVol, (1)

in Gaussian units, where � is the (total) electric charge density, A(C) =
∫

J dVol/cr is the
magnetic vector potential in the Coulomb gauge,1 J is the (total) electric current density, c
is the speed of light in vacuum, E =

∫
� r̂ dVol/r2 is the electric field, B =

∫
J × r̂ dVol/cr2

is the magnetic field, and V (C) =
∫
� dVol/r is the electric scalar potential in the Coulomb

gauge.2

The first form of eq. (1) is due to Maxwell (sec. 57 of [3]), who regarded the vector
potential A(C) at the location of an electric charge q as providing a measure, qA(C)/c, of
electromagnetic momentum and an interpretation of Faraday’s electrotonic state (secs. 60-61
of [4]). That Faraday associated with some kind of momentum with this state is hinted in
sec. 1077 of [5]. The second form is due to J.J. Thomson, who speculated as to electro-
magnetic mass/momentum (1881) [6], and continued with a concept of momentum stored in
the electromagnetic field (1891) [7, 8], with the field-momentum density being the Poynting
vector [9] divided by c2, pEM = S/c2, where c is the speed of light in vacuum.3 The third
form was introduced by Furry [11],4 and the fourth form is due to Aharonov et al. [15].

Of these four forms, the second depends only on the electromagnetic fields, and so is
the most “Maxwwellian”. As such, we consider the volume density of electromagnetic field
momentum to be,

pEM =
E ×B

4πc
, (2)

1The Coulomb-gauge condition ∇ · A(C) = 0 also holds for static fields in the Lorenz gauge [1], whose
gauge condition is ∇ · A(L) = −∂V (L)/∂ct.

2For discussion of alternative forms of electromagnetic energy, momentum and angular momentum for
fields with arbitrary time dependence, see, for example [2].

3This relation was also advocated by Poincaré [10].
4The density V (C)J/c2 is the static limit of an expression for the field-momentum density proposed

by Livens (1926), bottom of p. 263 of [12]. This density is also the static limit of S/c2 for several of the
alternative forms of the Poynting vector proposed by Slepian (1942) [13].

For a review of alternatives to the Poynting vector, see [14].
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and not �A(C)/c, V (C)J/c2 or (J · E)r/c2.5,6

Also discuss which of the four forms of eq. (1) lead to valid expressions for electromagnetic-
field angular momentum.7

2 Solution

2.1 Minkowski’s Derivation of the Poynting-Thomson

We follow an argument of Minkowski [26]8 as to field momentum by considering the total
force density on electromagnetic media (of unit permittivity and unit permeability),

dpmech

dt
= f = �E +

J

c
× B, (3)

where pmech is the density of mechanical momentum in the media.9 Using the Maxwell
equations ∇ · E = 4π� and ∇× B = 4πJ/c + (1/c)∂E/∂t for the macroscopic fields,10

dpmech

dt
=

E(∇ · E)

4π
− B × 1

4π

(
∇ × B + B × 1

c

∂E

∂t

)

= − ∂

∂t

(
E × B

4πc

)
+

1

4π
[E(∇ · E) + B(∇ · B) − E × (∇× E) − B × (∇ × B)]

≡ −∂pEM

∂t
+ ∇ · TEM, (4)

where,

pEM =
E × B

4πc
=

S

c2
, (5)

is the density of momentum associated with the electromagnetic field,

S =
c

4π
E × B, (6)

5The first and third forms of eq. (1) involve the electromagnetic potentials, which are not gauge invariant.
Note also that even the Coulomb-gauge potentials are not unique for a given set of charges and currents,
as use of a gauge function χ which obeys ∇2χ = 0 everywhere leads to alternative potentials that satisfy
∇ · A = 0. See, for example, sec. IIIC of [16]. Some alternative potentials for an infinite, static solenoid
magnet are displayed in sec. 2.1 of [17] and in [18].

6We avoid here the famous Abraham-Minkowski debate as to the form of electromagnetic field momentum
in media. Some comments by the author on this topic are at [19, 20].

7Electromagnetic field angular momentum was first computed for a special case by Darboux [21] and by
Poincaré [22], without their realizing the physical significance of the computations [23]. The first explicit
mention of electromagnetic field momentum appears to be by J.J. Thomson in [24]. See also [25].

8Heaviside gave the form pEM = D × B/4πc in 1891, p. 108 of [27], and a derivation (1902) essentially
that of Minkowski on pp. 146-147 of [28].

9Subtle difficulties with the Lorentz force density (3) for permeable media are considered in [29].
10Minkowski [26] actually used �free and Jfree rather than the total charge and current densities � and J,

as well as the auxiliary fields D and H.
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is the Poynting vector, and,

TEM,ij =
1

4π

[
EiEj +BiBj − δij

E2 +B2

2

]
, (7)

is the symmetric Maxwell stress 3-tensor associated with the electromagnetic fields.11 To
arrive at eq. (7) we note that,

[E(∇ · E) − E × (∇× E)]i = Ei
∂Ej

∂xj
−Ej

∂Ej

∂xi
+ Ej

∂Ei

∂xj

=
∂

∂xj

[
EiEj − δij

E · E
2

]
. (8)

The total electromagnetic field momentum (in the form associated with Poynting, Thom-
son and Poincaré) follows from eq. (5) as,

P
(P)
EM =

∫
pEM dVol =

∫
E ×B

4πc
dVol. (9)

2.2 Equivalence of the Faraday-Maxwell and Poynting-Thomson

This section is based on an argument by Vladimir Hnizdo. The result that PEMP
= PEMM

was first deduced for a special case by Thomson [24], who gave the first definition of elec-
tromagnetic field angular momentum, LEMP

, in the same paper (which is also the origin of
the Feynman cylinder paradox [31]). The results of this section may have first been given,
via a more compact derivation, by Trammel [32], and independently by Calkin [33] for linear
momentum only.12 See also [34].

Static electromagnetic fields E and B can be characterized by the time-independent
Maxwell equations,

∇ · E = 4π�, ∇× E = 0, (10)

where � is the electric charge density, and,

∇ · B = 0, ∇ × B =
4π

c
J, (11)

which implies that the time-independent current density J satisfies ∇ · J = 0.
For present purposes we can avoid use of the current density J and instead consider the

vector potential A(C), which has zero divergence in the Coulomb gauge (and also in the
Lorentz gauge for static problems),

B = ∇× A(C), ∇ · A(C) = 0. (12)

To confirm that the electromagnetic momentum,

P
(M)
EM =

∫
�A(C)

c
dVol, (13)

11For an extension of this argument if magnetic monopoles existed, see [30].
12The results of this section are also discussed for the case of axial symmetry in [35], without awareness

of the prior work of [24, 32] or that axial symmetry is not required.
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is equal to,

P
(P)
EM =

∫
E× B

4πc
dVol, (14)

and that the electromagnetic angular momentum,

L
(M)
EM =

∫
r × PEMM

dVol =

∫
r × eA(C)

c
dVol, (15)

is equal to,

L
(P)
EM =

∫
r × (E × B)

4πc
dVol, (16)

we show that E×B is equal to �A(C) plus the divergence of a vector field, and that r×(E×B)
is equal to r × �A(C) plus the divergence of another vector field. Then, we transform the
volume integrals of the auxiliary vector field into surface integral using Gauss’ law, and if the
auxiliary field fall off sufficiently quickly with distance the equivalence of the various forms
of electromagnetic momenta is established.13

In addition to well-known vector-calculus relations, it is useful to define the operation,14

∇ · Ab ≡ (∇ · A)b + (A · ∇)b = (∇ · bxA) x̂ + (∇ · byA) ŷ + (∇ · bzA) ẑ. (17)

Then, for quasistatic E, i.e., ∇×E ≈ 0, and any vector potential A such that B = ∇×A,

E × B = E × (∇ × A) = ∇(A ·E) − (A · ∇)E − (E ·∇)A −A × (∇× E)

= (∇ · E)A + ∇(A · E) − [(∇ · E)A + (A ·∇)E] − (E · ∇)A. (18)

For a Coulomb-gauge potential, we can subtract a term (∇ · A(C))E = 0 to obtain,

E × B = 4π�A(C) + ∇(A(C) · E) − ∇ · EA(C) − [(∇ · A(C))E + (E · ∇)A(C)]

= 4π�A(C) + ∇(A(C) · E) − ∇ · EA(C) − ∇ · A(C)E, (19)

so that, using various versions of Gauss’ theorem,

P
(P)
EM =

∫
E × B

4πc
dVol

=

∫
�A(C)

c
dVol +

∮
(A(C) · E) dArea−

∮
E(A(C) · dArea) −

∮
A(C)(E · dArea)

=

∫
�A(C)

c
dVol = P

(M)
EM . (20)

The surface integrals in eq. (20) are negligible when the charges and currents that create
the electric field E and the vector potential A(C) lie within a finite volume that is small
compared to the volume of integration, and when radiation can be neglected.

13The case of a charged particle together with an infinite magnetic solenoid is delicate in this regard, as
discussed in [36, 17]. Here, P(P)

EM = P(M)
EM , but L(M)

EM rather than L(P)
EM yields reasonable physical results.

14A variant of the argument without use of operation (17) is given in Appendix A of [17].
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We now evaluate eq. (16) by taking the cross product of eq. (18) with r and further
transforming the various terms. Thus,

r × ∇(A(C) · E) = −∇ × (A(C) · E) r + ∇(A(C) · E)∇× r = −∇× (A(C) ·E) r. (21)

Now,

[r× ∇ · EA(C)]x = y∇ · (A(C)
z E) − z∇ · (A(C)

y E)

= ∇ · (yA(C)
z E) − A(C)

z E · ∇y − ∇ · (zA(C)
y E) + A(C)

y E ·∇z

= A(C)
y Ez − A(C)

z Ey + ∇ · (yA(C)
z E) − ∇ · (zA(C)

y E)

= [A(C) × E]x + ∇ · ([r ×A(C)]xE), (22)

so,
[r× ∇ · A(C)E]x = [E× A(C)]x + ∇ · ([r× E]xA

(C)), (23)

and,

[r× ∇ · EA(C)]x + [r × ∇ ·A(C)E]x = ∇ · ([r × A(C)]xE) + ∇ · ([r× E]xA
(C)). (24)

Hence,

L
(P)
EM =

∫
r × (E × B)

4πc
dVol =

∫
r × �A(C)

c
dVol

−
∮

(A(C) · E) dArea × r −
∮

r × E(A(C) · dArea) −
∮

r× A(C)(E · dArea)

=

∫
r × �A(C)

c
dVol = L

(M)
EM . (25)

The arguments of the surface integrals in eq. (25) vanish less quickly with distance than those

in eq. (20), so in some cases15 with sources of infinite extent, we may find that P
(P)
EM = P

(M)
EM ,

but L
(P)
EM �= L

(M)
EM .

The equivalence of P
(P)
EM and P

(M)
EM extends to nonstatic systems in which the currents do

not satisfy ∇ · J = 0, so long as the velocities of all charges are low and radiation can be
neglected [37, 38].

2.2.1 Alternative Coulomb-Gauge Potentials

It was argued above that the electromagnetic field momentum of a static system is correctly
computed via both forms P

(P)
EM and P

()
EM, and that the electromagnetic field angular mo-

mentum can by computed via both forms L
(P)
EM and L

(M)
EM , using any Coulomb-gauge vector

potential A(C), so long as it falls off sufficiently quickly at large distances.
However, it seems unlikely that if a Coulomb-gauge vector potential different from A(C)(r) =∫

J(r′) dVol′/c |r − r′|, were used in the Maxwell forms that the result would be the same.
This would be consistent with the argument in sec. 2.2 above if the alternative vector po-
tential did not go to zero at large distances.

15See, for example, [17, 36].
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We recall (see, for example, sec. IIIC of [16]) that an alternative Coulomb-gauge vector
potential would have the form A(C) + ∇χ where the restricted gauge function χ obeys
Laplace’s equation ∇2χ = 0 everywhere. Now, the “trivial” case of χ = 0 has ∇χ = 0
everywhere, which includes large distances. Then, by the uniqueness theorem for solutions to
Laplace’s equation with Neumann boundary conditions (see, for example sec. 1.9 of [39]), this
is the only solution to Laplace’s equation for which ∇χ = 0 everywhere at large distances.
Hence, all possible alternative, Coulomb-gauge vector potentials do not go to zero everywhere
at large distances, and so none of these would lead to a correct computation of the field
momentum (or angular momentum) using the Maxwell forms.16,17

2.3 Equivalence of the Faraday-Maxwell and Furry Forms

In (quasi)static situations (where ∇ · J = 0) the potentials can be related to the charge and
current densities by,

∇2V (C) = 4π�, ∇2A(C) =
4πJ

c
. (26)

Hence, we can start from the Faraday-Maxwell form of the electromagnetic momentum and
write,

P
(M)
EM =

∫
�A(C)

c
dVol =

∫
A(C)∇2V (C)

4πc
dVol

=

∫
V (C)∇2A(C)

4πc
dVol +

∮
[A(C)(dArea ·∇)V (C) − V (C)(dArea · ∇)A(C)]

=

∫
V (C)J

c2
dVol = P

(F)
EM, (27)

using Green’s identity that for any two well-behaved scalar fields φ and ψ,

∫
V

(φ∇2ψ − ψ∇2φ) dVol =

∮
S

(φ∇ψ − ψ∇φ) · dArea, (28)

where the surface element dArea is directly away from the closed surface S that bounds
volume V. The integral in eq. (27) over the surface at infinity vanishes for bounded charge
and current densities, whose corresponding potentials fall off as 1/r, and whose gradients
fall off as 1/r2, at large r.

Another derivation of P
(F)
EM notes that since the magnetic field B is always of order

1/c (or higher), we can calculate the electromagnetic momentum P
(M)
EM to order 1/c2 using

approximations to the electric field at zeroth order, i.e., E ≈ −∇V (C) (the Coulomb electric

16Thanks to D. Griffiths for this argument.
17For example, the gauge functions χ = ±Bxy/2 can be used to transform the axially symmetric vector

potential Br sin θ φ̂/2 within a sphere of uniform magnetization parallel to ẑ to the “Landau” forms By x̂
and −Bx ŷ within the sphere, the symmetric vector potential goes to zero at infinity while the “Landau”
forms do not.
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field), and to the magnetic field at order 1/c, i.e., ∇ × B ≈ 4πJ/c with the neglect of the
displacement current. Then,

P
(P)
EM =

∫
E × B

4πc
dVol ≈ −

∫ ∇V (C) × B

4πc
dVol

=

∫
V (C)∇ × B

4πc
dVol −

∫ ∇ × V (C)B

4πc
dVol

=

∫
V (C)J

c2
dVol −

∮
dArea × V (C)B

4πc
=

∫
V (C)J

c2
dVol = P

(F)
EM, (29)

whenever the charges and currents are contained within a finite volume.

However, the Furry density V (C)J/c2 does not lead to a satisfactory computation of field
angular momentum,

L
(F)
EM =

∫
r × V (C)J

c2
dVol �= L

(P)
EM. (30)

To see this, we note that for stationary systems where E = −∇V (C), i.e., Ei = −∂iV
(C),

and ∇ ×B = 4πJ/c,

[r× (E × B)]i = εijkrjεklm(−∂lV
(C))Bm = −εijkεklmrj[∂l(V

(C)Bm) − V (C)∂lBm]

= −εijkεklm[∂l(rjV
(C)Bm) − V (C)Bm∂lrj] + εijkV

(C)rj(∇ × B)k

→ εijkεklmV
(C)Bmδjl +

4π

c
εijkV

(C)rjJk = −εijkεmjkV
(C)Bm +

4πV (C)

c
(r × J)i

= −δmj
ij V

(C)Bm +
4π

c
(r × V (C)J)i = −2δimV

(C)Bm +
4π

c
(r × V J)i

= −2V (C)Bi +
4π

c
(r× V (C)J)i, (31)

where in the third line we drop the full-differential term ∂l(rjV
(C)Bm), anticipating that∫

∂l(rjV
(C)Bm) dVol → ∮

rjV
(C)Bm dArea → 0 for fields that fall off sufficiently quickly at

large distances. Then, for bounded, stationary systems, where LP = LM,

L
(P)
EM =

∫
r × E × B

4πc
dVol = −

∫
V (C)B

2πc
dVol +

∫
r × V (C)J

c2
dVol = L

(F)
EM −

∫
V (C)B

2πc
dVol.(32)

That is, the Poynting and Furry forms of field angular momentum are not equal, in general.18

2.4 Equivalence of the Aharonov and Furry Forms

For a stationary system, E = −∇V (C) and ∇ · J = ∂jJj = 0, so,

J ·E = −Jj ∂
jV (C) = −∂j(JjV

(C)) + V (C)∂j Jj = −∂j(JjV
(C)), (33)

J · E ri = −riJj ∂
jV (C) = −∂j(riJjV

(C)) + V (C)∂j(riJj)

= −∂j(riJjV
(C)) + V (C)Jj ∂

jri + V (C)ri ∂
j Jj

= −∂j(riJjV
(C)) + V (C)Ji, (34)

18For stationary fields that fall off sufficiently quickly at large distance,
∫

V (C)B dVol =
∫

E×A(C) dVol.
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and,

P
(A)
EM,i =

∫
J ·E
c2

ri dVol =

∫
V (C)Ji

c2
dVol − 1

c2

∫
∂j(riJjV

(C)) dVol. (35)

The latter volume integral becomes a surface integral at infinity, so is zero for any bounded
current density. Then,

P
(A)
EM =

∫
J · E
c2

r dVol =

∫
V (C)J

c2
dVol = P

(F)
EM. (36)

We could also note that for stationary systems, ∇ × E = 0, J = (c/4π)∇ × B,
Jj = (c/4π)εjkl∂kBl, so,

J · E ri =
c

4π
riEj εjkl∂kBl =

c

4π
∂k(ri εjklEjBl) − c

4π
εjklEjBl∂kri − c

4π
εjklriBl∂kEj

= − c

4π
∂k(ri εkjlEjBl) − c

4π
εjklEjBlδik +

c

4π
riBl εlkj∂kEj

= − c

4π
∂k[ri(E ×B)k] +

c

4π
εijlEjBl +

c

4π
riBl(∇ × E)l

= − c

4π
∂k[ri(E ×B)k] +

c

4π
(E × B)i, (37)

and,

P
(A)
EM,i =

∫
J · E
c2

ri dVol = − 1

4πc

∫
∂k[ri(E × B)k] dVol +

∫
(E × B)i

4πc
dVol. (38)

The volume integral involving ∂k transforms to a surface integral at infinity, which vanishes
for fields that fall off suitably quickly, and we have that,

P
(A)
EM =

∫
J ·E
c2

r dVol =

∫
E × B

4πc
dVol = P

(P)
EM. (39)

However, the moment r × J·E
c2

r of the Aharonov density J·E
c2

r is identically zero, so the
field angular momentum cannot be computed via this form,

L
(P)
EM �= L

(A)
EM =

∫
r × J · E

c2
r dVol = 0. (40)

A Appendix: Rotating Charge Distributions

In quasistatic examples in which all electric charges lie on uniformly charged cylindrical shells
that rotate at constant angular velocity ω about a common axis, the electric and magnetic
fields have the forms E = E(r⊥) r̂⊥ and B = B(r⊥) ω̂, where r⊥ is perpendicular to ω. It
is tempting to suppose that the lines of the electric and magnetic fields also rotate with
angular velocity ω.
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Following Einstein [40], we can identify an effective mass density,

ρeff =
E2 +B2

8πc2
, (41)

with the density (E2 +B2)/8π of energy in the electromagnetic fields. Choosing the origin to
be on the axis of rotation, the velocity of rotation of a point at location r is v = ω× r. This
suggests that we identify densities of momentum and angular momentum in the supposedly
rotating electromagnetic fields as,

pEM,eff
?
= ρeffv =

E2 +B2

8πc2
ω × r, and lEM,eff

?
= r × ρeffv = r × E2 +B2

8πc2
(ω × r). (42)

However, in examples where the field lines extend to large distances, the velocity of the
rotating field lines can exceed the speed of light, such that it is implausible to associate them
with physical momenta and angular momenta.

Indeed, in such examples, the field angular momentum is infinite when computed via the
above hypothesis. And in examples where the field lines lie only within bounded volumes, the
field angular momentum so computed does not agree with that calculated via the standard
form (16) [41].

Of course, Faraday long ago concluded that the magnetic field lines do not rotate in such
examples.19

The argument of this Appendix is that it’s also best to consider that the electric field
lines associated with rotating cylinders of charge do not rotate along with the charge.

B Appendix: Lagrangian Approach (May 2019)

The preceding discussion could be characterized as “bottom up”, starting from Maxwell’s
equations and later arriving at the notion of electromagnetic-field momentum. In contrast,
a “top down” Lagrangian/Hamiltonian approach, based on the principle of least action,
contains within it the notion of conserved “momenta”, as emphasized by Noether [45].

Here, we are concerned with the interaction of charged particles with electromagnetic
fields, so the Lagrangian should include that of free particles, free electromagnetic fields,
and the interaction between them. This has been considered briefly, for example, in chap. 11
of [46], in somewhat more detail in, for example, [47], and at great length in, for example,
[48].

For charged particles (P) interacting with electromagnetic fields (F), the Lagrangian has
the general form,

L = LP + LF + LP−F, (43)

where LP and LF are the Lagrangians for particles and fields, respectively, neglecting their
interactions, and LP−F is that of their interactions.

19See secs. 218 and 220 of [42], and also sec. 3090 of [43]. For a review, see sec. 2 of [44].
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Maxwell discussed the “kinetic” and “potential” energies T and U of the electromagnetic
fields in Arts. 630-635 of [49], with the (understated) implication that, in Gaussian units,

LF = T − U =

∫
B2 − E2

8π
dVol, (44)

but he did not consider the interaction Lagrangian LP−F. As noted on pp. 376-380 of [46],
the canonical momentum associated with the Lagrangian (44) is,

PF,free =

∫
E × B

4πc
dVol, (45)

for the idealized case of “free” fields not coupled to any charges.
In 1892, both Helmholtz [50] and Lorentz [51] considered Lagrangians that included in-

teractions between electric charges and electromagnetic fields, but an interaction Lagrangian
LP−F was not crisply identified.20

The interaction Lagrangian,

LP−F = e
v

c
· A− eV, (46)

for an electric charge e with mass m and velocity v in electromagnetic fields E and B that
can be deduced from the potentials V and A, was first displayed by Schwarzschild(1903)
[52]. While he did not do so, if one combines this with the (nonrelativistic) free-particle
Lagrangian LP = mv2/2, then the canonical momentum is (p. 357 of [46], p. 921 of [47]),

p =
∂L
∂v

= mv +
eA

c
. (47)

The electromagnetic part of this momentum is, for an electric charge density ρ,

PP−F =

∫
ρA

c
dVol, (48)

which is the form due to Faraday and Maxwell, if the vector potential is in the Coulomb
gauge (as tacitly assumed by Schwarzschild).

If we now consider the full Lagrangian (31) for electric charges interacting with electro-
magnetic fields, the canonical electromagnetic momentum will be the sum of PP−F and PF.
We might näıvely suppose that this is the sum of eqs. (45) and (48), but this is not so. The
total field momentum is just that given by eq. (45), although now the fields are not “free”.

One way to see this is to recall a key step in the argument on p. 380 of [46], that for
free fields,

∫
A(∇ · E) dVol/4πc = 0, so that this quantity can be added to the (free) field

momentum without affecting it, leading (after some “algebra”) to the form (45). When
charges are present, this term is

∫
ρA dVol/c = PP−F, and nonzero in general. But then,

when we add it to the free-field momentum to get the total electromagnetic momentum, the
“algebra” (not displayed on p. 380 of [46]) again leads to eq. (45), which is now PP−F + PF.

20Of great historical importance is that Lorentz deduced the equation of motion of a charged particle (the
Lorentz force law) from his Lagrangian.
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This seems quite satisfactory, but we should recall the result of sec. 2.2 above, that for
quasistatic examples (where radiation is ignored), the total field momentum is also given by
eq. (48). Of course, if we ignore radiation, we are ignoring the possible contribution of free
fields to the field momentum, so this momentum is entirely the “interaction” momentum
PP−F of eq. (48).

C Appendix: If Magnetic Charges Existed (June 2020)

In this Appendix, we consider various possible forms of the electromagnetic field momentum
PEM if magnetic charges and currents existed in addition to electric charges and currents.
As above, we restrict our attention to static examples.

The total electromagnetic fields can now be written as,

E = Ee + Em, B = Be + Bm, (49)

where Ee and Be are due only to electric charges and currents, while Em and Bm are due
only to emagnetic charges and currents.

Maxwell’s equations could then be written as (see, for example Appendix D.4 of [30]),

∇ ·Ee = 4πρe, ∇ · Be = 0, ∇ × Ee = −1

c

∂Be

∂t
, ∇ × Be =

1

c

∂Ee

∂t
+

4π

c
Je, (50)

∇ ·Em = 0, ∇ · Bm = 4πρm, ∇× Em = −1

c

∂Bm

∂t
− 4π

c
Jm, ∇ × Bm =

1

c

∂Em

∂t
,(51)

Furthermore, the electromagnetic fields can be related to potentials according to,21

Ee = −∇Ve − 1

c

∂Ae

∂t
, Em = −∇ × Am, Be = ∇ ×Ae, Bm = −∇Vm − 1

c

∂Am

∂t
. (52)

The various fields associated with electric charges and currents are related to those associated
with magnetic charges and currents by duality relations (see, for example, Appendix D.5 of
[30]),

�e → �m, �m → −�e, Je → Jm, Jm → −Je, E → B, B → −E. (53)

Ve → Vm, Vm → −Ve, Ae → Am, Am → −Ae. (54)

The Poynting form of the field momentum remains,

P
(P)
EM =

∫
E × B

4πc
dVol. (55)

Using eq. (49), we can expand this as,

P
(P)
EM =

∫
Ee ×Be

4πc
dVol +

∫
Em × Bm

4πc
dVol +

∫
Ee ×Bm

4πc
dVol +

∫
Em × Be

4πc
dVol

≡ P(P)
e,e + P(P)

m,m + P(P)
e,m + P(P)

m,e. (56)

21The potentials Vm and Am were prehaps first discussed in [53]. Potentials Vm and Am were discussed
for static fields in eq. (24) of [54], supposing that Ee = ∇ × Am.
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C.1 P
(P)
e,e =

∫
Ee × Be dVol/4πc

The result (1) above, which assumed only electric charges and currents, can be rewritten as,

P(P)
e,e = P(M)

e,e = P(F)
e,e = P(A)

e,e , (57)

where,

P(M)
e,e =

∫
�eA

(C)
e

c
dVol, P(F)

e,e =

∫
V

(C)
e Je

c2
dVol, P(A)

e,e =

∫
Je · Ee

c2
r dVol. (58)

C.2 P
(P)
m,m =

∫
Em × Bm dVol/4πc

Applying the duality relations (53)-(54) to eqs. (57)-(58), we have that,

P(P)
m,m = P(M)

m,m = P(F)
m,m = P(A)

m,m, (59)

where,

P(M)
m,m =

∫
�mA

(C)
m

c
dVol, P(F)

m,m =

∫
V

(C)
m Jm

c2
dVol, P(A)

m,m =

∫
Jm · Em

c2
r dVol. (60)

C.3 P
(P)
e,m =

∫
Ee ×Bm dVol/4πc

This case is self dual in that e → m and m → e under duality transformations.
For P

(P)
e,m we note that in static examples, the electric field Ee is only due to the (static)

electric charge density �e. Likewise, the (static) magnetic Bm is only due to the (static)

magnetic charge density �m. Then, the field momentum P
(P)
e,m is the sum of the field momenta

of all pairs of electric and magnetic charges (at rest) in the system. This momentum was
considered in 1904 by J.J. Thomson [24], who found it to be zero.

Suppose the electric charge qe is at the origin, and the
magnetic charge qm is at distance R away along the pos-
itive z-axis, as shown in the figure above. Then, the
electromagnetic momentum density Ee × Bm/4πc circu-
lates around the z-axis and is independent of azimuth,
such that the total electromagnetic momentum PEM is
zero,

PEM(qe, qm) =

∫
pEM(qe, qm) dVol = 0. (61)

Hence, the total electromagnetic-field momentum P
(P)
e,m

for any configuration of static magnetic poles and electric
charges is zero, being the sum of the momenta of all pairs
of such particles,22

P(P)
e,m = 0. (62)
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C.4 P
(P)
m,e =

∫
Em × Be dVol/4πc

This case is also self dual in that m→ e and e→ m under duality transformations.
Recalling eqs. (50)-(52), for static fields ∇ · Em = 0, ∇ × Em = −4πJm/c, and Be =

∇ × Ae, so we can write,

P(P)
m,e =

∫
Em ×Be

4πc
dVol

=

∫
Em × (∇ × A

(C)
e ) + A

(C)
e × (∇ × Em)

4πc
dVol +

∫
A

(C)
e × Jm

c2
dVol

=

∫
A

(C)
e × Jm

c2
dVol +

∫ ∇(Em · A(C)
e ) − (Em · ∇)A

(C)
e − (A

(C)
e · ∇)Em

4πc
dVol

=

∫
A

(C)
e × Jm

c2
dVol +

∫
Em · A(C)

e

4πc
dArea =

∫
A

(C)
e × Jm

c2
dVol (63)

assuming that all fields fall off suffciently quickly at large distances such that the surface
integrals are negligible, using ∇ · Em = 0 to see that,

∫
(Em · ∇)A(C)

e dVol =

∫
A(C)

e (Em · dArea) −
∫

A(C)
e (∇ · Em) dVol = 0, (64)

and similarly
∫

(A
(C)
e ·∇)Em dVol = 0, noting that in the Coulomb gauge, vector potentials

obey ∇ · A(C) = 0.23

For what it’s worth, with ∇ · Be = 0, and ∇ × Be = 4πJe/c for static fields, and
Em = −∇× Am, we could also write,

P(P)
m,e = −

∫
Be ×Em

4πc
dVol

=

∫
Be × (∇ ×A

(C)
m ) + A

(C)
m × (∇ × Be)

4πc
dVol −

∫
A

(C)
m × Je

c2
dVol

=

∫
Je ×A

(C)
m

c2
dVol +

∫ ∇(Be · A(C)
m ) − (Be · ∇)A

(C)
m − (A

(C)
m ·∇)Be

4πc
dVol

=

∫
Je ×A

(C)
m

c2
dVol +

∫
Be · A(C)

m

4πc
dArea =

∫
Je × A

(C)
m

c2
dVol (65)
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