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1 Problem

If one pitches a penny into a large magnet, eddy currents are induced in the penny, and
their interaction with the magnetic field results in a repulsive force, according to Lenz’ law.
Estimate the minimum velocity needed for a penny to enter a long, 1-T solenoid magnet
whose diameter is 0.1 m.

You may suppose that the penny moves so that its axis always coincides with that of
the magnet, and that gravity may be ignored. The speed of the penny is low enough that
the magnetic field caused by the eddy currents may be neglected compared to that of the
solenoid. Equivalently, you may assume that the magnetic diffusion time is small.

2 Solution

The penny has radius a and thickness Δz. For the motion as stated in the problem, the
eddy current will flow in concentric rings about the center of the disk. Therefore, we first
examine a ring of radius r and radial extent Δr.

The magnetic flux through the ring at position z is,

Φ ≈ πr2Bz(0, z), (1)

whose time rate of change is,
Φ̇ = πr2Ḃz = πr2B ′

zv, (2)

where ˙ indicates differentiation with respect to time, ′ is differentiation with respect to z,
Bz stands for Bz(0, z), and v is the velocity of the center of mass of the ring.

The penny has electrical conductivity σ. Its resistance to currents around the ring is,

R =
2πr

σΔrΔz
, (3)

so the (absolute value of the) induced current is,

I =
E
R

=
Φ̇

R
=

σrB ′
zvΔrΔz

2
, (4)

(in MKSA units).
The azimuthal eddy current interacts with the radial component of the magnetic field to

produce the axial retarding force. Close to the magnetic axis, we estimate the radial field in
term of the axial field according to,

Br(r, z) ≈ r
∂Br(0, z)

∂r
= −r

2

∂Bz(0, z)

∂z
≡ −rB ′

z

2
, (5)
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as can be deduced from the Maxwell equation ∇ · B = 0, noting that on the magnetic axis
∂Br/∂r = ∂Bx/∂x = ∂By/∂y. Then, the retarding force on the ring is,

ΔFz = 2πrBrI = −πσr2BrB
′
zvΔrΔz ≈ −πσr3(B ′

z)
2vΔrΔz

2
. (6)

Alternatively, we note that the kinetic energy lost by the penny appears as Joule heating.
Hence, for the ring analyzed above,

vΔFz =
dU

dt
= −I2R = −πσr3(B ′

z)
2v2ΔrΔz

2
, (7)

using eqs. (3) and (4), which agains leads to eq. (6).
The equation of motion of the ring is,

dFz = −πσr3(B ′
z)

2vΔrΔz

2
= mv̇ = 2πρrΔrΔz v′v, (8)

where ρ is the mass density of the metal. We integrate this equation with respect to radius
to find,

− πσa4(B ′
z)

2vΔz

8
= πρa2Δz v′v, (9)

After dividing out the common factor πa2Δz v, we find,

v′ = −σa2(B ′
z)

2

8ρ
. (10)

Since the righthand side is independent of v, the change in speed of the penny is independent
of its initial speed, so the penny can be stopped (but the sign of v cannot be reversed).

For an estimate, we note that the peak gradient of the axial field of a solenoid of diameter
D is about B0/D, and the gradient is significant over a region Δz ≈ D. Hence, on entering
a solenoid the jet velocity is reduced by,

Δv ≈ σa2B2
0

8ρD
. (11)

The penny must have initial velocity v0 > Δv to reach the center of the magnet.
Another estimate can be made by approximating the solenoid as semi-infinite. Then,

following the useful result of prob. 5.3 of [2], the axial field of a coil at z > 0 is,

Bz(z) =
B0

2

(
1 +

z√
z2 + (D/2)2

)
, for which B ′

z(z) =
B0(D/2)2

2[z2 + (D/2)2]3/2
, (12)

and hence, the change in the speed of the penny before it enters the magnet (at z = 0) is,

Δv =
σa2

8ρ

∫ 0

−∞
(B ′

z)
2 dz =

σa2B2
0(D/2)4

32ρ

∫ 0

−∞

dz

[z2 + (D/2)2]3
=

3πσa2B2
0

256ρD
≈ σa2B2

0

27ρD
. (13)

Note that the penny cannot reach z = +∞ unless v0(z = −∞) > 2Δv.
A copper penny has a ≈ 1 cm = 10−2 m, density ≈ 10 g/cm3 = 104 kg/m4, electrical

resistivity ≈ 10−6 Ω-cm, and therefore conductivity ≈ 108 MKSA units. The minimum
initial velocity to enter (and pass through) a 1-T magnet with diameter D = 0.1 m is then,

vmin ≈ 108 · (10−2)2 · 12

10 · 104 · 0.1 ≈ 1 m/s. (14)
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