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1 Problem

What is the angular frequency of small oscillations of a simple pendulum whose support point
P has constant horizontal acceleration aP while in a uniform gravitation field of strength g?

2 Solution

For zero acceleration aP , the angular frequency of small oscillations of a simple pendulum of
length l is ω =

√
g/l, independent of its mass m.

It is well known that this problem is quickly solved using an accelerated (but not rotating)
frame whose origin is the support point P . After reviewing this approach, we confirm the
solution via Lagrange’s method, and then consider the use of an accelerated and rotating
frame.

2.1 Accelerated but Not Rotating Frame

We recall that in an accelerated, but not rotating frame, an object of mass m experiences
the forces on it in an inertial frame plus a “fictitious”/coordinate force −ma where a is
the acceleration of the coordinate axes of the frame. See, for example, eq. (39.7) of [1] or
pp. 168-172 of [2].

A force diagram is shown below for a simple pendulum of length l and mass m at the
surface of the Earth, whose local acceleration due to gravity is g. The support point P has
constant horizontal acceleration aP (and velocity vP = aP t) to the right.

The total force on the bob of the pendulum can be written as mgeff in terms of an effective
gravitational acceleration geff where

geff =
√

g2 + a2
P (1)
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and geff makes angle θ0 to the vertical related by

cos θ0 =
g

geff

, sin θ0 =
aP

geff

. (2)

Then, the angular frequency of small oscillations of the pendulum about angle θ0 is

ω =

√
geff

l
. (3)

2.2 Lagrange’s Method

To confirm the result (3) via Lagrange’s method, we consider the single coordinate θ of the
pendulum to the vertical.

The velocity of the bob (in the inertial lab frame) is

v = vP + lθ̇ θ̂, (4)

so the kinetic energy of the system is

T =
mv2

2
=

m

2

(
v2

P + l2θ̇
2
+ 2vP · lθ̇ θ̂

)
=

mv2

2
=

m

2

(
v2

P + l2θ̇
2 − 2vP lθ̇ cos θ

)
, (5)

and the potential energy (relative to the support point) is

V = −mgl cos θ. (6)

With L = T − V , Lagrange’s equation of motion for the system is

d

dt

∂L

∂θ̇
=

d

dt

(
ml2θ̇ − mvP l cos θ

)
= ml2θ̈ −maP l cos θ + mvP lθ̇ sin θ

=
∂L

∂θ
= mvP lθ̇ sin θ −mgl sin θ, (7)

θ̈ =
aP cos θ

l
− g sin θ

l
. (8)

We intuit that there exists an equilibrium angle θ0, and introduce the variable φ = θ−θ0.
Then for small φ,

cos θ = cos(φ + θ0) ≈ cos θ0 − φ sin θ0, sin θ = sin(φ + θ0) ≈ φ cos θ0 + sin θ0, (9)

and the equation of motion (8) can be written as

φ̈ ≈ aP cos θ0

l
− aP φ sin θ0

l
− gφ cos θ0

l
− g sin θ0

l
. (10)

The constant terms in eq. (10) sum to zero if we take

tan θ0 =
aP

g
, cos θ0 =

g√
g2 + a2

P

=
g

geff
sin θ0 =

aP√
g2 + a2

P

=
aP

geff
, (11)

with geff =
√

g2 + a2
P as in eqs. (1)-(2). Then, the equation of motion (10) simplifies to

φ̈ ≈ −φ

l

a2
P + g2

geff
= −geff

l
φ, (12)

which corresponds to simple harmonic motion with angular frequency ω ≈ √
geff/l, as found

in eq. (3).
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2.3 Accelerated and Rotating Frames

In principle, we could also analyze this problem in a frame whose origin has arbitrary ac-
celeration a, and whose axes have arbitrary angular velocity Ω with respect to the iner-
tial lab frame. This would would require consideration of the additional “fictitious” forces
mr× Ω̇ + 2mv × Ω + mΩ× (r× Ω) act on the center of bob of the pendulum (of mass m,
at position r = l, with velocity v, in this frame.

A particular case is that a = aP and Ω = θ̇ ẑ where the z-axis is into the page of the
figures above. In this frame the bob of the pendulum is at rest, so the Coriolis force 2mv×Ω
would be zero, while the centrifugal force mΩ× (r×Ω) is along the string of the pendulum
and exerts no torque about point P .

In this (′) frame there is no rotation of the pendulum so the torque equation (about point
P would be

τ ′ = 0 = l ×mgeff + l × m(l× Ω̇) = l× mgeff + ml2θ̈ ẑ, (13)

considering the “fictitious” torque due to the “fictitious” force ml × Ω̇, and taking ẑ to be
out of the page. This is the same as the torque equation in the accelerated, but nonrotating
frame considered in Sec. 2.1 above,

τ = l× mgeff =
dL

dt
= −ml2θ̈ ẑ. (14)

However, it appears that additional “fictitious” torques also must be considered unless
the rotating axes are those of the rest frame of the pendulum.

It suffices not to consider such accelerated/rotating frames in problems like this.1

References

[1] L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. (Pergamon, 1976),
http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf

[2] K.T. McDonald, Accelerated Coordinate Systems (1980),
http://kirkmcd.princeton.edu/examples/ph205l16.pdf

[3] K.T. McDonald, Torque Analyses of a Sliding Ladder (May 6, 2007),
http://kirkmcd.princeton.edu/examples/ladder.pdf

[4] K.T. McDonald, Falling Chimney (Oct. 1, 1980),
http://kirkmcd.princeton.edu/examples/chimeny.pdf

1See, for example, the sliding ladder [3] and the falling chimney [4].
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