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1 Problem

Discuss the momentum of a loop of electrical current I that is subject to a uniform external
electric field E in the plane of the loop.1

Does the current contain hidden momentum, Phidden, defined for a subsystem by,2

Phidden ≡ P − Mvcm −
∮

boundary

(x− xcm) (p− ρvb) · dArea, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”, c is the speed
of light in vacuum, U is its total energy, xcm is its center of mass/energy, vcm = dxcm/dt, p
is its momentum density, ρ = u/c2 is its “mass” density, u is its energy density, and vb is
the velocity (field) of its boundary?

This problem was first considered by J.J. Thomson in 1904 [3]-[6]. The present version
first appeared on p. 215 of [7]. See also [8]-[14].

2 Solution

If an electric charge q of rest mass mq is moving with (variable) velocity v in an external
electric field E, its kinetic energy changes according to the work done on charge q,

q

∫ f

i

E · dl = ΔKE = ΔUmech = mq(γf − γi) where γ = 1/
√

1 − v2/c2, (2)

independent of the possible presence of an external magnetic field B. In the present example,
let x̂ point to the right in the figure above, with ŷ upwards, such that the electric field is

1The current is not “shielded” from the external electric field, and does not correspond to the current in
either a resistive or superconducting wire.

2The definition (1) was inspired by discussions with Daniel Vanzella [1]. See also [2].
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E = E ŷ. Then, the change in a charge’s mechanical energy when moving distance w upwards
through this field is,

ΔUmech = mq(γt − γb)c
2 = qEw, (3)

where t and b refer to the top and bottom of the loop, w is its height.3,4

We now consider the system to contain three subsystems, the circulating charges, the
electromagnetic fields (which include both the external electric field and the fields of the
charges), and other mechanical apparatus at rest in the lab frame, including the sources of
the external electric field and a nonconducting tube that constrains the charges, without
friction, to move in the rectangular circuit.

The electrical current of the circulating charges in the bottom and top segments of the
loop is given by,

I = qnbvb = qntvt, (4)

where n is the number of moving charges per unit length. The total momentum of the
charges can now be written as,

Pcharges = (ntlmqγtvt − nblmqγbvb) x̂ =
lIΔUmech

c2q
x̂ =

IlwE

c2
x̂ =

m × E

c
, (5)

noting that the magnetic moment m of the loop of circulating charge is given (in Gaussian
units) by,

m =

∫
r × J

2c
dVol =

IArea

c
= −Ilw

c
ẑ, (6)

where ẑ is out of the paper.
The center-of-mass velocity of the charges is given by,

Mchargesvcm,charges = (ntlmqγtvt − nblmqγbvb) x̂ = Pcharges, (7)

where Mcharges is the sum of the masses of all charges. This result is peculiar in that the
tube that constrains the charges is at rest, and the charge distribution within that tube is
stationary, from a macroscopic perspective. Equation (7) corresponds to a microscopic view
in which charges enter and leave each segment of the loop, such that the center of mass of the
charges in, say, the top segment moves to the right at speed vt until a charge leaves on the
right and another enters from the left; at that moment the center of mass instantaneously

3The use of this argument in cases of time-dependent electric fields is considered in sec. 3 below for
transient fields, and in sec. 4 below for wave fields.

4It could be that the electric field is related only to a scalar potential V , but this is not required in the
present argument. In any case, the increase in the mechanical energy of the charges is compensated by a
reduction in the energy of the electric field.

If the electric field is static, with E = −∇V , then the interference energy between the external field and
the field of the energized charges is readily shown to be negative, as discussed in [15].

Also, as noted in footnote 9 of [16], in case of an electrostatic field E, the total energy of electric charge
q has the constant value U = γmqc

2 + qV . Then, the change in a charge’s mechanical energy when moving
distance w upwards through this field is ΔUmech = mq(γt − γb)c2 = qΔV = qEw, as in eq. (3).

For additional remarks on the relation U = γmqc
2 + qV , see [17].
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moves to the left by distance dt/ntl, where dt is the spacing between charges in the top
segment. That is, the motion of the microscopic center of mass is a Zitterbewegung.

It is more appropriate to provide a macroscopic description, in which we can speak of
a steady current I , rather than a series of delta functions of current spaced at small time
intervals. The macroscopic description is obtained by averaging over distances larger than
the gaps d between the moving charges. In the macroscopic description the Zitterbewegung
is ignored, and we set the macroscopic center-of-mass velocity v̄cm,charges of the charges to
zero,

v̄cm,charges = 0. (8)

The subsystem of charges is then said to contain “hidden” momentum according to the
definition (1),

Phidden,charges = Pcharges − Mchargesv̄cm,charges = Pcharges =
m ×E

c
. (9)

The subsystem of the electromagnetic fields has nonzero momentum,

PEM =

∫
E × B

4πc
dVol =

∫
V J

c2
dVol =

E × m

c
= −Pcharges, (10)

where the second form of eq. (10) is due to Furry [8].5 Thus, the total momentum of the
system is zero.

The center of energy of the electromagnetic fields is at rest in the lab frame, so vcm,EM = 0.
Hence, according to definition (1), the electromagnetic subsystem has nonzero “hidden”
momentum,

Phidden,EM = PEM − MEMvcm,EM = PEM =
E ×m

c
= −Pcharges = −Phidden,charges, (11)

where MEM ≡ UEM/c2.
The key result of this problem is the clarification that the center-of-mass velocity to be

used in application of definition (2) is the macroscopic average velocity, in the same sense
that the electrical current I is a macroscopic average. Then, mechanical momentum which is
explicitly noted in a microscopic description can, in some cases, be characterized as “hidden”
in the macroscopic description.

3 Transient Effects

In the preceding the current and external electric field were assume to be steady. We now
consider several possibilities of transient behavior, in which the current varies, or in which
the electric field varies.6,7

5The result (10) appears on pp. 347-348 of [4] and in sec. 285 of [5], but Thomson appears not to have
noted the paradox that a system “at rest” has nonzero field momentum. For discussion of these early results,
see [6].

6The example of an electric charge plus magnetic dipole is a variant on the configuration of the Aharonov-
Bohm effect [18], in which an electric charge moves outside a long solenoid magnet where the external field
Bsolenoid is negligible but the external vector potential Asolenoid is nonzero. For discussion by the author of
classical aspects of the Aharonov-Bohm effect, see [19].

7An exotic possibility, that the entire system collapses to a black hole, has been considered in [20].

3



3.1 The Current is Excited/De-excited

Suppose the external electric field is static, but the current in the loop is created or destroyed
by a transient, external magnetic flux though the loop. The transient electric field around the
loop modifies the electrical current in the loop, doing work to create/destroy the magnetic
field energy of the loop (and the small kinetic energy of the circulating charges). In this
process, equal and opposite amounts of mechanical and electromagnetic momentum are
given/taken away from the system of loop plus external field, so no net force is exerted on
that system during the transient phase.

3.2 The External Field is Due to a Single, Moving Charge

Suppose the external electric field is due to a single electric charge Q (with no magnetic
moment) that has velocity v with v � c, while the magnetic moment m remains con-
stant. This charge is subject to the Lorentz force of the magnetic dipole field of the current
loop, which force does no work on the charge, such that the speed v, the relativistic mass
mQ/

√
1 − v2/c2, and the kinetic energy of the charge remain constant. However, the direc-

tion of the velocity v changes with time, so the charge is accelerated and radiates energy and
momentum. An issue raised by [20] is whether the total radiated momentum is significant
compared to PEM = Qm sin θ/cr3, where θ is the angle between m and the line joining Q
and the location of the magnetic dipole m, and r is the length of that line.

In the following we will only consider cases where θ = 90◦; that is, the charge moves
in the plane perpendicular to the constant magnetic moment m. We also suppose that the
mass of the current loop is much larger than the (rest) mass mq of the charge, so that it is
a good approximation to consider the current loop to be at rest, and at the origin.

3.2.1 The Charge Moves Radially from r0 to ∞
Initially, the charge is at radius r0 with respect to the magnetic moment m, and its small
velocity is radially outwards, v = v r̂. We also suppose that v is small enough that the
trajectory of the charge is nearly radial at all times.

The Lorentz force on the moving charge Q is,

FQ =
dPQ

dt
= Q

v

c
× Bm = Q

v

c
×
(

3(m · r̂)r̂ − m

r3

)
= Q

m× v

cr3
, (12)

for motion of Q in the plane perpendicular to m. Hence, if v ≈ v r̂, then the azimuthal
component of eq. (12) is,

dPφ

dt
≈ Qmv

cr3
. (13)

The radial component of the momentum of the charge is Pr ≈ mQv, so the rate of change of
the angle φ of the charge’s trajectory with respect to the radial direction is,

dφ

dt
≈ 1

Pr

dPφ

dt
≈ qm

cmqr3
. (14)
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For nearly radial motion, dr ≈ v dt, so that the total change Δφ in the azimuthal orientation
of the trajectory of the charge as it moves from r0 to ∞ is related by,

dφ

dr
≈ 1

v

dφ

dt
≈ c

v

Qm

mqc2r3
, Δφ =

∫ ∞

r0

dφ

dr
dr =

∫ ∞

r0

c

v

Qm

mQc2r3
dr =

c

v

Qm

2mQc2r2
0

. (15)

Hence, the condition for quasiradial outward motion is,

Qm

mQc2r2
0

� v

c
� 1 (quasiradial outward motion). (16)

As discussed in sec. 2.2.6 of [21], rate of radiation of momentum by the accelerated charge
is,

dPrad

dt
=

dUrad

dt

v

c2
=

2Q2F 2
q

3m2
Qc5

v ≈ 2Q4m2v3

3m2
Qc7r6

r̂, (17)

recalling the Larmor formula for v � c that dUrad/dt = 2Q2a2/3c3 = 2Q2F 2
q /3m2

Qc3. The
total radiated momentum Prad in the radial direction, follows as,

dPrad

dr
≈ 1

v

dPrad

dt
≈ 2Q4m2v2

3Q2
qc

7r6
, Prad =

∫ ∞

r0

dPrad

dr
dr ≈ 2Q4m2v2

15m2
Qc7r5

0

. (18)

The initial electromagnetic momentum of the system follows from eq. (10) as,

PEM =
Qm

cr2
0

, (19)

so that the ratio of the radiated momentum to the initial electromagnetic momentum is,

Prad

PEM
≈ Q3mv2

m2
Qc5r3

0

=
v2

c2

Qm

mqc2r2
0

Q2/r0

mqc2
� v3

c3

q2/mQc2

r0
. (20)

For r0 large compared to the classical charge radius Q2/mQc2, the ratio (20) is negligible.
In sum, as the charge moves outwards quasiradially at constant speed, the electromagnetic

field momentum and the net mechanical momentum of the electric current drop to zero,
remaining equal and opposite at all times in the quasistatic approximation.

3.2.2 The Charge Orbits the Magnetic Dipole

For magnetic moment m = m ẑ, a positive electric charge Q can move counterclockwise in
a circular orbit of radius r with speed v given by the Lorentz force as,

v

c
=

Qm

Qqc2r2
, (21)

when v/c � 1. We suppose that the initial radius r0 is large enough that v/c � 1.
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As noted, for example, in sec. 2.5.5 of [21], the accelerated charge radiates total power,

dUrad

dt
=

2Q4(v/c× B)2

3m2
Qc3

=
2Q4m2v2

3m2
Qc5r6

=
2Q6m4

3m4
Qc7r10

. (22)

The radiation produces a back reaction on the charge which can be characterized by the
radiation reaction force Freact = −Kv, such that the power delivered by this force is the
negative of the radiated power,

Freact · v = −Kv2 = −dUrad

dt
, (23)

and hence8

Freact = −Kv with K =
2Q4m2

3m2
Qc5r6

. (24)

As a consequence, the charged particle slows down according to,

mQ
dv

dt
= Freact = −Kv, v = v0 e−Kt/mQ, r =

√
Qm

mQcv
= r0 eKt/2mQ, (25)

and its trajectory spirals slowly out to infinite radius where the asymptotic velocity is zero.
During this process the electromagnetic field momentum and the net mechanical momentum
go to zero, and the initial kinetic energy of the charge is transformed into electromagnetic
radiation. Momentum is radiated by the accelerating charge, but the net radiated momentum
over the large number of turns in the spiral trajectory is negligible, so there is no significant
“kick” imparted to the magnetic dipole.9

3.2.3 General Motion of the Charge

An analytic solution for the general motion of the charge is not possible, but electromagnetic
radiation is generated as the charge accelerates, which reduces the kinetic energy and the
speed of the charge. The charge either comes to rest at some finite distance from the
magnetic moment, or moves to infinity with asymptotic speed either zero or nonzero. In the
first case the final electromagnetic field momentum and final net momentum of the current
are nonzero, equal and opposite, and smaller than their initials values. In the second case
the final electromagnetic field momentum and final net momentum of the current are zero.
In no case does anything striking take place.

3.2.4 The Charge Collides with the Magnetic Dipole

A special case is that the electric charge q has initial velocity v0 ⊥ m such that it eventually
collides (totally inelastically) with the magnetic dipole m. Just before this collision the

8Equation (24) also follows from the well-known form Freact = (2Q2/3c3) ȧ = (2Q2/3c3)ω × a =
(2Q2/3c3) (−v ẑ/r) × (−v2/r) r̂ = −(2Q2v2/3c3r2)v = −(2Q4m2/3m2

Qc5r6)v.
9The radiation fields transfer net energy and momentum to the magnetic dipole (including net work done

by magnetic field [22]), but this effect is negligible in the present case.
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charge has velocity vf (⊥ m). Suppose the magnetic dipole has initial velocity −vf mQ/mm,
such that the final state of charge + moment has zero (mechanical) velocity.

In the initial state there is electromagnetic momentum (and electromagnetic energy)
associated with the separate motions of the electric charge and of the magnetic dipole.
We consider that these momenta (and energies) are “renormalized” into the “mechanical”
momenta (and energies) of the charge and dipole. In addition, there is a nonzero interaction
field momentum in the initial state, which is well approximated for low velocities by eq. (10),
PEM,int ≈ EQ × m/c. And to the same approximation, the initial currents of the magnetic
dipole contain hidden mechanical momentum, Phidden,mech ≈ −PEM,int ≈ −EQ × m/c.

As the electric charge approaches the magnetic dipole the electric field experienced by the
latter grows large, so the interaction field momentum and the hidden mechanical momentum
grow large, and are not necessarily well approximated by the forms in the preceding para-
graph. However, in the final state, where we assume that the electric charge comes to rest at
the center of the current loop of the magnetic dipole, the final interaction field momentum
and the final hidden mechanical momentum are zero.

As the charge moves towards the magnetic dipole they both accelerate, emitting elec-
tromagnetic energy and momentum. The electric charge radiates much more than does
the magnetic dipole, assuming that the latter’s mass is much larger. Then, the final state
contains net radiated momentum, whose direction is roughly along the line from the initial
position of the charge to the dipole. Conservation of momentum tells us that the final state
of the charge + dipole is not at rest, but has constant velocity, and mechanical momentum
equal and opposite to the net radiated momentum.

An observer who does not consider the radiated momentum would say that the final
state of charge + dipole has an unexpected “kick”. While consideration of electromagnetic
radiation shows that this “kick” has nothing to do with “hidden momentum” and everything
to do with radiation, the näıve observer might associate it with “hidden momentum”.

4 Wave Fields (October, 2017)

We now consider the possible validity of the argument of sec. 2 above for the case of a wave
field, of wavelength λ and angular frequency ω = 2πc/λ, i.e., for a wave in a medium with
unit (relative) permittivity and permeability.

One premise of the argument of sec. 2 is that the electric field E be uniform over the
loop, which implies that in the case of a wave field, the wavelength λ is large compared to
the sides h and w of the loop.

In, addition, for the instantaneous “hidden” mechanical momentum to be m×E(t)/c, it
must be the period of the circulation of charges in the current loop be less than the period
of the external wave field. That is, the angular velocity of the circulating charges must be
larger than the angular velocity of the wave field.

We consider the implications of this requirement for the cases of current loops associated
with permanent magnetism, and with diamagnetism.
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4.1 Permanent Magnetism

In the case of permanent magnetism the magnetic moments are (almost entirely) associated
with the intrinsic magnetic moments of electron, which have magnitude e�/2mc. Although
there is no satisfactory classical model for these intrinsic moments, we make a plausibility
argument based on the model that an electron is a shell of charge of radius λC = �/mc,
the reduced Compton wavelength, which shell rotates with equatorial velocity c. In this
model, the angular velocity of the moving charge is c/λC, so it is plausible that the re-
lation m × E(t)/c describes “hidden” mechanical momentum of permanent magnetism in
electromagnetic fields of (reduced) wavelength λ larger than λC.

This is the same requirement that the electric field be uniform over the current distribu-
tion of the magnetic dipole.

This requirement is well satisfied by electromagnetic waves of optical frequencies.

4.2 Diamagnetism

Diamagnetism is associated with magnetic momentum to due orbital motion of atomic elec-
trons that is induced by the external electromagnetic field.

For an order-of-magnitude estimate, we take the effective radius of the magnetic moment
to be the Bohr radius rB = λC/α, where α = e2/�c is the fine-structure constant and e is
the charge of an electron.

Then, the requirement that the external field be uniform over the magnetic moment is
that the wavelength of the external field be large compared to the Bohr radius, which is well
satisfied by optical fields.

The angular frequency of the induced orbital motion of electrons is less than vmax/rB,
where,

vmax ≈ amaxtwave ≈ eE0

m

1

ω
, (26)

where E0 is the peak electric field of the wave. For m × E(t)/c to describe the “hidden”
mechanical momentum associated with diamagnetism, we must also have,

ωorbital ≈ vmax

rB
≈ eE0

mωrB
= α

eE0

mωλC
� ω, E0 � mω2λC

αe
=

�
2ω2

e3
=

Ecrit

α

(
λC

λ

)2

, (27)

where Ecrit = m2c3/e� = 1.6× 1016 V/cm is the so-called QED critical field strength (above
which a static electric field would spontaneously produce electron-positron pairs [23]). For
optical waves, this requirement is that E0 � 104 V/cm, which is a reasonably strong field,
but which is readily achieved in laser beams.

A Appendix: An All-Mechanical Current Loop

As suggested by J. Franklin (private communication), we can imagine the figure on p. 1
corresponds to a set of runners on a racetrack. On the left, vertical leg of the track the
runners convert some of their internal energy into increased kinetic energy, ideally in a
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reversible manner (such that on the right, vertical leg the runners convert some of their
kinetic energy back into internal energy). In this idealization the total energy mγc2 of each
runner is constant in time; the rest mass m decreases when the kinetic energy increases, and
vice versa. So, if the runners are distributed such that the “current” is constant around the
track,

I = nbvb = ntvt, (28)

then in the frame of the track the total momentum of the runners is,

Prunners = (ntlmtγtvt − nblmbγbvb) x̂ = 0. (29)

Hence, there is no “hidden” momentum in this all-mechanical example.
As remarked in footnote 7 of [2], it appears that “hidden” mechanical momentum exists

only in examples where (moving) “matter” interacts with a “field”.

B Appendix: Magnetic-Current Loop in a Magnetic

Field (October, 2017)

If magnetic charges (monopoles) existed, we could consider the case of a loop of magnetic
current in a uniform magnetic field B = B ŷ, with geometry as in the figure on p. 1.

If we label a magnetic charge by qm (with rest mass mq), the force on it in an external
magnetic field B is F = qmB.10 Then, all the discussion in sec. 2 holds with the substitutions
q → qm, E → B, and I → Im (for the current), except for the last equality in eq. (5). That
is, the total momentum of the charges can now be written as,

Pcharges = (ntlmqγtvt − nblmqγbvb) x̂ =
lImΔUmech

c2q
x̂ =

IlmwB

c2
x̂. (30)

Here, we note that a loop of circulating magnetic charge has an electric dipole moment pm

given (in Gaussian units) by,

pm = −
∫

r × Jm

2c
dVol → −ImArea

c
=

Imlw

c
ẑ, (31)

where ẑ is out of the paper.11 Thus, the total mechanical momentum of the moving magnetic
charges is,

Pmagnetic charges = −pm × B

c
. (32)

B.1 B due to Magnetic Charges

For eq. (32) to be the only mechanical momentum in the example, we suppose that the
external magnetic field is due to magnetic charges at rest, B = Bm, rather than electric
charges in motion. Then,

Phidden,mech = Pmagnetic charges = −pm × Bm

c
. (33)

10For a review of classical electrodynamics with both electric and magnetic charges, see, for example, [24].
11For a discussion of the first equality in eq. (31), see Appendix B of [25].
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As for the case of a loop of circulating electric charges (with external electric field due
to other electric charges), the velocity of the center of mass of the moving magnetic charges
is zero, so the momentum (32) is a “hidden” mechanical momentum, to which the electro-
magnetic field momentum is equal and opposite, so that the total momentum is zero in this
example.

B.2 B due to Electric Currents

B.2.1 The Electric and Magnetic Currents Occupy Different Volumes

If the external field B were due to moving electric charges (in an electrically neutral “wire”),
rather than to static magnetic charges, then there would be some “hidden” mechanical mo-
mentum associated with the electric currents. Supposing these currents to form a magnetic
dipole me, and that the electric field E due to the magnetic currents of pm is sufficiently
uniform over the magnetic dipole me, this additional “hidden” mechanical momentum would
be given by eq. (9). Then, the total “hidden” mechanical momentum would be, combining
eqs. (33) and (9),

Phidden,mech = −pm × Bat p

c
+

me × Eat m

c

= −pm

c
× 3(me · r̂)r̂ − me

r3
+

me

c
× 3(pm · r̂)r̂ − pm

r3
(34)

=
2pm ×me

cr3
+

3r̂ × [r̂× (pm ×me)]

cr3
=

3[(pm × me) · r̂]r̂− (pm ×me)

cr3
,

where r is the distance between pm and me.
This result (with functional form like that of the electromagnetic fields of the dipoles pm

and me) is listed in the table appended to the link to [11], which follows from eq. (66) of
that paper,

PEM = −pm × ∇Vm

c
+ ∇

(
pm · Ae

c

)
, (35)

where Vm is the scalar potential associated with magnetic charges and Ae is the vector
potential associated with electric currents,12 together with the observation that for the total
momentum to be zero in a static example, it must include a “hidden” mechanical momentum
that obeys,13

Phidden,mech = −PEM. (36)

In the present example, we suppose that the magnetic currents of pm are magnetically
neutral, such that Vm = 0. Then, eq. (35) implies,

PEM = ∇
(
pm · Ae

c

)
= pm × Be

c
+ (pm ·∇)

Ae

c
. (37)

12Be = ∇ ×Ae, and for steady magnetic currents as considered in [11], Bm = −∇Vm.
13If Ae = 0 but Vm 	= 0, we recover eq. (33) from eqs. (35)-(36).
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An inference from eqs. (36)-(37) is that field quantity −(pm · ∇)Ae/c equals the “hidden”
mechanical momentum associated with the electric currents.14

For example, suppose the external magnetic field is due to a loop of electric current with
magnetic moment me, for which its magnetic field has vector potential Ae = me × r/r3,
where r is the vector from the magnetic dipole to the observer. Then,

(pm ·∇)
Ae

c
= (pm · ∇)

(
me × r

cr3

)
= me × (pm · ∇)

r

cr3
= −me ×−∇

(pm · r
cr3

)
= −me × Em

c
, (38)

and,

PEM = pm × Be

c
− me × Em

c

(
=

∫
Em × Be

4πc
dVol

)

= ∇
(
pm · Ae

c

)
= −3[(pm × me) · r̂]r̂ − (pm × me)

cr3
. (39)

Equating the “hidden” mechanical momentum to −PEM for this static example, we have,

Phidden,mech =
3[(pm × me) · r̂]r̂− (pm × me)

cr3
= −pm × Be

c
+

me × Em

c
(40)

as expected, and which confirms the consistency of the analysis of [11] for electric and
magnetic dipoles that occupy different volumes.

If we suppose that no “particles” can exist that have both an electric dipole moment due
to magnetic current and a magnetic dipole due to electric currents, then the results (34)
and (39) (which are bilinear in pm and me) imply that any collection of such particles, at
rest, contains hidden mechanical momentum equal and opposite to the electromagnetic field
momentum of the system. However, the electrodynamics of Maxwell was based on the as-
sumption of continuous distributions of charge, and of dipole moments, with the implication
that electric and magnetic dipole moments could occupy the same volume.

In the rest of this Appendix we explore various distributions of electric and magnetic
dipole moments, at rest, and mostly find that these obey the desirable result that the total
momentum of the system (at rest) is zero. However, we seem to find, sec. B.2.2 below, that
continuous distributions of electric dipoles due to magnetic currents and magnetic dipoles
due to electric currents, at rest, would have nonzero total momentum.

B.2.1.1 Dipoles pm and me Due to Currents on Spherical Shells15

We consider a spherical shell of radius a, centered at the origin, that supports surface
electric current density,

Ke = cMe × r̂ =
3cme

4πa3
× r̂, (41)

14Of course, “hidden” mechanical momentum is a “mechanical” quantity, and is physically distinct from
a field-related quantity like −(pm · ∇)Ae/c.

15This example was suggested (and analyzed) by D. Griffiths, Apr. 16, 2018; see also sec. 5 of [29]. It is
a variant on an example by Romer [30]. Other variants of such examples are considered in sec. 2.2 of [25].
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where the magnetic dipole moment me is the same as that due to a volume density Me of
magnetization (associated with electric currents) that is uniform inside a sphere of radius a.
Also, we consider a spherical shell of radius b, centered at the origin, that supports surface
magnetic current density,

Km = cPm × r̂ =
3cpm

4πb3
× r̂, (42)

where the electric dipole moment pm is the same as that due to a volume density Pm of
electric polarization (associated with magnetic currents) that is uniform inside a sphere of
radius b. The magnetic field is uniform inside the sphere of radius a, the electric field is
uniform inside the sphere of radius b, and the fields outside these spheres are those due to
dipole moments me = 4πa3Me/3 and pm = 4πb3Pm/3,

B =

⎧⎨
⎩

2me

a3 (r < a),

3(me·r̂)r̂−me

r3 (r > a),
E =

⎧⎨
⎩

2pm

b3
(r < b),

3(pm·r̂)r̂−pm

r3 (r > b).
(43)

We now suppose that b < a. Then, the surface magnetic currents on sphere b are inside
sphere a where the magnetic field is uniform. Hence, we can use the argument that led to
eq. (32), to infer that the “hidden” mechanical momentum associated with the magnetic
currents is,

Phidden,mmech,m = −pm ×B(r < a)

c
= −2pm × me

c a3
. (44)

However, the surface electric currents on sphere a experience the dipole electric field
3(pm · r̂) r̂−pm/a3, which varies with position on the shell r = a. So we cannot immediately
use the argument of sec. 2 above, but must note that the change ΔUmech in the mechanical
energy of an electric charge q as it moves between two points on its current loop is qΔV ,
rather than that of eq. (3), where V is the electric scalar potential associated with the electric
field due to the surface magnetic currents Km on sphere b. On sphere a, which is outside
sphere b, the electric scalar potential has the dipole form V = pm · r̂/a2.

We consider a rectangular coordinate system (x, y, z) with ẑ parallel to me, and pm in
the x-z plane at angle θp to the z-axis. Then, in a corresponding spherical coordinate system
(r, θ, φ), the electric scalar potential on the surface of sphere a is,

V (a, θ, φ) =
pm

a2
(x̂ sin θp + ẑ cos θp) · (x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ)

=
pm

a2
(sin θp sin θ cos φ + cos θp cos θ), (45)

Equation (3) now has the form,

ΔUmech(θ, φ) = [γ(θ, φ) − γ(θ, 0)] m c2 = q[V (a, θ, φ) − V (a, θ, 0)] =
q pm

a2
sin θp sin θ(cos φ− 1).(46)

For a loop on sphere a of extent dθ at angle θ, the (azimuthal) electric current is,

dI(θ) = Ke(θ) a dθ = φ
3cme sin θ

4πa2
dθ = q dn(θ, φ)v(θ, φ), (47)
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where the moving charges at (a, θ, φ) have velocity v and density (per unit length around
the loop) dn. The “hidden” mechanical momentum of the moving electric charges in the
loop (of circumference 2πa sin θ) is,

dPhidden,mech,e(θ) =

∫ 2π

0

a sin θ dφ γ(θ, φ)mv(θ, φ) dn(θ, φ)

=

∫ 2π

0

a sin θ dφ
[
γ(θ, 0) +

q pm

a2 m c2
sin θp sin θ(cos φ − 1)

]
m (−x̂ sinφ + ŷ cosφ)

3cme sin θ

4πa2 q
dθ

= ŷ
3pmme

4a3c
sin θp sin3 θ dθ. (48)

The total “hidden” mechanical momentum of the moving electric charges is,

Phidden,e =

∫
dPhidden,e(θ) =

∫ π

0

ŷ
3pmme

4a3c
sin θp sin3 θ dθ = ŷ

pmme

c a3
sin θp =

pm × me

c a3
. (49)

The total “hidden” mechanical momentum of both the electric and magnetic charges is,
recalling eq. (44),

Phidden,mech = Phidden,mech,e + Phidden,mech,m = −pm × me

c a3
. (50)

This “hidden” momentum is independent of radius b, so the result (49) also holds when
b = a.

The electromagnetic field momentum for a sphere of radius a containing uniform volume
densities Me and Pm has been evaluated in Appendix A.1.3 of [25], and found to be,

PEM =
pm × me

c a3
. (51)

The electromagnetic fields of the present example, due to surface currents (41)-(42), are the
same as those due to volume densities Me and Pm, so the electromagnetic field momentum
in the present example is also given by eq. (50). Hence, for the present example with surface
currents,

Phidden,mech + PEM = 0, (52)

as is agreeable for a system “at rest”.
However, it is not evident that the “hidden” mechanical momentum is the same in the

two cases (surface currents, volume densities), although the electromagnetic fields are the
same. The above calculation of the “hidden” mechanical momentum of the surface currents
used eq. (46) for the change in mechanical energy of electric charges as they flowed around
loops on the surface of sphere a. While the volume density Me can be associated with
an “equivalent” surface current density Ke according to eq. (41), the physical charges of
density Me do not flow in the large loops considered in eqs. (47)-(48), so these equations do
not necessarily represent the “hidden” mechanical momentum of the volume densities.

We return to this issue in Appendix B.2.2 below.
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B.2.1.2 Dipoles pm and me on a Cubic Lattice16

As a special case of when the dipoles pm and me occupy different volumes, suppose they
are arrayed at alternating sites on a cubic lattice, as are Na and Cl ions in salt, and the
lattice fills a sphere of radius a which is much larger than the lattice spacing.

The total “hidden” mechanical momentum can be obtained by summing either form of
eq. (40) over all pairs of dipoles (pm,me).

While it is tempting to suppose that the arrays of dipoles correspond to continuous
macroscopic polarization densities Pm and Me, such that the double summation over the
dipoles (pm,me) is equivalent to a double integral, it turns out that the double volume
integral of the first form of eq. (40) over a sphere vanishes, as discussed below in sec. B.2.2.2.

So, we instead sum the second form of eq. (40), supposing that the fields inside the sphere
of radius a due to the current-based dipoles are uniform, and given by,

Em(r < a) =
2pm,total

a3
, Be(r < a) =

2me,total

a3
, (53)

to find,

Phidden,mech = −
∑

p

pm × Be

c
+
∑
m

me × Em

c

= −pm,total × 2me,total

a3c
+ me,total × 2pm,total

a3c
= −4

pm,total ×me,total

a3c
. (54)

This result is disconcerting in that the total field momentum for this example, assuming that
the fields inside the sphere are given by eq. (53) (and that the fields outside the sphere are
the fields due to total dipole moments pm,total and me,total), is,

PEM =
pm,total × me,total

a3c
, (55)

as deduced, for example, in Appendix A.1.3 of [25].
However, the assumption of uniform fields for dipoles on a cubic lattice is not warranted,

but rather the fields of eq. (53) should be regarded as the macroscopic average fields, while
the microscopic fields vary considerably across a unit cell of the lattice. In particular the
electric field due to dipoles pm at the centers of dipoles me is zero, and similarly the magnetic

16This example was suggested by P. Saldanha, Oct. 30, 2017.
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field due to dipoles me at the centers of dipoles pm is zero, as discussed in sec. 2.6 of [26].17

That is, the fields are not uniform over the various dipoles, the average values of the fields
on the two types of dipoles are less that the macroscopic averages given in eq. (53), and the
estimate (54) of the “hidden” mechanical momentum of the current-based dipoles is too large
in magnitude. If the effective average fields on the dipoles are 1/4 of the macroscopic averages
(53), then we would have an accounting that the total momentum is zero, as expected for a
system “at rest”.

We continue this theme in the next section.

B.2.2 The Electric and Magnetic Currents Occupy the Same Volume

Another special case is that the two dipoles pm and me occupy the same volume, instead of
being external to one another as assumed is sec. B.2.1.

As an example, we consider the case of dipoles due to uniform densities Pm and Me

of electric polarization due to magnetic currents and magnetic polarization due to electric
currents, all inside a sphere of radius a.18

Again, we might expect that the total “hidden” mechanical momentum would be, com-
bining eqs. (33) and (9),

Phidden,mech = −pm × Bat p

c
+

me × Eat m

c
(56)

Then, since the internal fields of these current-based dipoles are,

Em(r < a) =
2pm

a3
, Be(r < a) =

2me

a3
, (57)

we would have,

Phidden,mech = −4
pm × me

a3c
. (58)

We recall that in static examples like the present, the “hidden” mechanical momentum
should be equal and opposite to the electromagnetic field momentum (so that the total
momentum of the system is zero). A computation of the field momentum for the present
example is given in Appendix A.1.3 of [25], with the result,

PEM =

∫
E × B

4πc
dVol =

pm × me

a3c
, (59)

so we infer that the “hidden” mechanical momentum is,

Phidden,mech = −PEM = −pm ×me

a3c
, (60)

17A closely related result is that if one of the polarized entities were removed from the lattice, the field
due to the remaining polarized entities would be zero at the center of the vacant site, as deduced by Lorentz
on p. 306 (Note 55) of [27]. See also sec. 4.5 of [28].

18This example is an extension to the case of magnetic charges and currents of that discussed by Romer
in [30]. See also Appendix A.1 of [25].
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which differs from the result of eq. (58) by a factor of 4.

B.2.2.1 Digression: Field Momentum According to Third Form of Eq. (37)

As a check, we compute the field mechanical momentum according to the relation (37),
noting that Vm = 0 in the present example,

PEM = ∇
(
pm · Ae

c

)
= pm × Be

c
+ (pm ·∇)

Ae

c
. (61)

The vector potential of the uniform magnetic field inside the sphere has only an azimuthal
component, Ae,φ(r < a) = rBe/2, with respect to the direction of me and Be. A delicacy in
the argument is to suppose for the time being that pm is just an element of the polarization
density Pm, at distance r from the center of the sphere. Then, at the location of the element
pm, we have,

(pm · ∇)Ae = (pm · r̂)Be

2
φ̂, (62)

since Ae has only a φ component, which depends only on r. This result is independent of
r, so we can sum up the contributions from all elements pm, and again consider the symbol
pm to represent the total electric dipole moment. Now,

(pm · r̂)Be

2
φ̂ =

Be × pm

2
= −pm × Be

2
, (63)

so altogether, recalling eq. (57),

PEM = ∇
(
pm · Ae

c

)
=

pm ×Be

c
− pm × Be

2c
=

pm × Be

2c
=

pm × me

a3c
, (64)

in agreement with eq. (59).

B.2.2.2 Digression: Field Momentum According to the Last Form of Eq. (39)

We also give an analysis (based on comments by D, Griffiths and V. Hnizdo) that will
show a connection to the last form of eq. (39), which is also a re-expression of PEM.

Again starting from eq. (37), the field mechanical momentum of the sphere of radius a
can be expressed as a volume integral over elements of electric polarization, dpm = Pm dVolp,

PEM = ∇
(
pm · Ae

c

)
=

∫
dVolp ∇p

(
Pm · Ae

c

)

=
1

c

∫
dVolp {Pm × [∇p × Ae(rp)] + [Pm · ∇p]Ae(rp)}, (65)

where ∇p = ∂/∂rp. The vector potential Ae is due to the magnetic polarization density Me,
and can be expressed as a volume integral over elements dme = Me dVolm,

Ae(rp) =

∫
dVolm Me × rp − rm

c |rp − rm|3
. (66)
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Using this in eq. (65), we have, with Be = ∇× Ae, and recalling eq. (38),

PEM =
1

c

∫
dVolp Pm ×Be(rp) +

1

c

∫
dVolp

∫
dVolm Me ×∇p

(
Pm · rp − rm

|rp − rm|3
)

. (67)

If we ignored the special cases when the volume elements dVolp and dVolm are the same,
the arguments of sec. B.2.1 above would lead to the form,

PEM,1 =
1

c

∫
dVolp

∫
dVolm

3[(Pm × Me) · r̂]r̂ − (Pm × Me)

r3

=
2 |Pm × Me|

c

√
4π

5

∫
dVolp

∫
dVolm

Y20(θ)

r3
, (68)

where r = rp − rm, Y20 is a spherical harmonic, and angle θ is with respect to the direction
of Pm × Me. This integral is zero for the present example where Pm and Me occupy the
same volume!

This possibly surprising result is a special case of an analysis of related double-volume
integrals given in [32], using a so-called Fourier-Bessel expansion. Our eq. (68) has the form
of eq. (1) of [32], but with the vector r in that equation set to zero. Then, the main result,
eq. (21) of [32] (which involves the product of 8 series expansions, 3 multipole analyses, and

4 Wigner 3-j symbols [33]), simplifies in that the spherical-Bessel-function factor jλ(q
(l)
n r)

reduces to jλ(0), which is zero unless index λ = 0.
The next steps involve consideration of the Wigner 3-j symbols,⎛

⎝ j1 j2 j3

k1 k2 k2

⎞
⎠ , (69)

for which in a classical context the ji are non-negative integers that obey the “triangle
relations” (familiar from the quantum addition of angular momenta, as in j1 + j2 = j3),

|j1 − j2| ≤ j3 ≤ j1 + j2, etc., (70)

and the integers ki obey k1 + k2 + k3 = 0.
The first and second 3-j symbols of eq. (21) of [32] have upper indices j1, j2, j3 = l1, l2, λ

′,
which must satisfy the triangle inequality,

|l1 − l2| ≤ λ′ ≤ l1 + l2, (71)

for the 3-j symbols to be nonzero. The indices l1 and l2 are determined by the multipole
(spherical-harmonic) expansion of the scalar “densities” ρ1(r1) and ρ2(r2) that characterize
the volumes of integration over r1 and r2. For spherically symmetric “densities”, as in the
present example where ρ1(r1 < 1) = 1 = ρ2(r2 < a) and are zero otherwise, l1 = 0 = l2, so
the triangle inequality (71) takes the form,

0 ≤ λ′ ≤ 0, (72)
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which can only be satisfied for λ′ = 0.
The third and fourth 3-j symbols in eq. (21) of [32] have upper indices j1, j2, j3 = λ′, l, λ,

where the index l = 2 is that of the spherical harmonic Ylm = Y20 which is a factor in the
integrand of eq. (68), and λ = 0 as previously argued. For these 3-j symbols to be nonzero,
the triangle inequality,

|λ′ − l| ≤ λ ≤ λ′ + l, i .e., |λ′ − 2| ≤ 0 ≤ λ′ + 2, (73)

must be satisfied, which is possible only for λ′ = 2
In the present example, at least two of the four 3-j symbols of eq. (21) of [32] vanish for

all indices λ′, according to the “triangle rule”.
As such, eq. (21) of [32], and the integral of eq. (68) above, vanish for the present

example.19

Hence, the “hidden” mechanical momentum can be computed via eq. (67) with only those
terms related to the behavior when the electric- and magnetic-dipole elements dpm and dme

occupy the same volume.
Since both polarization densities Pm and Me are current based, the electric and magnetic

fields of elements dpm and dme centered on rp and rm can be written as,

Em(r) =
3[dpm · (r − rp)](r − rp)

|r − rp|5
− dpm

|r − rp|3
+

8π dpm

3
δ3(r − rp), (74)

Be(r) =
3[dme · (r − rm)](r− rm)

|r − rm|5
− dme

|r − rm|3 +
8π dme

3
δ3(r − rm). (75)

The difference between equations (67) and (68) is that the internal fields of elements dpm

and dme, represented by the delta-functions terms in eqs. (74)-(75), have not been included
in eq. (68). We infer that the first term of eq. (67) has an additional contribution to the
“hidden” mechanical momentum of,

PEM,2 =
1

c

∫
dVolp Pm ×

∫
dVolm

8π Me

3
δ3(rp − rm) = 2

pm × me

a3c
, (76)

recalling that pm = 4πa3Pm/3 and me = 4πa3Me/3.
The second term of eq. (67) also has an additional contribution, associated with the

field −∇p[Pm · (rp − rm)/ |rp − rm|3] at points rp = rm. Although the electric polarization
density Pm is current based, this term has the form of the field of an electric dipole formed
from a pair of electric charges, for which the delta-function term is −(4π/3)Pmδ3(r − rm).
Hence, the additional contribution to the “hidden” mechanical momentum associated with
the second term in eq. (67) is,

PEM,3 = −1

c

∫
dVolp

∫
dVolm Me × 4π

3
Pmδ3(r − rm) = −pm × me

a3c
. (77)

19For volumes of integration that are not spherically symmetric, indices l1 and l2 can be nonzero, and
the integral of eq. (68) need not vanish. For example, if l1 = 1 = l2, then both triangle inequalities (71) and
(73) are satisfied for λ′ = 2 (and λ = 0).
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The total electromagnetic field momentum in the present example is,

PEM = PEM,1 + PEM,2 + PEM,3 =
pm × me

a3c
, (78)

which is also in agreement with eq. (59).
According to eq. (78), the field momentum can be attributed entirely to the delta-function

terms associated with elements dpm and dme that occupy the same volume.20

B.2.2.3 Integrals of “Hidden”-Momentum Density for Pm and Me

As remarked in [34], for cases like the present example that contain volume densities of
electric and magnetic polarization, it is more correct to write eq. (56) as,

Phidden = −
∫

Pm ×B

c
dVolp +

∫
Me × E

c
dVolm = −Pm

c
×
∫

B dVolp +
Me

c
×
∫

E dVolm.(79)

The electric and magnetic fields can be regarded as the integrals of contributions from dipole
elements throughout the sphere of radius a of the present example,

E(rm) =

∫
dVolp dE(rp), B(rp) =

∫
dVolm dB(rm). (80)

where the fields due to the various current-based dipole elements dpm and dme can be written
as,

dE(r) =
3[dpm · (r − rp)](r− rp)

|r − rp|5
− dpm

|r − rp|3
+

8π dpm

3
δ3(r − rp), (81)

dB(r) =
3[dme · (r − rm)](r − rm)

|r − rm|5
− dme

|r − rm|3
+

8π dme

3
δ3(r− rm). (82)

Then,∫
B dVolp (83)

=

∫ ∫ (
3[dme · (rp − rm)](rp − rm)

|rp − rm|5
− dme

|rp − rm|3
+

8π dme

3
δ3(rp − rm)

)
dVolp dVolm

=
8πme

3
+

∫ ∫ (
3[dme · (rp − rm)](rp − rm)

|rp − rm|5
− dme

|rp − rm|3
)

dVolp dVolm =
8πme

3
,

where we recall the lengthy argument in the preceding digression that showed how the
integral of eq. (68) vanishes. Similarly,

∫
E dVolm = 8πpm/3, and eq. (79) becomes,

Phidden = −Pm × 8πme

3c
+ Me × 8πpm

3c
= −2pm × me

a3c
+ 2me × pm

a3c
= −4pm × me

a3c
, (84)

20The result (78) is very satisfactory, but it is perhaps surprising that it was obtained using the delta-
function term for a magnetic field based on (magnetic) currents and for an electric field based on (electric)
charges, while in the present example all polarizations are due to currents. We note that we could have
based the derivation on the (dual) form PEM =

∫
dVolm ∇(Me ·Am/c), which follows from eq. (70) of [11].

In this case, PEM,2 would use the delta-function term for an electric field based on (electric) currents while
and PEM,3 would use the delta-function term for a magnetic field based on (magnetic) charges.
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in agreement with eq. (58), but not with eq. (60).

B.2.2.4 Integrals of “Hidden”-Momentum Density for (Pe,Me) and (Pm,Mm)

We can also apply the argument of this subsection to the case of a sphere with uniform
densities of polarizations Pe and Me (or of Pm and Mm), for which the field momentum
has been computed in Appendix A.1.1 of [25] to be PEM = me × pe/a

3c = −me × E/c
(or me × pe/a

3c = pm × B/c). According to eq. (9), we expect the “hidden” mechanical
momentum of the electric current to be,

Phidden,mech =

∫
Me × E

c
dVolm =

Me

c
×
∫

E dVolm. (85)

In this example, the electric field on the current-based density Me is due to the density Pe

which is based on electric charges, so,

dE(r) =
3[dpe · (r − rp)](r− rp)

|r − rp|5
− dpe

|r − rp|3
− 4π dpe

3
δ3(r − rp), (86)

∫
E dVolm (87)

=

∫ ∫ (
3[dpe · (rp − rm)](rp − rm)

|rp − rm|5
− dpe

|rp − rm|3
− 4π dpe

3
δ3(rp − rm)

)
dVolp dVolm

= −4πpe

3
+

∫ ∫ (
3[dpe · (rp − rm)](rp − rm)

|rp − rm|5
− dpe

|rp − rm|3
)

dVolp dVolm = −4πpe

3
,

where we recall the lengthy argument in the preceding digression that showed how the
integral of eq. (68) vanishes. The “hidden” mechanical momentum eq. (85) becomes,

Phidden,mech = Me ×−4πpe

3c
= −me × pe

a3c
= −PEM, (88)

as expected.
For the case of uniform polarization densities Pm and Mm,

Phidden,mech = −
∫

Pm × B

c
dVolp = −Pm

c
×
∫

B dVolp = −Pm

c
×−4πmm

3
=

pm × mm

a3c

= −PEM. (89)

B.2.2.5 Computations Using Equivalent Currents

This section is based on comments by Vladimir Hnizdo and Pablo Saldanha.
The polarized spheres can be thought of as supporting equivalent current densities J =

c∇ × M and c∇ × P, which are zero for uniform polarization, as well as surface current
densities K = cM× r̂ and cP × r̂.

For the case of polarization densities Pe and Me, the electric field can be related to a
scalar potential, Ee = −∇Ve where Ve = pe · r/R3(r) with R(r > a) = r and R(r < a) = a,
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and pe = 4πa2Pe/3 = total electric dipole moment of the sphere, Then, the “hidden”
mechanical momentum associated with the electric currents of Me can be written as,21

Phidden,mech =

∫
Me × Ee

c
dVolp = −

∫
Me × ∇Ve

c
dVolp

= −
∫

V Me × r̂

c
dAreap −

∫
V ∇ × Me

c
dVolp = −

∫
V Ke

c2
dAreap −

∫
V Je

c2
dVolp

= − 1

a2c

∫
(pe · r̂)Me × r̂ dAreap =

4πpe ×Me

3c
=

pe × me

a3c
= −PEM, (90)

as previously found in eq. (88).22 This is agreeable in that the field momentum in a static
system can be computed as

∫
V J dVol/c2, eq. (10), as reviewed in [35].

Turning to the case of uniform polarization densities Pm and Me, the “hidden” mechan-
ical momentum can be computed via the two integrals in eq. (79). Considering the second
of these integrals, we note that the electric field due to the polarization density Pm is not
related to a scalar potential, but can be deduced from a vector potential, Em = ∇ × Am,
where Am = pm × r/R3(r) with R(r > a) = r and R(r < a) = a. Then, we integrate by
parts, noting that the result volume integral is zero for uniform Pm,∫

Me × Em

c
dVolm =

∫
Me × (r̂ ×Am)

a3c
dAream

=

∫
r̂ × (Me ×Am) − Am × (Me × r̂)

a3c
dAream

=

∫
r̂ × (Me ×Am)

a3c
dAream −

∫
Am × Ke

a3c2
dAream (91)

With some effort, each of the two integrals in the last line of eq. (91) can be shown to be
equal to pm × me/a

3c (and by extention to the first integral of eq. (90), the total “hidden”
mechanical momentum is again 4pm × me/a

3c). Thus, for the case of Pm and Me, the
“hidden” mechanical momentum cannot be computed using only equivalent currents (and
vector potentials).

B.2.2.6 Comments

For the examples where uniform electric and magnetic polarization densities occupy the
same volumes within a sphere, the use of uniform (macroscopic) fields inside the sphere
leads to an understanding that the sum of the field momentum and the “hidden” mechanical
momentum is zero when the fields on the current-based dipoles are due to charged-based
dipoles, but is nonzero when the fields on the current-based dipoles are due to current-based
dipoles.

If we take a microscopic view, that the polarization densities are due to a collection, such
as a cubic lattice, of entities that posses both an electric and a magnetic moment, then (as
seen in the example in Appendix B.2.1.2 above), we expect that the fields at the center of
these entities, due to the other entities, are zero. That is, the effective field on a dipole could

21Nominally, the integration by parts of − ∫ Me × ∇Ve dVolp would lead to a term
∫

V Me × ∇ dVolp,
but in the usual convention that the ∇ acts to the right, we write this term as − ∫ V ∇ ×Me dVolp.

22The result (90) is consistent with sec. IV of [14], particularly eq. (35).
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well be different from the macroscopic average field. It appears that when the fields on the
current-based dipoles (that possess “hidden” mechanical momentum) are due to charged-
based dipoles, the use of a macroscopic analysis is (perhaps surprisingly) satisfactory, but
when the fields on the current-based dipoles of one type are due to current-based dipoles of
the other type, the macroscopic analysis overestimates the “hidden” mechanical momentum.

While the discrepancies between eqs. (54) and (55), and between eqs. (58) and (60),
are not fully resolved, it is very plausible that if the field momentum and the “hidden”
mechanical momentum could be correctly computed their sum would be zero, as expected
on general principle for these examples of systems “at rest”.
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