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1 Problem

What is the force per unit length on a wire of radius a and (relative) permeability μ′ when it
carries uniform current density J = I ẑ/πa2 and is placed along the z axis in a magnetic field
whose form is Bi = B0 x̂+B1[(x/a) x̂− (y/a) ŷ] before the wire is placed in that field? The
medium surrounding the wire is a nonconducting liquid with relative permeability μ �= 1,
and the wire is held at rest by “mechanical” forces.

The form of the initial magnetic field has been chosen so that there will be both a J×B
force associated with the uniform field B0 = B0 x̂, as well as a force due to the interaction
of the induced magnetization with the nonuniform field B1 = B1[(x/a) x̂ − (y/a) ŷ].

2 Solution

This old problem [1]1 was recently reconsidered by Casperson [3],2 who reported an exper-
imental result that appears to disagree with the theory he presented. The impression was
given that no straightforward theory exists for this problem, which this note hopes to cor-
rect by presenting three “standard” solutions that are in agreement. We also explore use of
the somewhat hybrid methods for calculating forces on magnetic media advocated by the
so-called Coulomb Committee [9, 10, 11, 12] and obtain success only if those methods are
revised in an important way. An overall perspective on these issues is given in [13].

A variant on this problem has practical import to high-energy physicists such as the
present author, who consider it to be experimentally confirmed (and continually reconfirmed)
for over 50 years [14] that high-energy particles of charge q and velocity v obey the Lorentz
force law of the form,

F = q(E + v/c × B), (1)

(in Gaussian units) even when in a permeable medium where the magnetic fields are related
by B = μH � H . The problem concerns macroscopic version of the above microscopic
force law.

If magnetic charges (monopoles) existed, the case of a magnetic-current-carrying “wire”
embedded in a dielectric medium would be the dual of the present example. One could then
ask whether the force density on a magnetic current density Jm in the wire is −Jm ×D (the
canonical expression) or −Jm ×E? See, [15, 16].

1A closely related problem is discussed at the end of chap. 7 of [2].
2In 1908-10 Einstein [4, 5, 6, 7] advocated that the force on free electrical currents is Jfree × H, rather

than Jfree ×B, which may have prolonged confusion on this issue. See [8] for additional discussion.
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A suggestive principle is that no object with steady motion in vacuum can exert a net
force on itself (Newton’s first law).3 In particular, the fields that are set up or modified
when the wire, with a steady current, is added to the problem cannot result in a net force
on the wire. Hence, the force on a permeable wire in vacuum can be calculated via the
interaction of the current and magnetization in the wire with only the fields present before
the wire was added to the problem, as emphasized in sec. 35 of [18] and also in [19].4 This
important result is explicitly contained in the original formulation of the Biot-Savart force
law (for media of unit permeability), that the magnetic force on circuit a is due to effects
caused by some other circuit b,5

Fa =
IaIb

c2

∮
a

dla ×
∮

b

dlb × r̂ab

r2
ab

=
Ia

c

∮
a

dla ×Bb, where Bb(a) =
Ib

c

∮
b

dlb × r̂ab

r2
ab

. (2)

Thus, we expect the simple result that the force per unit length on the wire due to the initial
uniform field Bi = B0 (in vacuum) is,

F =
I

c
×B0, (3)

where I = πa2J, which is the macroscopic equivalent of the Lorentz force law (1).6

3Accelerated charges can be subject to the so-called radiation-reaction force, which is a self force (first
noted by Lorentz [17], and so should be considered as part of the “Lorentz force law”). Not all accelerated
charges are subject to the radiation reaction force, since interference of the fields of the various charges may
cancel the total radiation, as for steady current loops. Also, a uniformly accelerated charge (which is a kind
of steady motion) famously experiences no self/radiation-reaction force.

4If the wire is not in vacuum this prescription does not hold in general. For example, a current-carrying
wire is repelled from a perfectly conducting plane although that plane has no magnetic field in the absence
of the wire. See also the problem in sec. 35 of [18], which is discussed further in [20].

5Biot and Savart [21, 22] had no concept of a magnetic field B due to an electric current I, and discussed
only the force on a magnetic pole p as p

∮
I dl× r̂/cr2, although not, of course, in vector form. The form (2)

can be traced to Grassmann (1845) [24], still not in vector form. The vector relation (3) appears without
attribution as eq. (11) of Art. 603 of Maxwell’s Treatise [25], while Einstein may have been the first to call
this the Biot-Savart law, in sec. 2 of [26].

6The transverse force (3) acts most directly on the conduction electrons, but in the steady state there
cannot be a transverse component to the conduction current. However, it might be that the current density
is displaced transversely, which would manifest itself as a change in the electrical resistance of the wire.
This possibility was investigated by Hall in 1879 [27], who, on finding no change in the resistance, had the
important inside that a charge separation arises when the wire first experiences the external magnetic, which
field leads to a transverse electric field E inside the wire such that the combined electric and magnetic force
on the conduction electrons is zero. However, this electric field then acts on the positive charges of the lattice
of the wire, exerting an equal and opposite force on them, which therefore equals the original force (3) on
the conduction electrons. If the lattice of the wire is to remain at rest (or in a state of uniform motion),
there must be a “mechanical” force on the wire equal and opposite to the force on the lattice, i.e., to the
force of eq. (3). See [28] for further discussion.

If the wire of radius a is free to move through the surrounding liquid it reaches a tranverse terminal velocity
v, and experiences a drag force per unit length in a liquid with viscosity η given by,

Fdrag = −K(a, b)ηv, (4)

where K(a, b) ≈ 2 when the fluid lies between walls with separation b large (but not too large) compared to
a. No simple expression for the drag force, i.e., for the dimensionless function K(a, b), exists, as anticipated
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The initial magnetic field Bi also induces magnetization M in the wire, and an additional
force results if the magnetic field is nonuniform at the position of the wire. According to the
preceding argument, it should be possible to calculate this force as an interaction between
the initial magnetic field and some representation of the induced magnetization in terms of
bound currents or effective magnetic poles.

Nonetheless, it is also desirable to have a method for calculating the magnetic force that
uses the total fields in the problem, including those generated by the wire. Two successful
approaches are to use the Maxwell stress tensor (sec. 2.2), and the bulk force density of
Helmholtz (sec. 2.3), both of which confirm the result (3). A third popular method based
on the concept of virtual work [32] is not reviewed here.

In sec. 3 we calculate the force on a permeable, current-carrying wire by combining the
Biot-Savart force law force the volume force density f,

f =
Jcond

c
× Bi, (6)

with terms due to either magnetization currents or effective magnetic pole densities. As
expected from the preceding argument, this approach is successful if only the initial magnetic
fields are used in the force law. However, it turns out that when using the method of
magnetization currents, the initial magnetic field to be used in the Biot-Savart law is Hi

rather than Bi. For these calculations, the total magnetic fields B and H and the induced
magnetization density M in the permeable media will first be deduced in sec. 2.1.

It is important to note that one cannot, in general, compute magnetic forces correctly
using the form,

f =
Jtotal

c
× Btotal, (7)

as discussed in sec. 4. This is unfortunate, as many text recommend use of this form.

2.1 The Fields B, H and M

We adopt a coordinate system in which the axis of the wire is the z axis with the conduction
current density being,

Jcond =
I

πa2
ẑ (8)

inside the wire of radius a.
Because we are dealing with magnetic media with nonzero magnetization M, both the

magnetic fields H and B = H + 4πM = μH are of utility. The initial external field is,

Hi = H0 x̂ + H1

(x

a
x̂ − y

a
ŷ
)

, Bi = μHi, B0 = μH0, B1 = μH1, (9)

by Stokes [29]. An approximate theory and numerical results are presented, for example, in Fig. 4 of [30].
This drag force is balanced by the force (3) on the wire, and that force does work per unit length at the rate,

P = F · v =
F 2

K(a, b)η
≈ F 2

2η
. (5)

This is another example in which the magnetic force on a macroscopic system does work [31].
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where μ is the permeability of the medium surrounding the wire. When the wire is placed
into this medium, we expect a force in the +y direction according to the Biot-Savart law (6),
and a magnetization force in the +x direction due to the nonuniform field Hi that increases
with x.

In addition to the rectangular coordinate system (x, y, z), we will work in a cylindrical
coordinate system (r, θ, z). The usual transformation of the units vectors between these two
coordinate systems are,

x̂ = cos θ r̂ − sin θ θ̂, ŷ = sin θ r̂ + cos θ θ̂, (10)

and,
r̂ = cos θ x̂ + sin θ ŷ, θ̂ = − sin θ x̂ + cos θ ŷ. (11)

The current density (8) causes magnetic field Hcond according to Ampère’s law, ∇×H =
(4π/c)Jcond,

Hcond =
2I

c
θ̂

⎧⎨
⎩

r
a2 (r < a),

1
r

(r > a).
(12)

The part of the field H not due to Jcond we label as Hind (for induced), which then obeys
∇×Hind = 0. Hence, we may deduce this part of the field as Hind = −∇Φind from a scalar
potential Φind that obeys Laplace’s equation, ∇2Φind = 0.

The external field (9) can be regarded as due to the scalar potential,

Φi = −H0x − H1

2

x2 − y2

a
= −H0r cos θ − H1

2

r2

a
cos 2θ. (13)

The external field induces additional terms in the scalar potential that also vary as cos θ or
cos 2θ, since these are two of the set of orthogonal functions in which the scalar potential
Φind(r, θ) can be expanded. In particular, we can write,

Φind =

⎧⎨
⎩ −H0r cos θ − H1

2
r2

a
cos 2θ + A0

r
a
cos θ + A1

2
r2

a2 cos 2θ (r < a),

−H0r cos θ − H1

2
r2

a
cos 2θ + A0

a
r
cos θ + A1

2
a2

r2 cos 2θ (r > a),
(14)

which is continuous at r = a. The induced fields obey the additional matching condition
that the radial component Br = μHr of the magnetic field is continuous at r = a (since
∇ · B = 0). As we have different permeabilities μ′ for r < a and μ for r > a, the condition
is that,

μ
∂Φind(r = a+)

∂r
= μ′∂Φind(r = a−)

∂r
, (15)

and hence,

μ

(
−H0 cos θ − H1 cos 2θ − A0

a
cos θ − A1

a
cos 2θ

)

= μ′
(
−H0 cos θ − H1 cos 2θ +

A0

a
cos θ +

A1

a
cos 2θ

)
. (16)
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The equality holds separately for the coefficients of the orthogonal functions cos θ and cos 2θ,
so that,

A0,1 =
μ′ − μ

μ′ + μ
aH0,1, (17)

Φind =

⎧⎨
⎩

− 2μ
μ′+μ

(
H0r cos θ + H1

2
r2

a
cos 2θ

)
(r < a),

−H0

(
r − μ′−μ

μ′+μ
a2

r

)
cos θ − H1

2

(
r2

a
− μ′−μ

μ′+μ
a3

r2

)
cos 2θ (r > a),

(18)

and,

Hind = −∂Φind

∂r
r̂ − 1

r

∂Φind

∂θ
θ̂

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2μ
μ′+μ

(
H0 cos θ + H1

r
a
cos 2θ

)
r̂ − 2μ

μ′+μ

(
H0 sin θ + H1

r
a
sin 2θ

)
θ̂ (r < a),[

H0

(
1 + μ′−μ

μ′+μ
a2

r2

)
cos θ + H1

(
r
a

+ μ′−μ
μ′+μ

a3

r3

)
cos 2θ

]
r̂

−
[
H0

(
1 − μ′−μ

μ′+μ
a2

r2

)
sin θ + H1

(
r
a
− μ′−μ

μ′+μ
a3

r3

)
sin 2θ

]
θ̂ (r > a),

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2μ
μ′+μ

(
H0 + H1

x
a

)
x̂ − 2μ

μ′+μ
H1

y
a

ŷ (r < a),[
H0

(
1 + μ′−μ

μ′+μ
a2

r2 cos 2θ
)

+ H1

(
x
a

+ μ′−μ
μ′+μ

a3

r3 cos 3θ
)]

x̂

+
[

μ′−μ
μ′+μ

H0
a2

r2 sin 2θ + H1

(
− y

a
+ μ′−μ

μ′+μ
a3

r3 sin 3θ
)]

ŷ (r > a).

(19)

The total magnetic field is the sum of eqs. (12) and (19),

H =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2μ
μ′+μ

(
H0 cos θ + H1

r
a
cos 2θ

)
r̂ +

[
2Ir
ca2 − 2μ

μ′+μ

(
H0 sin θ + H1

r
a
sin 2θ

)]
θ̂ (r < a),[

H0

(
1 + μ′−μ

μ′+μ
a2

r2

)
cos θ + H1

(
r
a

+ μ′−μ
μ′+μ

a3

r3

)
cos 2θ

]
r̂

+
[

2I
cr
− H0

(
1 − μ′−μ

μ′+μ
a2

r2

)
sin θ − H1

(
r
a
− μ′−μ

μ′+μ
a3

r3

)
sin 2θ

]
θ̂ (r > a),

(20)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
2μ

μ′+μ

(
H0 + H1

r
a
cos θ

) − 2Ir
ca2 sin θ

]
x̂ +

(
2Ir
ca2 cos θ − 2μ

μ′+μ
H1

r
a
sin θ

)
ŷ (r < a),[

H0

(
1 + μ′−μ

μ′+μ
a2

r2 cos 2θ
)

+ H1

(
r
a
cos θ + μ′−μ

μ′+μ
a3

r3 cos 3θ
)
− 2I

cr
sin θ

]
x̂

+
[

μ′−μ
μ′+μ

H0
a2

r2 sin 2θ + H1

(
− r

a
sin θ + μ′−μ

μ′+μ
a3

r3 sin 3θ
)

+ 2I
cr

cos θ
]
ŷ (r > a).

(21)

Of course,

B =

⎧⎨
⎩ μ′H (r < a),

μH (r > a).
(22)

These forms obey the matching conditions that Br and Hθ are continuous at the boundary
r = a. Similarly, the magnetization is given by,

M =

⎧⎨
⎩

μ′−1
4π

H (r < a),

μ−1
4π

H (r > a).
(23)
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2.2 Calculation of the Force via the Maxwell Stress Tensor

We calculate the force on unit length of the wire by integrating the Maxwell stress tensor
over a cylindrical surface of radius r > a, so that any effects at the surface r = a (both
the outer surface of the wire at r = a− and the inner surface of the liquid at r = a+) are
included. The surface element at radius r is,

dS = r dθ r̂ = r dθ (cos θ x̂ + sin θ ŷ). (24)

In rectangular coordinates, and for r > a where the permeability is μ, the Maxwell stress
tensor for the magnetic fields (ignoring magnetostriction) is,7

Tij =
1

4π

(
BiHj − δij

2
B · H

)
=

μ

4π

(
HiHj − δij

2
H2

)
(25)

We first calculate the x component of the force which is not expected to depend on the
current I , so we drop terms in I2 and IH that would eventually integrate to zero. Then,

Fx =

∫
(Txx dSx + Txy dSy) =

μr

8π

∫ 2π

0

(H2
x − H2

y ) cos θ dθ +
μr

4π

∫ 2π

0

HxHy sin θ dθ

=
μr

8π

∫ 2π

0

{[
H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
+ H1

(
r

a
cos θ +

μ′ − μ

μ′ + μ

a3

r3
cos 3θ

)]2

−
[
μ′ − μ

μ′ + μ
H0

a2

r2
sin 2θ + H1

(
−r

a
sin θ +

μ′ − μ

μ′ + μ

a3

r3
sin 3θ

)]2
}

cos θ dθ

+
μr

4π

∫ 2π

0

[
H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
+ H1

(
r

a
cos θ +

μ′ − μ

μ′ + μ

a3

r3
cos 3θ

)]
[
μ′ − μ

μ′ + μ
H0

a2

r2
sin 2θ + H1

(
−r

a
sin θ +

μ′ − μ

μ′ + μ

a3

r3
sin 3θ

)]
sin θ dθ

=
μr

8π

∫ 2π

0

[
H2

0 + 2H0H1
r

a
cos θ + H2

1

r2

a2
cos2 θ

+ 2
μ′ − μ

μ′ + μ

(
H0H1

a

r
cos θ + (H2

0 + H2
1 )

a2

r2
cos 2θ + H0H1

a3

r3
cos 3θ

)

+

(
μ′ − μ

μ′ + μ

)2 (
H2

0

a4

r4
cos 4θ + 2H0H1

a5

r5
cos 5θ + H2

1

a6

r6
cos 6θ

)]
cos θ dθ

+
μr

8π

∫ 2π

0

[
−2H0H1

r

a
sin θ −H2

1

r2

a2
sin2 θ

+ 2
μ′ − μ

μ′ + μ

(
H0H1

a

r
sin θ + (H2

0 + H2
1 )

a2

r2
sin 2θ + H0H1

a3

r3
sin 3θ

)

+

(
μ′ − μ

μ′ + μ

)2 (
H2

0

a4

r4
sin 4θ + 2H0H1

a5

r5
sin 5θ + H2

1

a6

r6
sin 6θ

)]
sin θ dθ

7This form differs slightly from that discussed by Maxwell in secs. 639-459 of his Treatise [25], and
corresponds to the stress tensor for linear magnetic media, as apparently first deduced by Lorentz [33],
starting from the (Lorentz) force density f = ρE + J/c ×B.
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=
μ′ − μ

μ′ + μ

μH0H1a

4π

∫ 2π

0

dθ +
μH0H1r

2

4πa

∫ 2π

0

cos 2θ dθ =
μ′ − μ

μ′ + μ

aB0H1

2
. (26)

We now calculate the y component of the force, which is expected to exhibit the J × B
force (3) proportional to IH0, so we drop terms in I2 and H2 that eventually would integrate
to zero. Then,

Fy =

∫
(Tyx dSx + Tyy dSy) =

μr

4π

∫ 2π

0

HxHy cos θ dθ +
μr

8π

∫ 2π

0

(H2
y − H2

x) sin θ dθ

=
μr

4π

∫ 2π

0

[
H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
+ H1

(
r

a
cos θ +

μ′ − μ

μ′ + μ

a3

r3
cos 3θ

)
− 2I

cr
sin θ

]
·[

μ′ − μ

μ′ + μ
H0

a2

r2
sin 2θ + H1

(
−r

a
sin θ +

μ′ − μ

μ′ + μ

a3

r3
sin 3θ

)
+

2I

cr
cos θ

]
cos θ dθ

+
μr

8π

∫ 2π

0

{[
μ′ − μ

μ′ + μ
H0

a2

r2
sin 2θ + H1

(
−r

a
sin θ +

μ′ − μ

μ′ + μ

a3

r3
sin 3θ

)
+

2I

cr
cos θ

]2

−
[
H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
+ H1

(
r

a
cos θ

μ′ − μ

μ′ + μ

a3

r3
cos 3θ

)
− 2I

cr
sin θ

]2
}

sin θ dθ

=
μI

2πc

∫ 2π

0

[
H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
cos2 θ +

μ′ − μ

μ′ + μ
H1

a3

r3
cos 3θ cos2 θ

− H0

2

μ′ − μ

μ′ + μ

a2

r2
sin2 2θ − μ′ − μ

μ′ + μ
H1

a3

r3
sin 3θ sin θ cos θ

]
dθ

+
μI

2πc

∫ 2π

0

[
H0

2

μ′ − μ

μ′ + μ

a2

r2
sin2 2θ +

μ′ − μ

μ′ + μ
H1

a3

r3
sin 3θ sin θ cos θ

+ H0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
sin2 θ − μ′ − μ

μ′ + μ
H1

a3

r3
cos 3θ cos2 θ

]
dθ

=
μIH0

2πc

∫ 2π

0

(
1 +

μ′ − μ

μ′ + μ

a2

r2
cos 2θ

)
dθ =

μIH0

c
=

IB0

c
. (27)

The force is independent of the choice of the radius r, so long as r > a, is independent of
the permeability μ′ of the wire, and agrees with the simple expectation (3).

For the record, if we had integrated the stress tensor over a cylinder of radius r < a
the result would be F = 2μ′IB0r

2 ŷ/a2(μ′ + μ). Since the limit of this as r → a does not
equal the result for r > a, we infer that there are important effects at the interface r = a.
The permeable liquid is presumably contained in a tank of some characteristic radial scale
b � a, at whose surface additional magnetization forces will arise. We consider these forces
as distinct from those at the interface r = a, and that only the latter are part of the forces
on the wire.

Equation (27) was deduced in a similar manner in ref. [1].

2.3 Calculation Using the Bulk Force Density

An expression for a bulk force density f in magnetic media can be obtained by transformation
of the surface integral of the stress tensor into a volume integral. See, for example, secs. 15
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and 35 of [18]. The result, again ignoring magnetostriction, is,

f =
Jcond

c
×B − H2

8π
∇μ, (28)

which is due to Helmholtz [34].
In the present problem, ∇μ = 0 except across the surface r = a that separates the wire of

permeability μ′ from the surrounding medium of permeability μ. Hence, the ∇μ term of the
volume integral of eq. (28) becomes a surface integral on the cylinder r = a. However, care
is required in this procedure when H2 is not continuous across this surface. Recalling that
the tangential component Ht and the normal component Bn = μHn of the magnetic fields
are continuous across a boundary, it is preferable to write H2 = H2

t + H2
n = H2

t + B2
n/μ2.

Then,8∫
H2∇μ dVol =

∫ (
H2

t +
B2

n

μ2

)
∂μ

∂n
n̂ dS =

∫ (
H2

t

∂μ

∂n
−B2

n

∂(1/μ)

∂n

)
n̂ dS, (29)

and,

F =

∫
f dVol =

∫
Jcond

c
× B dVol − μ − μ′

8π

∫
H2

t n̂ dS +
1

8π

(
1

μ
− 1

μ′

) ∫
B2

n n̂ dS. (30)

In contrast to the simple prescription given at the beginning of sec. 2, in this integral the
magnetic field B is the field on the current element Jcond dVol from all sources, including
those in element dVol. For the second and third terms of eq. (30) where n̂ = r̂, we recall
eq. (11) that for the x and y components we need only the parts of H2

θ and B2
r that vary as

cos θ and sin θ, respectively. From eq. (21) we find,

H2
θ = 4B0H1

μ

(μ′ + μ)2
cos θ − 8

μ′ + μ

IB0

ca
sin θ + ..., (31)

B2
r = 4B0H1

μμ′2

(μ′ + μ)2
cos θ + ... (32)

Thus,

F =
1

c

∫ a

0

r dr

∫ 2π

0

dθ
I

πa2
ẑ ×

μ′
{[

2

μ′ + μ

(
B0 + B1

r

a
cos θ

)
− 2Ir

ca2
sin θ

]
x̂ +

(
2Ir

ca2
cos θ − 2

μ′ + μ
B1

r

a
sin θ

)
ŷ

}

− μ − μ′

8π

∫ 2π

0

a dθ

(
4B0H1

μ

(μ′ + μ)2
cos θ

)
cos θ x̂

− μ − μ′

8π

∫ 2π

0

a dθ

(
− 8

μ′ + μ

IB0

ca
sin θ

)
sin θ ŷ

+
μ′ − μ

8πμμ′

∫ 2π

0

a dθ

(
4B0H1

μμ′2

(μ′ + μ)2
cos θ

)
cos θ x̂

8Thanks to J. Castro for pointing out this trick. It appears in eq. (7-21) of [35] when evaluating the
electric integral

∫
E2∇ε dVol, and in Ex. 13.5 of [36] for the magnetic case.
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=
2μ′

μ′ + μ

IB0

c
ŷ − (μ − μ′)

aB0H1

2

μ

(μ′ + μ)2
x̂ +

μ − μ′

μ′ + μ

IB0

c
ŷ − (μ − μ′)

aB0H1

2

μ′

(μ′ + μ)2
x̂

=
μ′ − μ

μ′ + μ

aB0H1

2
x̂ +

IB0

c
ŷ. (33)

This agrees with the calculation of the previous section via the stress tensor.

3 Use of Magnetization Currents or Effective

Magnetic Poles

We now take a different approach to the calculation of the force on the wire, whereby
the effects due to magnetization are included via either the magnetization current density
JM = c∇×M (and the associated surface current KM = c M× n̂) or via the effective pole
density ρM,eff = −∇ ·M (and the associated surface pole density σM,eff = M · n̂).9 The wire
is considered to consist of filaments along the z axis, and the total force is calculated as an
integral over the force on the filaments in the spirit of the Biot-Savart force law.

The hope is that this approach would provide more intuitive explanations for the term
−(H2/8π)∇μ in the bulk force expression (28). However, we achieve success only with
prescriptions that differ in an important way from those advocated by Brown [11] on behalf
of the Coulomb Committee.

3.1 Calculation Using Magnetization Currents

In the first version of this calculation, we include the so-called bound current density due to
the bulk magnetization M,

JM = c∇ × M =
μ′ − 1

4π/c
∇× H = (μ′ − 1)Jcond, (34)

since the magnetic field H is related to the conduction current density Jcond by Ampère’s
law, ∇ × H = 4πJcond/c in magnetostatics. Thus, the total current in the interior of the
wire is,

Jtotal = JM + Jcond = μ′Jcond. (35)

The current density Jtotal is the one that should be used in the microscopic version of
Ampère’s law ∇ × B = (4π/c)Jtotal, which leads to B(I) = 2μ′Ir θ̂/ca2 = μ′H(I) inside
the wire. Since eq. (35) by itself also implies that B(I) = 2μ′I θ̂/cr outside the wire, we
see that in addition to the volume magnetization current density JM , there must be surface
currents at r = a. On the outer surface of the wire the current density is given by,

KM(r = a−) = c M(r = a−) × r̂ = c
μ′ − 1

4π
Hθ(r = a−) θ̂ × r̂ (36)

= −μ′ − 1

4π

[
2I

a
− 2μ

μ′ + μ
c(H0 sin θ + H1 sin 2θ)

]
ẑ,

9The effective magnetic poles are a representation of effects of Ampèrian currents, and are distinct from
possible “true” (Gilbertian) magnetic poles that apparently do not exist in Nature.
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while surface current density on the inner surface of the medium surrounding the wire is,

KM(r = a+) = c M(r = a+) × (−r̂) =
μ − 1

4π

[
2I

a
− 2μ

μ′ + μ
c(H0 sin θ + H1 sin 2θ)

]
ẑ. (37)

The total surface current density is thus,

KM =
μ − μ′

4π

[
2I

a
− 2μ

μ′ + μ
c(H0 sin θ + H1 sin 2θ)

]
ẑ. (38)

By adding the surface current (38) to the microscopic form of Ampère’s law, we should
be able to deduce that part of the magnetic field B not initially present. The first term of
eq. (38) has no effect on B for r < a, while for r > a it adds a piece 2(μ−μ′)I/cr, so the total
magnetic field outside the wire due to current I is B(I) = 2μI θ̂/cr = μH(I), as expected.
The second term of eq. (38) contributes to the magnetic field both inside and outside the
wire, and in principle provides an alternative method of calculating the fields summarized
in eq. (19).

The force on a current-carrying filament is now to be calculated using an appropriate
version of the Biot-Savart law. Having tried numerous possible variations, we only find
agreement with eqs. (26) and (27) if the magnetic field we use is Hi and not Bi, where i
means the initial fields before the wire was introduced into the permeable liquid. See sec. 3.3
for additional discussion. Apparently, this prescription was the one advocated by Lorentz
[33]. However, Brown, in his eq. (1.3-4′) of [11], advocated the use of the initial field Bi (as
also advocated in [37].)

It is also important to use the initial field as given by eq. (9), and not the field that would
hold if a cylindrical cavity of radius a were introduced into the permeable liquid.

The magnetic force per unit length on the volume currents and surface currents is to be
calculated as,

F =
1

c

∫
Jtotal × Hi dVol +

1

c

∫
KM × Hi(r = a) dS, (39)

where Jtotal is given by eqs. (8) and (35), and the surface current KM is given by eq. (38).
Then,

F =
1

c

∫ a

0

r dr

∫ 2π

0

dθ
μ′I
πa2

ẑ ×
[(

H0 + H1
r

a
cos θ

)
x̂ − H1

r

a
sin θŷ

]

+
1

c

∫ 2π

0

a dθ
μ − μ′

4π

[
2I

a
− 2μ

μ′ + μ
c(H0 sin θ + H1 sin 2θ)

]
ẑ ×

[(H0 + H1 cos θ) x̂− H1 sin θ ŷ]

= μ′ IH0

c
ŷ + μ

μ′ − μ

μ′ + μ

aH0H1

2
x̂ + (μ − μ′)

IH0

c
ŷ = μ

μ′ − μ

μ′ + μ

aH0H1

2
x̂ +

μIH0

c
ŷ

=
μ′ − μ

μ′ + μ

aB0H1

2
x̂ +

IB0

c
ŷ, (40)

in agreement with eqs. (26) and (27). If we had used the field Bi, the result would be μ
times the above.

Another variant is to use only the surface current (36) on the wire and not that, eq. (37),
on the inner surface of the surrounding medium, but this fails badly. See sec. 4 for a variant
in which the total magnetic field is used, rather than the initial field.
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3.2 Calculation Using Effective Magnetic Poles

The forces on the magnetization of the media might also considered as due to a density
of effective magnetic poles, rather than being due to currents JM and KM . Some care is
required to use this approach, since a true magnetic pole density ρM would imply ∇ · B =
4πρM , and the bulk force density on these poles would be F = ρMH.10 However, in reality
0 = ∇ · B = ∇ · (H + 4πM), so we can write,

∇ · H = −4π∇ · M = 4πρM,eff, (41)

and we identify ρM,eff = −∇ · M as the volume density of effective magnetic poles. Inside
linear magnetic media, such as those considered here, B = μ′H and ∇ · B = 0 together
imply that ρM,eff = 0. However, a surface density σM,eff of effective poles can exist on an
interface between two media, and we see that Gauss’ law for the field H implies that,

σM,eff =
(H2 − H1) · n̂

4π
, (42)

where unit normal n̂ points across the interface from medium 1 to medium 2. The surface
pole density can also be written in terms of the magnetization M = (B − H)/4π as,

σM,eff = (M1 − M2) · n̂, (43)

since ∇ · B = 0 insures that the normal component of B is continuous at the interface.
In the present problem, the density of effective magnetic poles on the surface r = a is

given by,

σM,eff =
Hr(r = a+) − Hr(r = a−)

4π
=

1

2π

μ′ − μ

μ′ + μ
(H0 cos θ + H1 cos 2θ). (44)

The force on the surface density of effective magnetic poles is,

F = σM,effB(r = a), (45)

noting that the effective (ampèrian) poles couple to B rather than to H.11,12

10See [16] for additional discussion of true and effective magnetic charges.
11Poisson [38] worked exclusively with the magnetic field H, but realized that the effective force on a

true (Gilbertian) magnetic pole p is not necessarily F = pH if the pole is at rest inside a bulk medium,
which results in an altered force on the pole depending on the assumed shape of the surrounding cavity.
W. Thomson (Lord Kelvin) noted in 1850 [39] that for a pole in a disk-shaped cavity with axis parallel to
the magnetization M of the medium, the force would be F = p(H + 4πM), and therefore he introduced
the magnetic field B = H + 4πM “according to the electromagnetic definition” (in Gaussian units). In
sec. 400 of his Treatise [25], Maxwell follows Thomson in stating that the effective force on a true magnetic
pole is usefully considered to be F = pB (Gaussian units). This convention for the effective force on a true
(Gilbertian) magnetic pole is the same as the “true” force on an effective (Ampèrian) magnetic pole, which
latter is the topic of the sec. 3.2 of this note.

12We note that Brown in his eq. (1.3-3) of [11] recommends that the initial field Hi be used rather than
Bi when using the method of effective magnetic poles. However, this would imply a force 1/μ times that of
eq. (45).
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The total force on the medium in this view is the sum of the force on the conduction
current plus the force on the effective surface poles, where to avoid calculating a spurious
force of the wire on itself we use the initial magnetic field Bi,

F =
1

c

∫
Jcond × Bi dVol +

∫
σM,effBi(r = a) dS. (46)

Then,

F =
1

c

∫ a

0

r dr

∫ 2π

0

dθ
I

πa2
ẑ × B0 x̂

+

∫ 2π

0

a dθ
1

2π

μ′ − μ

μ′ + μ
(H0 cos θ + H1 cos 2θ) · [(B0 + B1 cos θ) x̂ − B1 sin θ ŷ]

=
μ′ − μ

μ′ + μ

aH0B1

2
x̂ +

IB0

c
ŷ, (47)

in agreement with eqs. (26) and (27), since H0B1 = B0H1.

3.3 The Biot-Savart Force Law in a Permeable Medium

The results of secs. 3.1 and 3.2 show that care is needed when using the Biot-Savart force
law in permeable media. We review this issue by starting with the simpler case that the
wire and the surrounding liquid both have the same permeability μ �= 1. Then, there is
neither a surface current nor an effective pole density at the interface between the wire and
the liquid. However, there remains the volume current density JM = (μ − 1)Jcond, so that
the total current is still Jtotal = μJcond. Since the force on the wire is correctly calculated
via the force law,

F =
1

c

∫
Jcond × Bi dVol, (48)

using the conduction current, we see that if we wish to use the total current we must write,

F =
1

c

∫
Jtotal

μ
× Bi dVol =

1

c

∫
Jtotal × Hi dVol. (49)

The other aspect of the analysis of Biot and Savart is the calculation of the magnetic
field from the current density. The microscopic version of Ampère’s law,

∇ × B =
4π

c
Jtotal, (50)

corresponds to the prescription that,

B =
1

c

∫
Jtotal × r̂

r2
dVol =

μ

c

∫
Jcond × r̂

r2
dVol = μH. (51)

Hence, the macroscopic version of Ampère’s law,

∇ × H =
4π

c
Jcond, (52)
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corresponds to the prescription that,

H =
1

c

∫
Jcond × r̂

r2
dVol, (53)

independent of the permeability.
The form of the eq. (2) for the force on circuit a due to circuit b supposing the wires and

the surrounding media all have permeability μ is therefore,

Fa =
Ia

c

∮
a

dla × Bb = μ
IaIb

c2

∮
a

dla ×
∮

b

dlb × r̂ab

r2
ab

, (54)

where Ia and Ib are the conduction currents in the circuits. We also see that eq. (54) holds
even if the wires have permeabilities μa and μb that differ from the permeability μ of the
surrounding medium, since the magnetic field due to wire b at the position of wire a before
wire a was introduced is given by Bb = μHb, which depends on neither μa nor μb.

An extensive bibliography on conceptual issues in magnetism is at [40].

4 There is No General Macroscopic Version of the Lorentz

Force Law Using Total Fields

The Lorentz Force law for a moving electric charge q in microscopic electrodynamics has the
well-known form,13

F = q
(
E +

v

c
× B

)
(microscopic). (55)

This suggests that in macroscopic electrodynamics the force density on charge and currents
densities ρ and J might be written as,

F
?
= ρE +

J

c
× B (macroscopic), (56)

where here the total fields E and B are the macroscopic averages of the corresponding
microscopic fields, and the charge and current densities might be either the “free” or “total”,

ρtotal = ρfree + ρbound = ρfree −∇ · P, Jtotal = Jfree + Jbound = Jfree +
∂P

∂t
+ c∇ × M.(57)

However, the present example shows that the supposed macroscopic form (56) is not
generally valid if the total fields E and B are used.14

13It is generally considered that Heaviside first gave the Lorentz force law (28) for electric charges in
[42], but the key insight is already visible for the electric case in [41] (and for the magnetic case in [43]).
Lorentz himself seems to have advocated the form qv × μ0H in eq. (V), sec. 12 of [33]. See also eq. (23)
of [44]. Maxwell gave a version of the Lorentz force law in eq. (10), Art. 599 of [25], where he wrote
F/q = v × B− ∇φ − ∂A/∂t, but he made little use of this elsewhere.

14Another example of the delicacy in the use of a macroscopic Lorentz force law concerns the torque on
a magnetized object that is immersed in a permeable liquid, all in a magnetic field [45].

13



To see this, it suffices to consider only the case where the external field, in the medium
with relative permeability μ, has the form,

Bi = B0 x̂ = μH0 x̂. (58)

Then, from eq. (20) with B0 = μH0 and H1 = 0 the total magnetic field inside the wire (of
relative permeability μ′) is,

Btotal(r < a) = μ′Htotal(r < a) =
2μ′

μ′ + μ
B0 cos θ r̂ +

(
2μ′Ir

ca2
− 2μ′

μ′ + μ
B0 sin θ

)
θ̂

=

(
2μ′

μ′ + μ
B0 − 2μ′Iy

ca2

)
x̂ +

2μ′Ix

ca2
ŷ =

2μ′Ir

ca2
θ̂ +

2μ′

μ′ + μ
B0 x̂. (59)

Thus,∫
r<a

Jfree

c
×Btotal dVol =

I

πa2c

∫
ẑ ×Btotal dVol =

2μ′

μ′ + μ

IB0

c
ĉ =

2μ′

μ′ + μ
Fwire. (60)

Hence, the candidate macroscopic force law,

F
?
= ρfreeEtotal +

Jfree

c
× Btotal (macroscopic), (61)

is not valid for the present example if either μ or μ′ differ from unity or from each other.
To consider the candidate macroscopic force law,

F
?
= ρtotalEtotal +

Jtotal

c
×Btotal (macroscopic), (62)

we note that the magnetization inside the wire is given by,

Mwire(r < a) =
μ′ − 1

4π
Htotal(r < a) =

μ′ − 1

4πμ′ Btotal(r < a)

=
μ′ − 1

2π

[
B0 cos θ

μ′ + μ
r̂ +

(
Ir

ca2
− B0 sin θ

μ′ + μ

)
θ̂

]
, (63)

and since ∇×Bi = 0 inside the wire the bound current density associated with the wire is,

Jbound(r < a) = c∇ × M =
μ′ − 1

πa2
I ẑ, so Jtotal = Jfree + Jbound =

μ′I
πa2

ẑ = μ′Jfree. (64)

In addition, there is a bound current density on the surface of the wire,15 as in eq. (36) with
H1 = 0,

Kbound(r = a−) = cM(r = a−) × r̂ =
μ′ − 1

2π

(
cB0 sin θ

μ′ + μ
− I

a

)
ẑ. (65)

When evaluating the force on the surface current Kbound we should not use the magnetic
field Btotal(r = a−), since in the microscopic view the magnetic field varies continuously

15There is also a bound surface current density on the inner surface of the medium at r > a.
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(and approximately linearly) with r across the surface current layer, which has a small but
finite thickness. Considering a loop in a plane of constant z, with azimuthal length dl and
infinitesimal thickness in r from r = a− to r = a, which surrounds an element of the surface
current on the wire, we have that,

4π

c

∫
Kbound(r = a−) · dArea =

4π

c
Kbound(r = a−) dl (66)

=

∮
Btotal · dl = [Bθ,total(r = a) −Bθ,total(r = a−)] dl,

such that,

Bθ,total(r = a) = Bθ,total(r = a−) +
4π

c
Kbound(r = a−). (67)

Of course, Br,total(r = a) = Br,total(r = a−), so the effective magnetic field which acts on the
surface current is,

Btotal,eff(r = a−) =
Btotal(r = a−) + Btotal(r = a)

2
= Btotal(r = a−) +

2π

c
Kbound(r = a−)θ

=
2μ′B0

μ′ + μ
x̂ +

[
2μ′I
ca

+ (μ′ − 1)

(
B0 sin θ

μ′ + μ
− I

ca

)]
θ

=
2μ′B0

μ′ + μ
x̂ +

(
(μ′ + 1)I

ca
+

(μ′ − 1)B0 sin θ

μ′ + μ

)
θ. (68)

Then, the candidate force on the total currents at r < a is,∫
r<a

Jtotal

c
× Btotal dVol +

∫
r=a−

Ktotal

c
× Btotal,eff dArea

=

∫
r<a

μ′Jfree

c
× Btotal dVol +

∫
r=a−

Kbound

c
× Btotal,eff dArea

=
2μ′2

μ′ + μ

IB0 ŷ

c
− 2μ′2 − μ′ − 1

μ′ + μ

IB0 ŷ

c
=

μ′ + 1

μ′ + μ

IB0 ŷ

c
, (69)

recalling eq. (60).
It is also reasonable to suppose that the total current should include the surface current

at r = a+ on the inner surface of the permeable liquid that surrounds the wire. From eq. (37)
with H1 = 0,

Kbound(r = a+) = c M(r = a+) × (−r̂) =
μ − 1

2π

[
I

a
− cB0 sin θ

μ′ + μ

]
ẑ. (70)

An argument similar to that which led to eq. (67) indicates that,

Bθ,total(r = a) = Bθ,total(r = a+) − 4π

c
Kbound(r = a+). (71)
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Of course, Br,total(r = a) = Br,total(r = a−), so the effective magnetic field which acts on the
surface current is,

Btotal,eff(r = a+) =
Btotal(r = a+) + Btotal(r = a)

2

= Btotal(r = a+) − 2π

c
Kbound(r = a+)θ, (72)

Btotal,eff,x(r = a+) = B0

(
1 +

μ′ − μ

μ′ + μ
cos 2θ

)
−

[
(μ + 1)I

ca
+

(μ − 1)B0 sin θ

μ′ + μ

]
sin θ.

The force on the surface current Kbound(r = a+) has only a y-component, given by,∫
r=a+

Ktotal

c
× Btotal,eff dArea

∣∣∣
y

= a

∫
r=a+

Kbound(r = a+)

c
Btotal,eff,x(r + a+) dθ

= (μ − 1)

(
1 +

1

μ′ + μ

)
IB0

c
. (73)

Adding this to the result of eq. (69), the candidate force on the total current is,

μIB0

c
ŷ. (74)

Hence, the candidate form (62) is also not valid for the present example if μ differs from
unity.16,17

We have seen in previous sections that the magnetic force on a wire of relative perme-
ability μ′ can be written as,

F =

∫
Jfree

c
× Bi dVol =

∫
Jtotal

c
× Hi dVol, (75)

where Bi = μ′Hi are the fields that would exist at the location of the wire in its absence. It
is clear from the results in this section that the force on such a wire cannot be written as,∫

Jfree

c
× Htotal dVol, nor as

∫
Jtotal

c
× Htotal dVol, nor as

∫
Jfree

c
× Hi dVol,

nor as

∫
Jfree

c
× Btotal dVol, nor as

∫
Jtotal

c
× Bi dVol. (76)

16If the medium surrounding the wire has unit relative permeability, μ = 1, then the form (62) is still valid.
This has given validation to that form for the unwary, as in [5] and prob. 13.14 of [36]. This reinforces the
theme of [3] that one must consider examples with two different, nonunit relative permeabilities to confront
the full subtlety of magnetic force calculations.

17The Einstein-Laub force density [5] appears to be derived from the force law (62) according to Appendix
B of [46], and hence is not valid in general.
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4.1 Radial Gap between the Wire and the Surrounding Permeable

Medium

To illustrate further the possible applicability of the candidate force density (62) when per-
meable media are present, we consider the case of a wire of relative permeability μ′ and
radius a along the z-axis, surrounded by a medium of relative permeability μ in the region
r > b. The region a < r < b is vacuum. The initial/external magnetic field Bi, in the
absence of the wire is B0 x̂ for r < b, so we might again expect the force on the wire to be
given by eq. (3) when it carries current I.

At large r the initial/external field has the form,

Bi = B∞ x̂, Hi =
B∞
μ

x̂ = −∇
(
−B∞

μ
x

)
= −∇

(
−B∞

μ
r cos θ

)
, (77)

where the relation between B∞ and B0 is to be determined such that as b → a the fields
become those of eq. (59).

To use the candidate force density (62) we need to know Btotal when the wire is present
and carrying current I . We begin by computing the magnetic fields Bj and Hj when the
wire is present but with zero current.

When the free current in the wire is zero, ∇ ×Hj = 0 (except at the distant location of
the sources of the initial field), so we can write Hj = −∇ΦM , where ΦM is a (continuous)
magnetic scalar potential of the form,

ΦM (r < a) = A
r

a
cos θ, (78)

ΦM (a < r < b) = B
r

a
cos θ + C

a

r
cos θ, (79)

ΦM (r > b) = D
a

r
cos θ − B∞

μ
r cos θ. (80)

Continuity of ΦM at r = a and b implies that,

A = B + C, and D =
b2

a2
B + C +

b2B∞
μa

. (81)

Continuity of the radial component of Bj at r = a and b implies that,

μ′∂ΦM(r = a−)

∂r
=

∂ΦM(r = a+)

∂r
, and

∂ΦM(r = b−)

∂r
= μ

∂ΦM(r = b+)

∂r
, (82)

and hence,

μ′A = B − C, and B − a2

b2
C = −μ

a2

b2
D − aB∞. (83)

After some algebra,

B =
μ′ + 1

2
A, C = −μ′ − 1

2
A, D =

A

2a2
[μ′(b2 − a2) + b2 + a2],

A

a
= − 4b2B∞

(μ + μ′)(b2 + a2) + (1 + μμ′)(b2 − a2)
= − 4b2B∞

(μ′ + 1)(μ + 1)b2 − (μ′ − 1)(μ − 1)a2
.(84)
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As b → a the magnetic field at r < a with the wire present but with zero current is,

Bj(r < a) = μ′Hj(r < a) = −μ′A(b → a)

a
x̂ =

2μ′B∞
μ′ + μ

x̂. (85)

For this limit to agree with eq. (59) we simply take B∞ = B0, and the magnetic field for
b > a with the wire present but with zero current is,18

Bj(r < a) = μ′Hj(r < a) = −μ′A
a

x̂ =
4μ′B0

(μ′ + 1)(μ + 1) − (μ′ − 1)(μ − 1)a2/b2
x̂. (86)

The expression for the magnetic field due to the current I in the wire is the same for r < a
in the present case and in eq. (59), so formally the total field B for r < a in the present case
differs from the previous case only by an additional factor (which goes to 1 as b → a),

2(μ′ + μ)

(μ′ + 1)(μ + 1) − (μ′ − 1)(μ − 1)a2/b2
, (87)

that multiplies terms in B0 (in B and in Kbound). As such, we can immediately transcribe
the result (69) for the force per unit length on the wire (but not on the medium outside the
wire) computed with the candidate force density (62) as,

Fwire =
μ′ + 1

μ′ + μ

IB0 ŷ

c

2(μ′ + μ)

(μ′ + 1)(μ + 1) − (μ′ − 1)(μ − 1)a2/b2

=
2(μ′ + 1)

(μ′ + 1)(μ + 1) − (μ′ − 1)(μ − 1)a2/b2

IB0 ŷ

c
. (88)

For confirmation of eq. (88), we consider the force per unit length on the wire as deduced
from the Maxwell stress tensor just outside the surface of the wire, where r = a+. The total
field here can be obtained from the total field just inside the wire, at r = a−, by recalling
that the radial component of B and the tangential component of H are continuous across
the surface of the wire. Hence,

B(r = a+) = H(r = a+) = −μ′A
a

r̂ cos θ +
A

a
θ̂ sin θ +

2I

ca
θ̂ (89)

= −
(

A

2a
[μ′ + 1 + (μ′ − 1) cos 2θ] +

2I

ca
sin θ

)
x̂ +

(
−(μ′ − 1)

A

2a
sin 2θ +

2I

ca
cos θ

)
ŷ.

We expect only a nonzero y-component to the force on the wire, which is computed at r = a+

via the Maxwell stress tensor as in eq. (27),

Fy =

∫
(Tyx dSx + Tyy dSy) =

a

4π

∫ 2π

0

HxHy cos θ dθ +
a

8π

∫ 2π

0

(H2
y − H2

x) sin θ dθ

=
a

4π

∫ 2π

0

[
A

2a
[μ′ + 1 + (μ′ − 1) cos 2θ] +

2I

ca
sin θ

]
18If μ′ = 1 then eq. (86) becomes the initial field in the absence of the wire, Bi(r < a) = 2B0 x̂/(μ + 1),

whose strength differs from the initial field B0 when the permeability is μ in the absence of the wire.
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[
−(μ′ − 1)

A

2a
sin 2θ +

2I

ca
cos θ

]
cos θ dθ

+
a

8π

∫ 2π

0

{[
−(μ′ − 1)

A

2a
sin 2θ +

2I

ca
cos θ

]2

−
[

A

2a
[μ′ + 1 + (μ′ − 1) cos 2θ] +

2I

ca
sin θ

]2
}

sin θ dθ (90)

=
AI(μ′ + 1)

2πca

∫ 2π

0

cos2 θ dθ =
AI(μ′ + 1)

2ca
=

2(μ′ + 1)

(μ′ + 1)(μ + 1) − (μ′ − 1)(μ − 1)a2/b2

IB0

c
,

which agrees with the candidate expression (88) for the force on the wire.19

However, the force (88) and (90) is not of the form I × Bi/c, as the initial field in the
absence of the wire is Bi(r < a) = 2B0 x̂/(μ + 1). Thus it appears that the prescription (3)
is not true in general, as anticipated in footnote 3.

While the macroscopic Lorentz force “law” (62) does not hold in general, the present
considerations do not exclude that this form is valid for computation of the force on charges
and currents that are surrounded by vacuum.
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