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Physics 103/105 labs start Monday September 27, 2010.  It's important that you go to the 
lab section that you signed up for.  We will be expecting you! 
 

You should have a lab book and a scientific calculator when you come to your first lab.  
(See details in the Orientation section following.) 
 

Each week, before you come to lab: 
 

Read the procedure for that week's lab, and any additional reading required. 
 

The Prelab problems are optional, but please work them if it appears that they 
will be of help to you. 
 

Also, for the first week: 
 

Read the “Orientation to Physics 103/105 Lab” and Appendices A and B. 
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Princeton University Physics 103/105 Lab, Fall 2010 
Physics Department  
 

LAB SCHEDULE 
 
Date  Topics       Experimentation   Equipment                           
 

Sept 20-24 NO LAB   

Sept 27-30 Experiment # 1 

Motion in 2 
Dimensions  

Analyze motion of a bouncing ball, 
using VideoPoint and Excel. 

PC & CCD camera. 

Ball & launcher  

 

Oct 4-7 

 

Experiment # 2 

Fluids 

Forces in fluids and fluid flow  

Oct 11-14 Experiment # 3 

Collisions 

Collisions in two dimensions 

Conservation  laws 

PC & CCD camera  

Air table, with pucks 

Oct 18-20 Experiment # 4 

Friction 

Friction during constant 
acceleration on an inclined plane 

PC & CCD camera. 

Cart, tilted ramp 

Oct 25-29 NO LAB --- MIDTERM EXAMS ---  

Nov 1-4 NO LAB --- MIDTERM BREAK ---  

Nov 8-11  Experiment # 5 

Loop-the-Loop 
 

  

Nov 15-18 Experiment # 6 

Measurement of g 

Use a precision pendulum to make 
an accurate measurement of g  

Pendulum, photogate timer 

Nov 22-25 NO LAB --- THANKSGIVING ---    

Nov 29-Dec 2 

 

Experiment # 7 

Coupled Pendula 

Study coupled motion of two 
pendula connected by a spring  

Physical pendulum, spring 

Dec 6-9 Experiment # 8 

Speed of Sound  

Measure the speed of sound, 
density, and specific heat of 
gasses. 

Gas column, frequency 
generator, vacuum pump, 
scale. 

Dec 13-16 Make-up labs   
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Orientation to Physics 103/105 Lab 
 

WELCOME TO PHYSICS 103/105 LAB! 
 

I.  What Physics 103/105 labs Are Like   

You will soon find that Physics 103/105 Lab is not like any lab you've had before. 
You will be expected to think and be creative, not just follow instructions.  The lab 
manuals for each experiment will step you through many of the new techniques that you 
will need, but you will not generally be given recipes to follow for each experiment.  The 
manual for each week will typically describe a basic experiment that all students will be 
expected to complete.  Beyond that, the manual will suggest a variety of additional 
experiments and extensions that you may find interesting and challenging.  You can pick 
one or more of these to work on, or you can invent a new experiment on your own. The 
lab employs versatile equipment that will allow you to do the “standard” experiment 
quickly and then branch out to new challenges that match your interests and expertise. 

In Physics 103/105 Lab, you will work in teams of 
two or three students.  (Larger groups become unwieldy.)  
Your AI will randomly assign teams.  Students may work 
in the same groups each week, but there will likely be 
changes in the groups during the term.  Please be flexible 
about letting others work with you, or splitting up your 
existing team if it makes the groups more even.  Your AI 
may mix reassign groups occasionally to give people a 

Physics 103/105 labs start the SECOND full week of classes.  It's important that you go 
to the lab section that you signed up for.  We will be expecting you! 
 
You should have a lab book and a scientific calculator when you come to your first lab.  
(See details in the Orientation section following.) 
 
Each week, before you come to lab: 
 

Read the procedure for that week's lab, and any additional reading required. 
 
The Prelab problems are optional, but please work them if it appears that they 
will be of help to you. 
 

Also, for the first week: 
 

Read the "Orientation to Physics 103/105 Lab" material below. 
 

I. What Physics 103 
labs are like   

II.  Notebooks 
III.  Prelabs 
IV.  Grading 
V.  Attendance 
VI.  Feedback 
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chance to work with other individuals. 

You will find that learning how to plan and work together will be crucial to the 
effectiveness of your team. Among your responsibilities in physics 103/105 is to be sure 
that all of the people in your team  contribute to your success.  Take turns performing the 
experiment and using the computer so that every team member gets a chance to “drive”.  
If one or more of your team members seems lost, take a few minutes to get them up to 
speed—you’ll need their input later when things get tougher!  You will also find that you 
learn a lot by discussing problems with others, even when you think you’re the one doing 
the teaching.  Most scientists and engineers today work in teams, some large and some 
small, depending on the size of the task.   

Periodically, your AI will come by your lab bench and ask you questions about 
what’s going on.  Of course, you can ask your AI questions about what’s going on too.  
You will find that your AI is a great resource.  On the other hand, you shouldn’t be 
surprised if your AI doesn’t answer all of your questions directly.  Your AI’s job is to 
help you learn, and sometimes the best way to do that is by making you struggle on your 
own for a while.  

Sometimes, you will learn things in lab before you see them in lecture or precept.  
In other cases, you will see topics in lab that won’t be covered in the lecture at all.  While 
physics labs are good for helping you solidify what you learn in lecture (either before or 
later), they are also great for going beyond the lecture, showing you additional techniques 
and phenomena that you won’t see in other parts of your physics course. 

 Among the important techniques you will learn in lab that won’t be covered in 
lecture are data analysis and error analysis (= analyzing the uncertainty in your 
measurements).  These are critically important skills that you will need in your 
professional lives as scientists and engineers, and things you may not learn any place 
else.  In many cases, estimating the uncertainty on your measurements will be the most 
difficult part of a lab.   

The process you will go through in this lab closely approximates the working 
experience of professional scientists and engineers.  It goes something like this: your 
team decides on an interesting investigation, makes a plan, organizes to do the work, gets 
and analyzes data, thinks about the results, and repeats or improves the experiment until 
you are satisfied with your accomplishments. The most valuable tool that you have in the 
lab (or anywhere else) is your common sense.  A good scientist or engineer is always 
asking:  Do we have a clear idea of what are we trying to do?  Do our results so far make 
sense?  Is there a better way to do it?  Practicing scientists almost never get their final 
results the first time they do an experiment.  Don’t just go through the motions: plan, 
think, and understand. Try to get to the result quickly, think about it, and then do a better 
experiment or try a variation to test a “what if?” idea.  Along the way you will learn a lot 
of physics, especially if you are thinking and discussing (or arguing about) ideas with 
your teammates. 
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II.  Notebooks 

For physics 103/105 labs, you will not turn in any formal laboratory reports.  
Instead, you will be required to keep a notebook.  You can get one at the U-Store.  The 
spiral bound 5X5 QUADRILLE RULED (80 Sheets 11" X 8.5" Green tint) is 
recommended (cheap and adequate).  If those are not available, try to get something 
close; quadrille paper is particularly important. 

Start each week’s lab on a new page; write the date at the top, and who your other 
team members are.  If you attend a different lab session than the one to which you are 
formally assign, also write your formal lab section.  From that point on, your notebook 
should be a comprehensive record of everything you do and think in 103/105 lab that 
day; sort of like a diary or a journal.   

Your lab notebook is not the same as a “lab report.” It contains similar 
information, but in much less polished form.  DO NOT waste time making your notebook 
look pretty.  It should be neat enough to be easily understandable, BUT NOT NEATER.  
Feel free to cross things out, draw arrows, make freehand sketches, and cuss.  Use 
scissors and tape to include printouts in your notebook whenever you use a computer to 
make a diagram or a graph.  Also, include all of the things you tried that didn’t work out 
how you planned; they’re an important part of what you are learning too.  Just be sure 
that your notebook is easily readable, and always take some time to write some 
understandable sentences explaining what you are about to do, what you’ve just done, 
and what you have learned from it. 

Suppose, for instance, that you have just measured the speed of a car that has 
rolled down a ramp, and it didn’t come out like you expected it to.  You might write: 

 “The value we came up with for the speed of the car was 4.2 m/sec; that’s about 15% lower than 
we expected.  Maybe friction (while rolling) is more important than we thought?  Jen suggested 
we try raising the ramp: that way the speed of the car should be greater, and the effect of friction 
should be (relatively) smaller.” 

You could then try the experiment again, including the new data and a new graph in your 
notebook, along with your conclusions: 

“Dang!  The speed increased to 6.7 m/sec, but now that’s 25% lower than we expected it.  The 
problem didn’t get better, it got worse!  So much for that idea: we can conclude that friction while 
rolling down the ramp probably isn’t the problem....” 

Notice that although the problem isn’t solved yet, the student was able to draw a 
partial conclusion: that the discrepancy in speed is not due to rolling friction.  These 
conclusions are vital for your notebook.  Without them, your notebook is just a bunch of 
meaningless numbers.  Of course, a final paper based on this experiment might never 
include this degree of detail, especially about this part of the experiment that seems to be 
producing inconsistent results.  But solving these difficulties is an important part of your 
experience in lab, and your description of your experience is what your notebook is all 
about. 
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Students are often unsure about how much detail to put in the notebook.  What we 
most want to see in your notebooks is evidence of thinking, and not just “correct” results.   

At the end of your lab period, leave your notebook on the shelf in your lab room 
for your AI to grade.  DO NOT REMOVE your notebook from the lab room. This rule is 
for your own benefit.  When students take their notebooks home, it starts a sort of arms 
race for who has the prettiest colored graphs and the best spelling.  Don’t waste time 
beautifying your notebook; it's a record, not an artwork. 

Professional researchers rely heavily on their notebooks for reference when they 
write the papers or reports describing their work.  Notebooks are the means to recall and 
check, sometimes years later, what went on in the lab.  Many researchers have their 
notebooks regularly notarized, in case they are needed for patent verification.  It's 
important to learn how to keep a good lab notebook.  Someday your job may depend on 
it.   

III.  Prelab work 

Please read (and think about) the lab instructions before coming to lab.  Otherwise 
you will waste a lot of time in getting up to speed.  If your lab partners aren’t reading the 
write-ups ahead of time, ask them to do so.  Many of the writeups refer you to Appendix 
materials which you will be expected to read carefully.   

You can also complete the optional “prelab problems” at the end of each set of lab 
instructions before coming to lab.  The prelab problems are not too hard or time 
consuming, but they can be helpful in getting you prepared for each week’s material.   

IV.  Grading 

The main intent of Physics 103/105 lab is to offer you a chance to be scientifically 
and technically creative.  We want you to form and pursue ideas.  Our evaluation of your 
work will depend a lot on your creativity and understanding, and very little on “getting 
the right answer.”  Experimentation is hard, and even good experiments don’t always turn 
out how you plan them to be. 

Golden rule of 103/105 lab grading:  In general, we won’t hold it against 
you if an experiment doesn’t produce the answer you think it should or 
doesn’t quite get finished, as long as you worked hard and were 
intellectually and creatively engaged for your entire lab period.  The flip 
side of the pact is this: In general, you are required to be intellectually 
and creatively engaged for your entire lab period, even if your experiment 
goes well.  If you finish one experiment, then think of another.   

Whatever you do, don’t just sit around doing nothing.  Your grade will suffer, and 
you will attract unwanted attention.   
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For Physics 103, the Lab grade is worth 15% of your course grade in the class 
(Physics 105 will announce its grading scheme in class).  But for both classes, your lab 
grade is calculated as follows: 

75% Notebooks: Graded after each lab for completeness, thoughtfulness, and 
readability. 

25% Participation: Graded for each lab for creativity and industry. 

V.  Attendance 

Attendance each week is vital in Physics 103/105 Lab. If you must miss your 
regular lab section due to illness, University-related travel, or religious reasons, contact 
the Ph103 Lab Manager: Prof. Kirk McDonald (kirkmcd@princeton.edu) by email to 
arrange to go to another lab section.   

Not Completing one lab will lower your PHY 103/105 course grade by one full 
letter grade.  Not Completing two labs will result in automatic failure of the entire 
course. 

If you realize that you have missed a lab because you have slept through it or have 
forgotten what day it was, then you can make it up later that week in another lab section.  
If you realize you have missed your lab, try to contact Prof. McDonald.  However, if you 
have only one time slot left that you can make up the laboratory, don’t wait to hear from 
the department office; just show up, explain the situation to the AI, and we’ll sort the 
paperwork out later.   

Makeup labs will offered, by appointment with Prof. McDonald, during the last full week 
of class, Dec. 13-17.  However, it is strongly recommended that in case of schedule 
difficulties some week, you attend some lab session that week, and work with other 
students on the lab. 
 
VI.  Feedback 

Physics 103/105 Labs are always changing. As always, we think we’ve nailed it, 
but chances are we’ve missed some things.  To help us do better in future weeks and 
future years, we want to hear feedback from you. 

If you have any questions, comments, or concerns about Physics 103/105 Lab, 
please bring them up with your AI, the lab manager, or the course head.  Thanks! 

 

 

 

Physics 103/105 Labs start on Monday, September 27, 2010.  
See you there! 
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BEFORE YOU COME TO LAB: 

1. Read the Orientation to Physics 103/105 lab, above. 
2. Read the Introduction and Physics Background sections, below. 
3.   If you are unfamiliar with spread sheet programs, read Appendix A 

– Data Analysis with Excel 
4. If you find it helpful, work the optional PreLab problem set attached 

at the end; You can discuss this with your AI at the beginning of the 
lab. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #1: Motion in Two Dimensions 
 
 
 
 
 
 
 
 
 
 
 

 
This lab is about motion, and how to describe it.   The intuitive precision that a baseball 
player shows in moving to exactly the right location to catch a fly ball immediately after 
it leaves the bat is amazing.  But in the technical realm it is useful to make a 
mathematical description.  Describing motion requires measuring position and time.  In 
Galileo's era, a measurement-based approach was in its infancy.  But it is fundamental to 
all science. 
 
Much of your time in this lab will be spent mastering a video-based method of measuring 
position and time.  But don't lose sight of what is really important – characterizing 
motion itself.  In what sense does motion sustain itself, and how do external agents affect 
it?  Can two-dimensional motion be analyzed in terms of two separate descriptions, each 
involving only one dimension?  Newton's simple equation, F = m a (with F and a being 
vectors),  underlies a formal answer to such questions.  But formalism has to be related to 
measurement and intuition.  That is what this lab is really about. 
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A.  Introduction 
 
In this lab you will use a video camera to make videos of moving objects, and a computer 
to analyze the motion.  It is important that every member of your group learn how to use 
the computer and software.  Be sure that you all take turns and that, when you are the 
operator, your partners understand what you are doing. 
 
The programs that you will use can be activated by clicking on icons on your computer's 
Desktop. These include:     
 
 VideoPoint Capture:  We use this to record a video. 
 
 VideoPoint:  the program in which you will analyze your videos, by measuring 
positions in the video frames, and graphing and analyzing the results. 
 
 Excel 2003 (with WPTools): an extension of the common Excel spreadsheet 
program, which allows more detailed calculations and graphing.  The WP (Workshop 
Physics) extensions make it easy to use Excel’s sophisticated graphing functions.   
 
 Student Data: a folder with space for you to put your files.  
 
 Word 2003: which can be used for note taking, and printing camera images. 
 
The folder Worksheets and Tools will not be needed in this lab. 
 
Capturing a Single Still Image 
 
Your first task is to capture a still picture of yourself to give to your lab instructor to help 
him or her remember your name and face.   
 

1. Open VideoPoint Capture.  A window pops up labeled Choose Capture File.  
The default file name is capture.   Simply click Save to go to the next step. 

 
2. A window labeled Preview appears, which displays whatever your camera is 

viewing at the moment. Wave a hand in front of the camera.  The focus and iris 
settings of the lens should not have to be changed.  Notify your AI if you believe 
that these settings are incorrect. 

 
3. Position yourselves (re-aiming the camera if necessary) so that your faces fill the 

screen.  Then reach over, hold down the ALT key, and hit the Print Screen 
button near the right end of the top row of keys on your keyboard. (This actually 
makes a copy of the screen, rather than printing anything.) 

  
4. Now, open Word 2003.  Click on Edit  Paste (upper left corner) to insert the 

image that was copied using the Print Screen command.  (Please do NOT 
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change any of the computer or display settings in an attempt to make the image 
larger.  Such changes may interfere with your analysis program.)  Type your 
names below the image. 

 
5. Click on File  Print icon on the top bar of Word to print your picture on one of 

the two Dell printers in the center of the Lab room.  Each member of your team 
should include this picture in your Lab notebook.  (Extra copies to take home, or 
to send your grandmother, are allowed.) 

 
Stop and Think – What is a digital image? 
 
Before trying to capture a video in the computer, let’s be sure that we understand what 
the moving image on a television screen actually consists of.  It is a series of individual 
stationary, or still, pictures, appearing at a rate of 30 pictures, or frames, a second.  
Standard movie films consist of strips of such still pictures, recorded photographically at 
a slightly lower frame rate.   
 
Digital computers, and hence our electronic imaging systems, work only in quantized 
units.  Your camera divides the area that it sees into 307,200 pixels, arranged into a grid 
640 cells wide by 480 cells high.  You will see later that VideoPoint measures x- and y- 
positions with twice this resolution, dividing the x-direction into 640 integer steps and the 
y-direction into 480 steps.  In either case, a 1-step by 1-step cell is called a pixel, for 
“picture element.”   
 
To determine the coordinates of an object in an image frame using VideoPoint, we just 
position the cursor over the object, and the system will count the pixel rows and columns 
to get to the location of the cursor, starting at the lower left of the image on the screen.  
Then, if we know how many pixels correspond to a meter long object, we can calculate 
real distances from the pixel counts.  This is called “scaling the image.”  We will return 
to this shortly. 
 
With real distances known from scaling the images, and with the time interval between 
two chosen frames also known (a multiple of 1/30 sec, say), we can easily calculate such 
things as velocities and accelerations of moving objects in our videos. 
 
Note that the system reports locations rounded to the nearest integer pixel count.  As a 
result, no position measurement can be known more accurately than within ± 0.5 pixel 
spacing, or to within ± 1/2 of whatever distance is equivalent to one pixel in real units 
(mm, meters, etc.). 
 

B.  Physics Background 
 
In this Lab you will analyze the trajectory of a bouncing ball.  The ball will be 
accelerated by gravity in the –y direction, but not in the x direction.  Assuming that only 
gravitational forces are significant, the ball's motion should obey the equations 
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x = x0 + v0x t  ,    (1) 
 

y = y0 + v0y t  - 1/2 gt2 ,   (2) 
 

y = y0 – x0 v0y/v0x – g x0
2 / 2 v0x

2 + x (v0y/v0x + g x0 / v0x
2) – g x2 / 2 v0x

2.     (3) 
 
 
In this experiment, a golf ball rolls down a 
fixed rail (the “launcher”).  After it leaves 
the launcher it falls freely, bouncing at least 
twice on the table top.  The camera takes a 
series of pictures at fixed time intervals 
between the first and second bounces, when 
the ball is moving freely.  By measuring the 
position of the ball in each picture, you can 
test equations (1) and (2). 
 

C.  Acquiring the Data 
 
Open VideoPoint Capture and use the 
Preview Screen to 
 

1. Aim the camera, and check the lens 
focus and aperture setting. 

2. Get a meter stick from the center of the 
room, and place it with its support 
bracket against the black backdrop.  
Verify that the launching rail is the 
same distance from the backdrop as is 
the meter stick. Remove the meter 
stick.  

3. Make a few trial runs, adjusting the 
launcher as necessary for the camera to 
catch one full bounce. 

4. Set the frame rate to 30 frames per 
second, using Edit  Preferences  
Capture Settings.  Then, in the tab 
Output Settings, be sure the box next 
to Re-Compress When Saving is 
NOT checked.  You must do this each 
time you (re)open VideoPoint 
Capture. 
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Make an Actual Movie of the Bouncing Ball 
 

1. Start recording by clicking on the Record button. 

2. Start the ball rolling down the launcher, and let it complete one full bounce. 

3. Hit the Esc button on your keyboard to stop recording.  (The Stop button on the 
screen doesn't always stop the recording quickly.) 

4. Note:  Although you don't need to rush things, don't record too much “dead air” 
before and after the actual experiment – it just ties up computer memory. 

5. If you need to remake your video, click on the File menu (upper left) and then on 
New Capture (and don’t Keep/Save the bad video).   Or, click the <<Record 
button in the lower left .  Or, you can quit and restart VideoPoint Capture. 

 
Viewing Your Video 
 
After VideoPoint Capture takes a few seconds to organize your video, it displays the 
first frame of your movie in an EDITING window.  Note that you can: 

 

1. Play the movie by clicking on 
the little triangle at the lower 
left.  Watch the progress as 
indicated by the moving 
“progress button” below the 
image.  (Clicking on the 
triangle while the movie is 
playing will stop it at whatever 
frame it has reached.) 

2. Jump to any frame by manually 
moving the progress button 
with your cursor. 

3. Single-step from one frame to 
the next by clicking on the left- 
and right-arrow buttons in the 
lower right corner.  
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Each of you should spend some time playing with the EDITING screen controls, to 
understand their functions and to get a “feel” for the fact that a video or movie is really 
only a sequence of still pictures. 
 
Editing Your Video 
 
In general, your original video will contain more frames than you will want to use for 
analysis.  Today, we want to analyze the ball's motion only between two consecutive 
bounces off the table.   
 
To get rid of the unnecessary frames at the beginning and end of your video: 
 

1. Use the progress and single-step buttons to choose the first frame after the ball has 
bounced from the table. 

2. Click on the First button.  All of the earlier frames are eliminated. 

3. Move the video back to the last frame before the ball bounces again.  Then click 
on Last.  All of the later frames are eliminated, and your video contains just one 
bounce. 

4. Click on Keep to save the file (or click on File, and then New Capture to discard 
the data and record a new movie). 

 

Naming and Saving Your VideoPoint Capture File 
 
There is a folder called Student Data on your Desktop in which you should store all of 
your data and analysis files.   
 
To save your video, 
 

1. Click on the Save button on 
the editing screen. 

2. Enter a name with a .mov 
extension in the window Save 
Movie File as.                        

3. Click Save. 

4. You are done with the program 
VideoPoint Capture for now.  
If you Exit and restart it later, 
you will have to reinitialize the 
frame rate and uncheck the Re-
Compress box. 
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D.  Digitizing the Ball’s Trajectory Using VideoPoint 
 
Click the VideoPoint icon on your Desktop to open this program. If you see an 
information screen titled About VideoPoint, just click on the little x at the top right to 
make it disappear.  One the next popup window, click Open Movie, and click on the 
movie that you saved in Student Data.  In the Number of Points window which then 
appears, click OK to 1, since there is only one object that we want to analyze (the 
bouncing ball).  
 
Your movie should now appear 
in a VideoPoint  window, that 
shows the first frame of your 
edited video, with your file 
name appearing in its title bar.  
Two other windows pop up 
also, Table and Coordindate 
Systems, which may be behind 
the movie window.  The movie 
window shows one frame at a 
time, whose number, and the 
total number of frames are 
given in the upper right corner.   
 
Confirm that you can step 
through your movie, using the 
double arrows at the lower 
right.  If the ball is not visible in 
all frames, or the movie  
includes more than a single 
arch, you should go back and 
make a new movie. 
 
Digitizing Coordinates of the Bouncing Ball  
 
The movie window is where you will "pick off” the coordinates of the golf ball's position 
in each frame.  Note the yellow coordinate axes on the screen, and note that the cursor 
changes to a cross-hair pointing device when you move it into the image area.  Finally, 
note that both the time of the frame and the x- and y-coordinates of the cursor are shown 
at the lower left of the movie window (with even values, equal to twice the pixel 
coordinates).  
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To record your positional data, 
 

1. Go to the first frame of your edited movie. 

2. Position the cursor over the image of the golf ball, and click your left mouse 
button. 

3. Note that the movie advances automatically to the next frame.  (If it doesn't, go 
the Options menu and put a check mark next to the Auto Frame Advance 
option.) 

4. Click on the image of the golf ball for several more frames.  Pause to turn on the 
Edit  Leave/Hide Trails option, and note that all the point that you have 
digitized are now shown, as well as all frames being superimposed. 

5. Continue clicking on the image of the golf ball until you have recorded its 
position in all frames of your movie.   

6. If you made a mistake in positioning your mouse in a particular frame, you may 
want to correct this.  Go to the Coordinate Systems window and highlight the 
row labeled Point S1.  This changes the symbol of the digitized point in the 
active frame to two concentric circles.  If this is not the point you wish to change, 
go to the frame that contains the point in question.   Then, while holding down the 
left button on the mouse, move the location circle to the new, corrected, position.  
Releasing the mouse button completes the change, and enters the corrected 
coordinates into the data table.  It may be easier to first move the cursor to a very 
“wrong” position, and then make the “right” measurement. 

 
The Table window now contains 
a list of your digiitzed points.  It 
is prudent to save your work via 
File → Save As) to Student 
Data.  VideoPoint will create a 
.vpt file for this.   
 

 
VideoPoint includes various 
options for graphing and fitting 
curves to data.  While you are free to try these out, we recommend using Excel for this 
purpose.  The Appendix gives advice on how VideoPoint could be used instead. 

 

E.  Using Excel for the Data Analysis 
 
Spreadsheet programs are powerful tools for data analysis, in finance and other fields as 
well as in science and engineering.  Our version, Excel 2003 with includes extensions 
generated by an academic project, Workshop Physics (WP), to allow easier generation 
of graphs from spread sheet data.   

Summary of Options When Picking Off Coordinates:    

Note that the Movie cursor looks like a crosshair if no 
coordinate has been chosen for a given frame, and like an 
arrow otherwise.  

Use Edit/Leave or Hide Trails to turn trails on or off. 
Use the Coordinate System window to Select a point series 

by highlighting it  
Move a selected point in a given frame, by positioning the tip 

of the arrow on the point and holding down the left 
button. 
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Start Excel to obtain a new, blank worksheet.  To transfer your digitized data from 
VideoPoint, you will “cut and paste”.   Back in VideoPoint, highlight all the data in the 
time column, and click Edit  Copy Data.  In Excel, right click on cell A2, and then 
click on Paste.  Type a column label in cell A1.  This label will later appear on your 
plots. 
 
Similarly, highlight the two columns of your x and y data in the VideoPoint Table, then 
right click on cell B2 and click Paste.  Add column labels in cells B1 and C1. 
 
 
To make a graph in Excel with WPTools, you have to identify what you want plotted: 

1. First, “swipe” your cursor across the data you want to plot on the horizontal axis. 
(For example, swipe across the time values.) 

2. Then, while holding down the Ctrl key, swipe across the corresponding data you 
want for the vertical axis (say, the y values). 

3. In the WP Standard bar click on the Scatter Plot icon to generate the plot. 

A window should appear on your .xls sheet showing a plot of y vs. t.  Create plots of x vs. 
t and y vs. x in the same manner.  These plots use your column labels. 

 
You can now address the main issue of this Lab: does the bouncing golf ball obey 
equations (1)-(3).   To do this, you will fit curves to your graphs, and thereby determine 
experimental values for x0, y0, v0x, v0y and g, as well as estimates of the accuracy of these 
measurements. 
 
Firs,t consider eq. (1) using your plot of x vs. t.   This is a linear equation, but it’s best to 
try a quadratic fit to learn if the data is actually linear. 
 

1. Click on one of the data points of your x vs. t graph, to select and highlight the 
points plotted. 

2. Click the Polynomial Fit icon in the WP Standard bar and choose Order 2 to 
create the fitted function.  We recommend that you choose the order to be one 
higher than that you believe describes that data: thus, choose order 2 for 
supposedly linear data.  Several boxes describing the fit should appear on your 
graph window.  [If not, go to WPTools / Preferences and make sure that the 
options for displaying fit equations and statistics on the plot are both checked.  If 
not, check them, and redo the plot.] 

3. The parameters of the fit are 

a0 = the constant term in the quadratic equation 

a1 = the multiplier for t in the equation 

a2 = the multiplier for t2 . 
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4. Note the value for σ (lower-case Greek letter sigma).  This is the computer's 
estimate for how far a typical data point deviates from the fitted curve. 

Does the value of σ seem reasonable?  You should comment on the 
magnitude of the typical deviations, and on possible causes, in your 
notebook.  If σ is too large, you should redigitize your images, or take a new 
movie. 

5. Note also the values for SE(a0), SE(a1), and SE(a2).  These are values of what 
are called the "standard errors" in the values which the computer calculated for 
a0, a1, and a2.  These are the computer's estimates for how precisely your data 
determine the fit parameters, given the "jitter" of the data about the curve.  A 
discussion of the algorithm used to makes these standard error estimate is given 
in Appendix D of the Lab Manual. 

6. You can consider Excel's value for a1 and SE(a1) to be your physics result for 
the value of vox  and the estimated error in that value (still in units of pixels/sec, of 
course, since you haven't yet converted pixels to meters.)  Record your result for 
vox  in your lab book, and calculate the relative precision, SE(a1) / a1. 

Make similar analyses of your plots of y vs. t and y vs. x, using polynomial fits of order 3 
since the physics expectation is that these data should be quadratic functions.  Of 
particular interest are the values (and error estimates) of parameters a2 from these fits, 
since they are proportional to the acceleration g of gravity, according to equations (2) and 
(3). 

A Common Problem 

Did your graph of x vs. t have some curvature, rather than looking like a straight line as 
implied by eq. (1)?   A common reason for this is that the plane of the trajectory of the 
golf ball was not perpendicular to the optical axis of the camera.    

If the horizontal angle between the optical axis and the perpendicular to the plane of the 
trajectory is x in radians, then the coefficient a2 in your fit to x vs. t is approximately 

2
0

2 ,x xv
a

D


  

where D is the distance from the camera (focal plane) to the plane of the trajectory.  A 
consequence of this is that your measurement of g via the y vs. t plot has a systematic 
error roughly given by 

 0 02
1 .x y

x

v vg

g gD
  

  
 

 

This effect could well be a major source of error in your measurement of g, so you may 
wish to make new movies of the bouncing ball until you get one with a “small” value of 
x. 

 

Interlude 



 11

Before we convert pixels to meters and get our final physical result for the value of g and 
its uncertainty, let's review some of the concepts we have used. 

1. Things are accelerated by gravity in the vertical direction, but not horizontally. 

2. Constant acceleration leads to a quadratic variation in position. 

3. An electronic camera can measure positions in pixels, which have later to be 
converted to meters.  The integer-pixel position measurement leads to an 
uncertainty of ± 0.5 pixel in our knowledge of the true position (and VideoPoint 
multiples all pixel values by 2). 

4. Every individual measurement is inexact, and we need to understand what a 
typical uncertainty in a measured quantity might be. 

5. Our result for the value of g (in pixels/sec2) is inexact, because the measurements 
are inexact.   

Our focus on the deviations of measured points from the fitted line assumes that the fit 
itself is our best measure of the true function, and that the deviations are due to random 
jitter in the individual measurements.  However, other types of errors, called systematic 
errors, can affect all of your measurements in a similar manner.  An example occurs 
when you convert pixels to meters.  The conversion factor clearly affects all of your 
points at once. 
 

F.  Scaling the Pixels   
 
We have now to determine how many pixels in our picture correspond to one meter in the 
real world.  We will do this by measuring how long a meter stick was in our video, as 
measured in pixels.  The resulting value for our conversion factor (pixels per meter, or 
the inverse, meters per pixel) will allow us to convert any measurement from pixels to 
meters (or pixels/sec to meters/sec, etc.).   
 
Our conversion factor will have some error, which we can estimate based on the pixel 
quantization error, plus a “guesstimate” as to how reproducibly we can position our 
cursor on the ends of the meter stick.  Once we know the conversion factor, and its 
estimated error, we can use it to convert all of our measured x- and y-positions to meters 
from the origin, rather than pixels.  But the conversions will all involve the factor, which 
has some error associated.  This is a systematic error, since it affects all measurements 
equally. 
 
If VideoPoint Capture is not still running, restart it (and remember to initialize the 
frame rate and uncheck the Re-Compress box).   Take a short movie with the meter 
stick vertical in the center of the frame, and another with it horizontal.  Remember to 
place the meter stick as far from the backdrop as is the launcher rail. 
 
Use VideoPoint to analyze these movies.  Move the cursor manually to either end of the 
meter stick (or the 10- and 90-cm positions), and note the pixel coordinates at the two 
position, from the live display at the lower left corner of the movie screen. Calculate the 
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distance between the two points, in pixels.  Using the distance in pixels, calculate your 
movie’s scale factor, Fx (or Fy), in units of pixels per meter.  Use this to convert the 
relevant fit values from your three plots into meters (or m/s, or m/s2, etc.) to deduce the 
acceleration of the golf ball in m/sec2 by two methods.   Note the result in your lab book. 
 
 
Are your answers close to the expected value of g?  What effects might systematically 
bias your answer away from 9.8 m/s2 ? 
 
Now let's consider what is the accuracy with which your measurements determine a value 
for g.  If the uncertainty in g is called Δg, then the fractional, or relative, uncertainty in g 
is defined as Δg/g. 
 
When you estimate the uncertainty in your determination of g, you should use both the 
computer's estimate of the effects of random errosr, SE(2), and your estimate of the 
uncertainty in the conversion factosr Fx and Fy  from pixels to meters.  That is, for the 
measurement using the y vs. t data, 
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where Fy is your y scale factor.  It is up to you to estimate a value for ΔFx and ΔFy 
perhaps by repeated trials.  Taking responsibility for estimating the accuracy with which 
you make a measurement is not easy, but you have to do it.  Take time to think it 
through! 
 
Similarly, the estimate for the relative uncertainty on v0x as determined from the x vs. t 
plot is 
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and the relative uncertainty on g as determined from the plot of y vs. x is 
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Some discussion of the calculus of propagation of errors is given in Appendix B.8 of the 
Lab Manual. 
 
Record your final results for g and for Δg.   
 
Note any comments you might have on the reliability of your conclusions, and on a 
comparison of your results with the accepted value for g, namely 9.80 m/sec2. 
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Appendix: Using VideoPoint for Data Analysis 

Graphing Your Data   
 
To use VideoPoint to make graphs, first click on the View  New Graph menu item.  
For each graph, you must tell the system which variable you want plotted on the x-axis, 
and which on the y-axis.  Normally, you will want either time or x-position to run 
horizontally, and x- or y-position, velocity, or acceleration to run vertically. 
 
Let's make and print out some graphs.   
Start with an XY graph.  Choose Point 
S1 / x / Position for the Horizontal 
Axis, and S1 / y / Position for the 
vertical axis.  Note that, if you go back to 
the Movie window and advance through 
the frames, a circle moves on the graph 
to indicate which of the points plotted 
corresponds to the movie frame currently 
visible.   
 
To print a graph, first make its screen 
active by clicking anywhere on it.  (The title bar of the graph will be colored blue after 
your click.)  Then click on the File  Print menu bar option, and click on Print and OK 
when you are asked to confirm your request.  If you maximize the size of the graph 
window before printing, your printed graph will be larger. 
 
You can also make a printout of any one of the frames of your video, simply by printing 
when the movie window is selected.   
 
If you need a printout of your data table, first be sure to first maximize the table window 
by clicking on the middle one of the three boxes at the right end of the Table title bar.  
Then issue the print commands.  When you want to make the table small again, just click 
on the middle box, as before.  (If your table is very long, you may have to print more than 
one time, scrolling vertically to change which data lines are presented each time.) 
 
Physics Discussion 
  
Print out and think about the following graphs.  Each of you should have your own copy 
of the group's printouts, and note your own conclusions on your own plots. 
 

1. Do the plots of x-position, velocity, and acceleration all confirm that the golf ball 
is subject to no horizontal force? 

2. Does a plot of y-position vs. time look like you expected?  (What is that?) 

3. What does a plot of y-velocity vs. time look like?  What does that show? 

(Your dialog box will not show Point S2 
and Point S3, since you have made 
measurements on only one object.) 



 14

4. What about a plot of y-acceleration vs. time?   

You should know that we expect to see a constant, negative, acceleration of the golf ball 
in the y-direction.  Numerically, we expect that the acceleration of the golf ball will be g, 
which is approximately equal to 9.80 m/sec2.  But we have yet to scale our movie, in 
order to find the conversion factor between pixels and meters.   

Before we scale the movie, let's look at our results in terms of pixels, and take a look at 
how accurate those results seem to be. 

Final Analysis – Fitting Your Data; Looking at Data "Jitter" 

 
Now for some more quantitative 
analysis.  First, let's fit a 
quadratic curve to y as a function 
of time.  The computer can show 
us the quadratic function that 
"comes closest" to passing 
through all of the data points on 
our y vs. t plot. 
 
To do this, go to your graph of y-
position vs. time, and then click 
on the red F (for Fit) button near 
the upper right hand corner.  A 
dialog box will appear.  Select the Polynomial option, and then choose Order 2, and 
click on Apply.  VideoPoint's best-fit line should appear on the graph. 
 
At the top of the graph is the algebraic function resulting from the plotted fit. (Here, x 
refers to whatever is the horizontal variable on the graph, not to our x coordinate.  Also, 
you should ignore the computer's R2 (R-squared) parameter.  It is simply one of several 
statistical measure of the goodness of the fit, and VideoPoint often calculates it 
incorrectly.)  
 
The number multiplying the squared term in the fit corresponds to the "1/2 g" factor in 
equation (2).  If we multiply our number by 2, that gives our experimental value for g, in 
units of pixels/sec2. 
 
Before moving on to scale the movie, and get g in m/sec2, let's look at how closely our 
data follows the computer's “best fit” curve. 
 
Zooming in VideoPoint; Looking at Data “Jitter” 
 
Maximize your plot of y vs. t.  Probably all of the points lie close to the curve, but how 
close?  "Magnify" a region of your VideoPoint plot, by “zooming in” on it with the 
following steps: 
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5. While holding down the Ctrl (Control) key of your keyboard, hold down on the 
left mouse button and use the cursor to draw a rectangular box around a region of 
interest containing one of your data points.   The graph then shows only that 
region, in a magnified view.  

6.  If you want to magnify some more, do it again.  (But if you magnify too much, 
the fit line may disappear, and you'll have to start over by returning to the 
unmagnified graph.) 

7. When you want to return to your original unmagnified view, just hold down on 
the Ctrl key and double-click with the left button of your mouse. 

 

Use the zooming feature to look at several points of your graph, and to judge how far the 
points are vertically away from the best-fit curve.  Record your results, and calculate 
the average of the magnitudes of the deviations that you found.  [WARNING – after a 
“zoom,” the scales on VideoPoint's graphs may not be quite what they seem.  Often, 
there is an additional decimal place which is not shown on the screen's axis labels.  To 
correct this, you can double-click on the 
axis, and delete the extra digit to cure the 
problem.  For now, it is easier to use the 
cursor readout at the lower left corner of 
the graph to estimate the differences 
between your data point and the nearby 
curve.] 
 
The average deviation which you have calculated is an estimate for how much an 
individual measurement varies from the “true” value indicated by the curve.  It includes 
the random ± 0.5 pixel “quantization error,” plus any inaccuracies you introduced in 
picking off your points. 
 
Storing Your VideoPoint File 

 
First, click on File  Save As in the VideoPoint menu bar.  As before, use the up 
arrow and double-clicking to cause your section’s folder identification to appear in the 
Save in: box at the top of the dialog box which appears. It will be convenient to use the 
same name as the one you gave the video file which you saved at the end of the 
VideoPoint Capture activities.  This name should be visible at the top of the movie 
screen, if you have forgotten it.   
 
If you use Windows Explorer to look at the contents of your section’s data folder, you 
will see that there are actually three files associated with any movie that you have 
analyzed.  A large file with the extension .mov contains the actual movie.  A small file, 
having the same name with the extension .mov.#res added comes along with the movie 
file.  The VideoPoint file .vpt is also a small one.  It has whatever name you gave it, but 
can be used only if the movie file is also available on your computer. 
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PRELAB Problems for Lab#1: Motion in Two Dimensions 

 
 

1.  Assume that in a digital image there are 600 lines and 800 columns (typical for some 
computer display screens).  Each point in the image lying at the intersection of a line and 
a column is called a picture element, or “pixel.”  Each pixel has its own brightness and 
color.  The intensity of each of the three primary colors at each pixel may be described by 
an integer number, lying between 0 and 255.  Each number takes 8 digital bits, or 1 
“byte,” to define. 
 

(a)  How many pixels are there in the image? 
 
(b)  How many bytes of computer memory are required to record the image? 
 
(c)  If a video or movie consists of a series of 30 such images every second, how 
many bytes of information must be transmitted every second in order to display the 
movie?  How many bits per second?  (This is what sets the electrical engineer's 
design specification for a television system.) 

 
 

2.  Isaac Newton is said to have considered the motion of an apple falling from the tree in 
thinking about gravitational forces.  If we look at the apple's vertical motion, starting 
from the instant when it is released from rest, the distance it falls increases with time 
according to the formula for uniform acceleration, 
 

s = 1/2 g t2 . 
 

Galileo, who died the year Newton was born, studied motion under uniform acceleration, 
but did not have Newton's mathematics.  He concluded that 
 
 

Starting from rest, distances traveled in successive equal increments of 
time are in the proportions  1 : 3 : 5 : 7 :  ......... 
 

 

(a)  Using the formula s = 1/2 g t2, calculate the vertical distances traveled by a ball 
falling from rest after 0.1, 0.2, 0.3, 0.4, and 0.5 seconds. (To honor Newton's 
heritage, let's use English units and take g = 32 ft / sec2.)  
 
(b)  Show that your results are consistent with Galileo's description. 
 

If you are intrigued by this result, you might want to prove that Newton's result produces 
Galileo's rule, for any set of equal time increments.  Hint:  think about the quantity                           
[(N + 1) ΔT)]2  - [  N  ΔT)]2. 
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 Please do NOT attempt to wash the graduated cylinders once they have 
oil in them. 

 Don’t pour the oil in the graduated cylinders back into the big cylinder 
until the end of the lab. 

 Please be sure that the small corks are well seated in the tubes when you 
are not measuring the fluid flow from them. 

Princeton University     Physics 103/105 Lab 
Physics Department  
 

LAB #2: Forces in Fluids 
 

 
Overview Comments: 
 
In this lab, you will explore some basic effects of forces in fluids: viscous (frictional) 
forces, as well as the buoyant force.  
 
Although the behavior of fluids is rather complicated in general, fluid motion obeys 
Newton’s laws.   A small element of fluid can be characterized by its volume, mass, and 
characteristic position, velocity and acceleration.   But, the volume can change its shape, 
and in the case of compressible fluids, its magnitude can change as well. 
 
In the first two parts of the Lab, you will consider an incompressible fluid, heavy 
machine oil, that is very viscous, and in the third part you will consider a compressible 
fluid, a gas, but at constant pressure so that its volume does not change. 
 
 Do you know that a cubic meter of air weighs almost three pounds?  No wonder it takes 
strength to hold your arm out the window of a moving car – it takes force to make all that 
air get out of the way! 

 
I.  Flow of a Viscous Fluid in a Circular Pipe  
 
It is a remarkable fact that fluid immediately adjacent to an immobile surface, such as the 
wall of a pipe, always has zero velocity.  In order for fluid some distance y from the 
surface to flow at velocity v, a force must be applied: 
 

         
Av

F
y


  

where A is the area of the surface (or, equivalently, the area of the layer of fluid), and  is 
the coefficient of viscosity.  Fluid flow through a circular pipe is slightly more 
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complicated.  Poiseuille's law states that for a circular pipe of radius R and length L, the 
pressure difference P = F/A (where A = R2) between the two ends of the pipe 
required to maintain an average velocity v is of the fluid flow over the cross section of 
the pipe is related by 
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where, 2A RL   is the surface area of the pipe, and Q is the volume rate of fluid flow. 
The R4 dependence of Q is impressive (and implies that your heart must work very hard 
to pump blood through your arteries if they ``clog up” even a little). 
 
 
 

 

Figure 1: Apparatus for parts I and II of the Lab.  The vertical cylinder is partly filled 
with oil.  It is open to the atmosphere at the top. 

 
Specific Instructions: 
 
Use the apparatus shown in Figure 1 to test Poiseuille's law and to measure the viscosity 
of a fluid.  The fluid is heavy machine oil, which fills the large vertical cylinder. Its 
weight produces the pressure at the bottom of the cylinder and, therefore, at one end of 
the small horizontal tube.  The other end of the horizontal tube is at atmospheric pressure. 
Thus the pressure difference across the length of the small tube is P =  g h, where h is 
the height of the fluid above the tube. 
 
Find the density of the oil using a scale and a graduated cylinder. 
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Measure the flow rate in each of the three available tubes (radii 0.319, 0.239 and 0.216 
cm), using a stopwatch and a graduated cylinder. 
 
Hints: Keep the small tube horizontal to minimize the effect of gravity on the flow. 
Measure the height of the fluid in the vertical cylinder before and after the oil flows out, 
and use the average value. From which point should the height be measured? 
 
Analysis: 
 
First use your data to test the assertion that Q is proportional to R4.  Although it isn't 
strictly true, assume that each tube has the same length L.  Then you can reformulate 
Poiseuille’s equation as: 
 

Q = Constant x R  
 
Analyze your data to determine the exponent . 
 
Do this two ways, both using Excel.   
 
After entering your data for R and Q, make a scatter plot of this using WPTools.   Click 
on the horizontal axis, and then and Format Axis  Scale to check the box Lorgarithmic 
scale.  Then, do the same for the vertical axis.  This converts your plot to a log-log plot.   
On a printout of this plot, draw a “best fit” straight line, and measure its slope in units 
where each power of 10 on the plot counts as 1 unit.   The numerical value of your slope 
is your measurement of  
 
You can get WPTools to do the equivalent of the above procedure by entering the log of 
your data for R and Q in your Excel sheet.  As hinted in Appendix A, if a value of R is in 
cell A2, you can put its log in cell C2 by clicking on that cell and typing =log(A2) in the 
formula bar of the sheet.  After typing Enter, the value should appear.  Then, drag 
downwards on the little box in the lower right corner of the cell to take the log of your 
other values of R.  After creating a column the values of log(Q) as well, use WPTools to 
make a scatter plot of log(Q) vs. log(R), and do a linear fit.   Then parameter a1 is the 
value of , and SE(a1) is an estimate of the uncertainty in your measurement of  
 
Next, find the viscosity . For this part of the analysis, assume that the exponent  = 4. 
Rework Poiseuille's equation to extract the value of the coefficient of viscosity, and use 
your three measurements of Q to calculate three values of .  Are the values close to each 
other?  As mentioned in Appendix B, a simplified error analysis is to report the average 
of the 3 values of  as your best estimate, with an uncertainty of max min / 2.   
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II. Terminal Velocity 
 
An object falling through a viscous fluid feels three forces.  Gravity pulls the object 
downward: 
 

gravF V g  

 
where  and V are the density and volume of the object, respectively, and g is 
gravitational acceleration. The buoyant force pushes the object upward: 
 

           buoy ,fF V g  

 
where f is the density of the fluid.  Finally, there is a drag force opposing the motion of 
the object. Stokes' law gives the drag force on a spherical object of radius R moving with 
velocity v in a viscous medium: 
 

drag 6 ,
A

F R v
R
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where R is the radius of the sphere.  When these three forces balance, no net force acts on 
the sphere, so it falls with constant velocity, called “terminal velocity”.  Combine the 
expression of the three forces acting on the spherical object to derive the expression of 
the “terminal velocity”. 
 
Specific Instructions and Analysis 
 
Test the equation you just derived by measuring the terminal velocity of small lead 
spheres (of density = 11.7 g cm-3) that fall through the oil you analyzed in the first part 
of the Lab. 
 
Measure the diameter of one of the spheres, taking an average of several measurements if 
it isn't really spherical.  Measure the velocity of the sphere falling through the oil using a  
stopwatch.  Repeat the experiment for at least three different spheres.  Are the measured 
values close to the values predicted by your equation?   
 
Assuming Stokes’ law to be correct, use your measurements of the terminal velocity to 
deduce another experimental value (and uncertainty) of the viscosity  of the fluid.   
Compare with your value from the first part of the Lab.  
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III. Buoyant Force  

 

Figure 2: Apparatus for part III of the Lab. 

 
The density of gas in a helium balloon is less than the density of the surrounding air, so 
the balloon feels a net upward force.  The buoyant force (air = 1.29 kg m-3 at 1 atm 
pressure) can be balanced by hanging a mass below the balloon as in figure 2. 
 
The total weight is: 
 

 total 1 string balloon HeW m m m m g     

 
where m1 is the mass hanging below the balloon, mstring is the mass of the string, mballoon is 
the mass of the (empty) balloon, and mHe is the mass of the helium within the balloon. 
 
The masses of the balloon, string, and hanging weight can be measured on scales, but for 
the mass of the helium you have to rely on measurements of volume and pressure.  Given 
that the atomic mass of helium is 4, if there are n moles of helium in the balloon, the 
mass is mHe = 4.00 g · n. 
 
The ideal gas law relates n to the pressure, volume, and temperature of the balloon (P, V, 
and T) and the universal gas constant: P V = n R T.  Solving for n and substituting R = 
8.3145 J mol-1 K-1 and T = 293K (approximate room temperature) allows you to calculate 
the mass. 
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Specific Instructions and Analysis 
 
Measure the mass of the empty balloon. Fill it with helium, and after stopping the flow of 
helium, measure the pressure within the balloon before tying off the end of the balloon. 
You may need the following conversion factors: 1 psi = 6985 Pa, 1 atm = 1.013 x 105 Pa.  
Also, remember to add the atmospheric pressure to the "gauge pressure" reading on the 
pressure meter. 
 
 

 

Figure 3: Measuring the dimensions of a balloon. 

 
Next measure the volume of the balloon. One way of doing this is to put it on a table, 
hold a meter stick vertically next to it, and use a wooden board to help measure its size on 
the meter stick. (See figure 3.)  You can estimate the size of the balloon from the 
dimensions d1 and d2. 
 
Cut a piece of string a couple of feet long, measure its mass and tie it to the bottom of the 
balloon.  Finally, tie a 5-g hanger to the string and keep adding weights to the hanger 
until the balloon is in equilibrium.  To fine-tune the hanging weight, you may want to use 
small paper clips (about 0.3 g each) or pieces of tape.  After you have achieved 
equilibrium, detach the hanger and its weights and measure their mass on a scale. 
 
Now you have all the pieces of data you need to test the buoyancy formula.  Calculate the 
buoyant force and the weight. Are they close to each other? 
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BEFORE YOU COME TO LAB 

 Read the writeup for this lab, and plan how you will approach it 
intellectually. 

 Consider the optional PreLab problem set attached. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 
 
 

LAB #3: COLLISIONS IN TWO 
DIMENSIONS 

 
 

 

A.  Introduction 

The two parts to this lab both involve the motion of “hockey pucks” on an essentially 
frictionless air table.  The air flows out through a set of small holes in the surface of the 
air table, which cancels out the normal force of gravity, and the pucks move freely in the 
plane.  You will use the video camera and VideoPoint software to analyze their motion. 

In the first experiment, two pucks are launched with some initial speeds and directions.  
They then collide, and head off with different speeds and directions of motion.  Since 
there is no external horizontal force acting on the pucks, the sum of their vector momenta 
should be conserved (i.e., should be the same before and after the collision).  Your 
experiment is to confirm this fundamental fact, by direct measurement of the components 
of the vector velocity (and vector momenta).  You will also check whether kinetic energy 
was conserved in the collision.  Of course, your measurements can only confirm anything 
to within some experimental uncertainty, which will be part of your analysis. 

In the second experiment, you will study a totally inelastic collision, and check whether 
energy and momentum are conserved in this case. 
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B. General Instructions 

Start by making a video of a simple collision between two pucks.  Be sure to include a 
meter stick in the camera's field of view, for use in scaling your movie.   Weigh each 
puck to determine its mass so that you can later convert its velocity to momentum. 

Check that pucks do not glide is any particular direction when placed at ``rest” on the air 
table.  If they do, adjust the three leveling feet on which it stands.  Don't spend too much 
time on this – you'll never make it perfectly level. 

Immediately after opening VideoPoint, you should tell the system that you want to 
measure the positions of 2 objects in each frame, rather than 1.  Then you will want to 
pick off the coordinates of the 2 pucks.  VideoPoint makes it easy to pick off the 
coordinates of Puck 1 in Frame 1, then of Puck 2 in the same frame, and then Puck 1 and 
Puck 2 in Frame 2, etc.  

To do this: 

 Check that, in the Options menu item on the movie screen, both the 
AutoFrame Advance and Auto Point Advance options have check marks 
beside them. 

 Pick off the location of the first puck on the first frame, then click on Edit / 
Leave/Hide Trails. 

 Move to the second puck, and pick off its location.  Then click on Edit / 
Leave/Hide Trails again. 

 The movie should automatically advance to the second frame, while showing 
the “trails” from Frame 1.  If you continue to click first on Puck 1, and then on 
Puck 2, in each frame, the data sequence should continue from frame to frame 
without help from you.  (If, at any time, you want to change whether a puck's 
trail is displayed or not, just use the Leave/Hide Trails button again, for 
whichever puck you want to affect. 

 If your pickoff sequence gets confused, and you need to remove a point or to 
start over, you can use the Edit/Clear Selection on Frame and Edit/Clear 
Selection on All Frames commands to remove erroneous points.  (Selecting 
a point may require carefully clicking on its position in the Movie screen.  A 
selected point will appear with a double circle.) 

After you have entered all your coordinates, transfer them to an Excel spreadsheet for 
your analysis.  Make the usual graphs of x- and y-position, x- and y- velocity, etc.  Make 
separate graphs for each set of points for which you wish to determine a puck’s x or y-
velocity.  Use WPTools and a Linear Fit (or better, Poylnomial Fit of order 2) to 
determine the velocity and the estimate of the uncertainty.   
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After converting velocities to momenta, you can see if (to within your measurement 
accuracy) momentum is conserved.  Show your logic, and justify your conclusions, in 
your notebook.  

C.  Nearly Elastic Collisions 
 
Use pucks without Velcro bands in part C.  Make and analyze a movie of an ``elastic” 
collisions between the two pucks.   Report results as to conservation of momentum of the 
system of two pucks separately for its x- and y- components. 

Do you find that the sum of the kinetic energies of the two pucks is the same after the 
collision as before (i.e., that kinetic energy is conserved in the collision)?  If not, where 
did the “missing” energy go?  

A single movie suffices for the study of both energy and momentum.  It’s better if the 
initial velocities of the pucks are not parallel to an edge of the air table. 

D.  Totally Inelastic Collisions 

Use pucks with Velcro bands.   If there are white Velcro bands at your Lab table, add 
these to plain pucks.  If there are pucks with black Velcro bands, do not try to remove the 
Velcro. 

Make and analyze a movie of the inelastic collision of these pucks.  Was momentum 
conserved here, according to your data?   What fraction of the initial kinetic energy 
remained after the collision? 

 

Appendix:  Error Propagation 
The total x-momentum in a collision of two pucks of masses m1 and m2 
is 1 1, 2 2, ,x x xP m v m v  so the uncertainty in Px is given by 

                                  
1 1, 2 2,

2 2 2 2 2 2 2 2
1, 1 2, 2 .

x x xP x m v x m vv m v m         

Likewise, the uncertainty on their kinetic energy, 
2 2 2 2

1 1, 1, 2 2, 2,( ) ( )
,

2 2
x y x ym v v m v v

KE
 

   

is given by 

       1 2

1, 1, 2, 2,

2 2
2 22 2 2 2 2 2 2 2 2 2 2 2 2 2

1, 1, 1 1, 1, 2, 2, 2 2, 2, .
4 4x y x y

m m
KE x y x v y v x y x v y vv v m v v v v m v v

 
           
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PRELAB Problems for Lab #3: Collisions in Two Dimensions 

 
 
1.  Referring to the figure on the following page, make sketch plots of the behavior of vx 

and vy for each of the two pucks as a function of time.  Although you don't know 
the scales of either position or time, be careful to get the signs correct, and to 
show at least roughly correct relative magnitudes.  

 
 
2.  Avik and Venus are calculating the momentum and kinetic energy of a puck on their air table.  

The puck is moving parallel to the x axis with a speed of 12.0 ± 0.2 m/sec, and its mass is 
30.00 ± 0.01 grams.   

 
a)  What is the x-component of the momentum of the puck, and what is its uncertainty?  

How much would the uncertainty change if the mass were precisely known (i.e., 
if the uncertainty in the mass was negligibly small) ? 

 
b) What is the kinetic energy of the puck, and what is its uncertainty?  How does the 

fractional uncertainty in kinetic energy compare to the fractional uncertainty in 
momentum? 

 
3.  Deduce the formulae in the Appendix of this Lab, possibly referring to sec. B.8 of the 
Appendices to the Lab Manual. 
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Figure for PreLab #1.  This is the final frame of a video of two colliding pucks.  The y-
axis points toward the top of the page, and the x-axis points to the right. 
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BEFORE YOU COME TO LAB: 

 Read the writeup for this lab, which concerns rolling friction.  This 
topic is not discussed in the Precepts, so the physics discussion in this 
writeup is more extensive than in the previous ones. 

Princeton University Physics 103/105 Lab 
Physics Department  
 

 

LAB #4: ROLLING FRICTION 
 

 
A.  Introduction 
 
In this lab, you will use your cameras and VideoPoint/Excel software to study rolling 
motion on an inclined plane.  
 
The wheel is a great invention in that it avoids loss of mechanical energy due to sliding 
friction.  When a wheel rolls without slipping, static friction is required to avoid 
sliding/slipping at the point of contact of the wheel with the surface on which it rolls.  
Static friction Fs does no work, because the velocity v of the point of contact (where the 
force of static friction applies) is zero, and hence 0.s sW   F v  

A rolling wheel is subject to energy loss associated with friction at the axle, deformation 
of the wheel (or the ball bearings in the wheel) and/or the surface on which the wheel 
rolls.  In this Lab, rolling friction will be modeled as acting on being proportional to the 
normal force N  onhe wheel, directed opposite to the velocity of the center of the wheel, 

                                                         ˆr r N , F v                                                              (1) 

where r is the coefficient of rolling friction, and ˆ = / vv v is the unit velocity vector.   For 
other models of rolling friction, see  http://en.wikipedia.org/wiki/Rolling_resistance 

In this Lab, you will study the motion of a 3-wheeled cart as it rolls up and back down a 
plane inclined at angle   to the horizontal, and you will determine the coefficient r  of 

rolling friction by analysis of the acceleration of the cart, followed by analysis of its 
kinetic energy.  

The rolling friction acts at some radius r (or several different radii) from the center of the 
wheel.  In this Lab you will only determine the quantity  1 /r r r R    where R is the 

radius of the wheel.  If the rolling friction acted precisely at the outer radius of the wheel, 
then like static friction it would do no work.  Pump up your bicycle tires for a lower-
friction (but bumpier) ride! 
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Acceleration 

The acceleration a of the cart when it rolls up the inclined plane is different from the 
acceleration a  when it rolls down, although both vectors a and a  point down the slope.  
Each wheel of radius R has angular acceleration /a R  when rolling uphill, and 

/a R   when rolling downhill.  In both cases the angular acceleration is clockwise in 
the figure above.  This angular acceleration is due to a clockwise torque, which implies 
that the force of static friction (at the point of contact of the wheel with the inclined 
plane) points up the slope. 

Considering the system as a whole, it has no acceleration normal to the slope, and 
acceleration of magnitude a or 'a  down the slope.   The normal force on each wheel has 
magnitude N (assumed equal for the three wheels) related by  

                                                       cos ,
3

TM
N g                                                           (2) 

where M is the mass of the body of the cart and m is the mass of each of its wheels, and 

                                                        3 ,TM M m                                                            (3) 

  According to eq. (1) the force of rolling friction on each wheel has magnitude  

                                                cos .
3

T
r r r

M
F N g                                                    (4) 

The acceleration a of the cart when it moves up the slope is related by 

                        sin 3 3 (sin cos ) 3 ,T T r s T r sM a M g F F M g F                            (5) 

When the cart moves down the slope with acceleration a , the direction of rolling friction 
is reversed but its magnitude is the same, while the direction of static friction is the same 
but its magnitude sF   is different.  Thus, 

                                       (sin cos ) 3 .T T r sM a M g F                                                (6) 

If the forces sF  and sF of static friction were equal the coefficient r of rolling friction 

would be simply related to the difference .a a   But, they are not equal, and must be 
determined via a torque analysis of a wheel.   The moment of inertia of each wheel is 
given by  

                                                                  2 ,I kmR                                                         (7) 
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where k = 1 for a hoop, k = ½ for a solid disk, and 0.8k  for the wheels used in this Lab.  
The torque analysis (about the center of a wheel) when the cart rolls uphill is 

2 ,s r

a
RF rF I kmR

R
        so that   cos ,

3
T

s r r

r M r
F kma F kma g

R R
          (8) 

since gravity and the normal force N (and the internal force of the cart on the wheel) exert 
no torque about the center of the wheel.  When the cart rolls downhill, the torque analysis 
is 

2 ,s r

a
RF rF I kmR

R
 


        so that  cos .

3
T

s r r

r M r
F kma F kma g

R R
          (9) 

Combining eqs. (5) and (8), and also eqs. (6) and (9), we obtain two equations for the two 
unknowns r and k,  

                                     1 cos 3 ( sin ),r T T

r
M g kma M a g

R
       
 

                        

(10) 

                                    1 cos 3 ( sin ).r T T

r
M g kma M a g

R
          
 

                     

(11) 

Note that if r = R then there is no effect of friction.   The solutions to eqs. (10)-(11) are 

     1 / tan ,r r

a a
r R

a a
  


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
           and           

2 sin
1 .

3
TM g

k
m a a

    
                 (12) 

Under the possibly naïve assumption that the relative uncertainties in m, M, r, R and   
are negligible, the uncertainties on the measurements of r  and k are 

2 2 2 2
2

2 tan
,

( )r a aa a
a a

    
               and             2 2

2

2 sin
.

3 ( )
T

k a a

M g

m a a

    


       (13) 

Energy 

Another approach is to consider the work-energy relation of uphill and downhill motion 
of the cart while it travels distance s along the slope.  In this case the change in potential 
energy is 

                                                     sin .TPE M gs                                                       (14) 

When the cart has linear speed v the angular velocity of the wheel is / ,v R   so the 
total kinetic energy of linear plus rotational motion is 

                                      
2 2 23 ( 3 )

.
2 2 2
T TM v I M km v

KE
 

                                        (15) 

No work is done by static friction (assuming that the wheel rolls without slipping), but 
rolling friction does (negative) work on the cart.  However, the work done by rolling 
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friction is not simply ,rF s  because the torque due to rolling friction acts to increase the 

angular velocity and does positive work / .rrF s R    That is, the total work done by 

rolling friction of the three wheels has magnitude 

                              3 1 cos 1 .r r r T

r r
W F s M gs

R R
          

   
                                      (16) 

If the cart is launched uphill with initial speed v0 and comes to rest after traveling 
distance s along the slope, the work-energy relation obtained from eqs. (14)-(16) is   

2 2
0 0

0

3
, or 1 cos sin .

2 2r r T T

r kmv v
W KE PE M gs M gs
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  
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   

              

(17) 

Similarly, if the cart starts from rest and rolls distance s  down the slope to attain final 
speed vf, then ,f rPE KE W     and 

                                       
2 23
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f f
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        (18) 

From eqs. (17)-(18), 

    
2 2
0

2 2
0

1
1 / ,

cos
f

r r
f

s v sv
r R

s v sv
 


 

  
 

        and          
2 2
0

4 sin
1 .

3
T

f

M gss
k

m s v sv

 
     

          (19) 

Assuming that the uncertainties on m, M, r, R and  are negligible, the uncertainties on r 
and k are 
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and         
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           (21) 

B.  Things to Do 

It is important that the optical axis of the camera is perpendicular to the vertical plane of 
the motion of the rolling cart.   That vertical plane should be parallel to the black 
backdrop or your setup.  The person who launches the cart should verify that it moves 
parallel to the backdrop.  If not, try again. 

You will find a ball hanging from a string at your station, which you can use to verify 
that the rotation of the camera about its optical axis is proper.  It is more difficult to 
verify that the optical axis of the camera is perpendicular to the backdrop, but if it isn’t, 
your later fits will have significantly nonzero cubic and quartic terms. 
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Weigh your cart using a balance on the center table.  Do not overload the digital 
balances.  There is a sample wheel on the center table, but its mass is not necessarily the 
same at that of the wheels on your cart.  A survey of 5 wheels yielded 85.1 0.7m   g. 

You can adjust the height of you ramp so that is takes about 1 sec for the cart to roll from 
the top to the bottom of the ramp.  Use a meter stick to measure an appropriate height and 
horizontal distance to determine the angle .  Leave the meter stick in view, under the 
ramp along the center of the carts path, so that you can determine the scale factor of your 
movie. 

You only need one good movie for all the analysis in this lab. 

However, you can take a short movie without the cart and digitize the ramp, transfer the 
data to Excel and make a linear fit of y vs. x to determine tan.   Compare with your 
result obtained using the meter stick.  You could also use this movie to determine the 
scale factor of your later analysis 

Main Data Analysis 

In your main movie, launch the cart up the ramp, such that it comes to rest near the top of 
the ramp and then rolls back down the ramp.  After using VideoPoint to digitize the 
trajectory of some point on your rolling cart, transfer the data (x, y, t) to Excel.  Indentify 
which points are on the upward part of the trajectory, and which are on the downwards.  
In general, you will not have digitized a point that corresponds to the cart being exactly at 
rest. 

For the upward moving points, make plots of x vs. t and y vs. t, and then make quartic 
polynomial fits to these.   If the cubic or quartic terms are large compared to their 
uncertainties (as reported by WPTools), consider realigning your camera and/or 
launching the cart on a path more nearly parallel to the backdrop. 

If you haven’t already done so, multiply your x- and y-data by your scale factor to 
convert them to cm (or m). 

To find the factor k of the wheels and the coefficient r  of rolling friction according to 

the formulae of part A, you need the acceleration a, the initial velocity v0, and the 
distance the cart travelled up the ramp before stopping.   And from fits to your data from 
the downward motion of the cart, you need to find a , vf  and s .    

To speed up the analysis of the motion along the inclined plane, divide your digitized 
data   ,i ix y  into two sets, one for motion up the plane, say 1 toi m , and the other from 

motion down the plane, say 1 toi m n  .  For the first set, use Excel to calculate 

   2 2

1 1 ,i i is x x y y     and for the second set,    2 2
.i i n i ns x x y y      
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Possible trick: subtract the final time nt from the times it  during the downward motion, to 

redefine t to be zero at your last point.   Then, the linear coefficient in your fit of .i is vs t   
will be ,f xv .  Of course, the acceleration a is twice quadratic coefficient.  The distance 

the cart travelled down the slope is then 2 / 2 ,fs v a   and the uncertainty on this 

measurement is given by 
2 2 2

2
3

.
2 8

fv f a
s

v

a a

 
 

  
 

 

Do your measurements of the accelerations a and a  differ by more than their 
uncertainties?  If so, you have evidence for nonzero rolling friction.   Equation (12) then 
gives a particular interpretation of this, which permits you to assign a value (and 
uncertainty!) to the coefficient r  of rolling friction. 

In the energy analysis, you could also estimate the x- and y-coordinates of the point 
where the cart stopped by an interpolation between your upward and downward data 
points, and make a quick error estimate for s and s  as determined by this procedure.   
Which method is “better,” in the sense of giving a smaller uncertainty? 

Did you get “better” results for r  and k via your analysis of the acceleration or of the 

energy? 

C.  Option: Rolling Other Stuff on the Ramp 

What happens when you roll a ball, a hollow "pipe," or a solid circular cylinder down the 
ramp?  If you roll two of them down side by side, which one gets to the bottom first?  Is 
mechanical energy conserved here?  If not, where is it going?   

If time permits, make movies of a couple of these objects rolling down the ramp, and 
look at the acceleration and energy graphs.  Compare the acceleration of these objects to 
that of your cart.  What's going on here? -- There’s more to consider than meets the eye! 
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BEFORE YOU COME TO LAB: 

 Consider the “optional” PreLab problem set attached.   Note that you 
need the answer to problem 2 to complete the Lab. 

 
Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #5: ROTATIONAL MOTION 

This week you will do two experiments involving rolling objects for which friction can 
be largely ignored.  The setup for each experiment is different; pick whichever one you 
want to do first, and go to one of the setups for that experiment at the start of the lab.  (Be 
flexible.)  The two projects in this week’s Lab might be relevant to engineers designing 
theme park rides, courses for downhill ski races, etc.  They will remind you of roller 
coaster loops and of racers taking to the air after speeding across a bump.   

A: Rolling Off a Log 
 
You may have already worked out the problem of an 
object sliding off a frictionless circular track.  The object 
leaves the track at an angle     2.4832cos 1 .  In 
this Lab you minimize friction by letting an object roll 
down the circular track.  In the Prelab problems you are 
encouraged to show that the theoretical expression for the 
angle at which a rolling object of mass m, radius r, and 
moment of inertia 2I kmr  about its center leaves the 

track is  
1 2

cos .
3 k

 


    Hence, 
2

3,
cos

k


     and   

2

2sin
.

cosk 
 


  

The idea of this experiment is to work out a technique whereby you can measure as 
accurately as possible the angle where the rolling object just leaves the track, and thereby 
determine the k factor (and uncertainty on this) for a solid cylinder, a hollow cylinder, 
and a sphere.  

You may find that using chalk dust, or wetting the object before you start it rolling, 
causes it to leave a track which answers the question.   Alternatively, you can make a 
movie and use VideoPoint to determine the takeoff angle. 

If you choose to use VideoPoint, it will be convenient to convert to polar coordinates 
from the usual Cartesian (x,y) coordinate system.  Then, after moving the origin of the 


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coordinate system to the center of the track, you can plot radius versus time to see if you 
can determine the takeoff angle.  

Using VideoPoint with polar coordinates  

To change to polar coordinates, double-click on the origin and make the change in the 
first screen shown below.  The origin can be moved to the center of the track simply by 
clicking-and-dragging on it.  Then you can choose to plot radius or angle when you make 
your graphs.(See the second screen shown. 

However you choose to do your analysis, once you have your technique down for one 
object, try it on the others, and think about any differences you find. 

 

 

 

 

You can (with practice) balance a ball by spinning it on your fingertip.   Can you balance 
a ball on a log by spinning it? 
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B: Loop-the-Loop 

You can roll a ball down a ramp, and it will pick up enough speed to “loop the loop.”   
Determine experimentally the minimum height h such that the ball loops the loop without 
leaving the track.   From this measurement (and its uncertainty), determine the k factor of 
the ball (and the uncertainty on k).      

 

                

 

 

 

 

 

 

C. Angular Momentum Toys 
Take some time during the Lab to play with the angular momentum toys: 

 Rotating stool + hand weights or bicycle wheel 

 Bicycle wheel by itself: hold it with two hands, or via the rope on one handle. 

Spin the wheel up by hand (your Lab partner can help with this. 

For the rotating stool + hand weights, think about conservation of angular momentum: 

                                                 2 2 .L I Wr I Wr           

For the spinning bicycle wheel think about the vector equation for changes in angular 

momentum due to torques:                 .
d d

I
dt dt

     
 

L
r F

   

When holding the bicycle wheel by the rope such that its angular velocity vector   is 
horizontal, it precesses about the vertical with angular velocity   according to 

.
d

I I m
dt

  
  r g    Since vectors   and   are perpendicular, and vectors r  and 

g are perpendicular, the equation of motion simplifies to .
mgr

I
     Can you verify that 

the faster you spin the wheel, the slower it precesses?   Can you keep track of the vector 
cross products to predict whether the precession is clockwise or counterclockwise, as 
viewed from above?     

 

h 

R 
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PRELAB Problems for Lab #5: Rotational Motion 

 

1.  An object of radius r, mass m, and moment of inertia 2I kmr  
about its axis starts from rest at the top of a large cylinder of radius 
R and rolls down.  At what angle   from the vertical does the 
object leave the surface of the large cylinder?  (Hint: This problem 
is of the example of a frictionless mass that slide down (and falls 
off a “log”), which you solved using conservation of energy and 

2 / .F mv R   In this problem, you have an extra energy term due to 
the ball’s rotation, which you can relate to its translation using 
v r .)  
 
 

2.  A ball has radius r, mass m, and moment of inertia 2I kmr  about its center.  The ball 
starts at rest, rolls without slipping down a ramp, and does a loop-the-loop of radius R.  
(See the figure for Experiment B.)  What is the height h above the top of the loop that the 
ball must be started at to make it around the loop-the-loop without leaving the track?  
(Hint: This problem is similar to the loop-the-loop for a frictionless mass, which you also 
solved using conservation of energy.  In this Prelab problem, you have an extra energy 
term associated with the ball’s rotation, which you can relate to the ball’s translation 
using v =  r .)  Give an expression for the k factor in terms of m, h, r and R, and for the 
uncertainty k  due to the uncertainty h  in a measurement of height h. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R 


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Do not disassemble your pendulum to measure the mass of the bob or the 
wire.    Instead, there are additional bobs and wires on the table in the center of 
the lab which you can weigh and measure.   

Princeton University     Physics 103/105 Lab 
Physics Department  
 
 
 
 
 

LAB #6: A PRECISION MEASUREMENT OF g 
 

 

Overview 
 
So far, the experiments in Physics 103/105 Lab have addressed physical principles to an 
accuracy of 5 to 10%.  This is fine for getting a feel for how things work, but another 
objective of experimental physics is to measure precise values for constants of nature.  To 
make a precise measurement, one designs an experiment to minimize systematic effects 
or to make them easy to calculate.  In this lab you will measure g, the acceleration due to 
gravity at the Earth’s surface, by timing a pendulum.  With care in your technique and 
attention to systematic effects you can achieve an accuracy of much better than 1%. 
 
Uncertainty analysis is an essential part of this lab.  During this lab, you will carefully 
apply the methodology of combining random errors from repeated measurements using 
the concepts of standard deviation and standard error.   We have provided a spreadsheet 
to do most of the calculations for you.  But you are responsible for thinking about the 
results.  You may want to review Appendices B and C on Estimation of Errors in the 
Labs section of the Blackboard.   

Theory of a Real (Physical) Pendulum 

A high-precision experiment requires unusual effort both in technique and in the 
underlying theory.  In this section we extend the theory of a simple pendulum to the level 
needed for a precise measurement of g. 

Your textbook shows that for a simple pendulum of length L0, the period T0 is 
given by  

.2 0
0 g

L
T    (1)

Inverting this equation, we can calculate the value of g by timing the period of such a 
pendulum: 

                2 0
2

0

4 ,
L

g
T

             0

0

,Lg

g L


  if 0

0

T

T


is negligible. (2)
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However, at the level of accuracy we are aiming for ( / 0.001),g g   we may not 

assume that our pendulum is a simple pendulum.  There are two important effects that 
make the simple pendulum assumption break down.  Our physical pendulum is 1) not a 
point mass suspended by a massless string, and 2) not a true harmonic oscillator (because 
the restoring term in the equation is not exactly proportional to the displacement).  If we 
were to neglect either of these two effects, we would find that our measurement of g was 
systematically off. 

  

h 
 

2r 
 

M 
 

L 
 

m 
 

20o   15o    10o    5o 
 

   0o      5o     10o    15o    20o 
 

Light Beam    

Consider the consequences of the first effect.  For a physical pendulum of total mass MT, 
moment of inertia I about the pivot point, and distance cmD  between the pivot point and 

the center of mass, the torque equation about the pivot point is 

                                  
2

2
sin ,cm T cm T

d
D M g D M g I I

dt

                                     (3) 

so 0 cos t    where the angular frequency is given by  ,cm TD M g

I
   and the period 

0T  for small oscillations is given 

by        0

2
2 ,

T cm

I
T

M D g

 


          and hence         
2

2
0

4
.

T cm

I
g

T M D


  (4)

You may approximate your pendulum as a cylindrical bob of mass M, height h and radius 
r, suspended on a long thin wire of mass m.  Let the distance from the pivot to the top of 
the cylindrical bob be L.  (See the sketch above.)   The moment of inertia of a thin disc 
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about a diameter is 2 / 4dI dm r  (which follows from the momentum of inertia  
2 / 2dm r  about its axis using the so-called perpendicular axis theorem).   Then using the 

parallel axis theorem, the moment of inertia of the bob (= a stack of thin discs) about the 
pivot point is given by 

     2
2 2 2 2

2 2

bob

0

.
4 4 3 4

hdm r M dx r h r
I dm L h x L h x M L Lh

h

     
               

     
    

so that 
2

2 2 2 2
2

bob string 2
1 .

3 4 3 3 3

h r m L h h m
I I I M L Lh ML

L L M

   
             

   
 (5)

The distance cmD from the pivot to the center of mass of the bob is given by  

 1 .
2 2 2 2T cm

h m L h m
M D M L ML

L M
           
   

(6)

Substituting equations (5) and (6) into (4), we obtain 
 

              


















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r
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h

L

h

T

L
g

22
1

343
1

4 2

2

2

2

2
0

2
. (7)

Because the torque equation (3) is not exactly the form of the equation for a 
simple harmonic oscillator, the period T  is depends on the maximum angle 0  of the 

motion of the pendulum.  A more advanced analysis shows that 

         2 40 0
0

1 9
1 sin sin

4 2 64 2
T T

      
 

 ,  (8)

where T0 is period assuming the system to be a simple harmonic oscillation, as in eq. (6).  
Remember, T is the period that you measure, and T0 from equation (6) is the period that 
you would have measured for your physical pendulum if 0  were very small. 

The following table gives you an idea of how big the difference between T and T0 can be, 
according to eq. (8). 

0  0/TT  
 

0  0/TT  
0  1.00000  10  1.00191 
5  1.00048  11  1.00231 
6  1.00069  12  1.00275 
7  1.00093  13  1.00323 
8  1.00122  14  1.00374 
9  1.00154  15  1.00430 
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LAB #6: THINGS TO DO 

I. Measuring the Period 

Measure the period of your pendulum using the light-activated electronic timer on 
your table.  On period is a full cycle (= two half cycles), such that the bob passes throught 
the photogate in the same direction at the beginning and end of a period. 

Set the mode switch to P so that the pendulum turns the timer on and off with 
successive passes.  To time multiple periods, hold down the telegraph key on your table 
to keep the timer from being switched on and off with every pass.  Set the switch on the 
back of the timer to manual reset to keep the display from resetting to zero immediately 
after every measurement.  The timer can measure 1, 10, 100, or 1000 second intervals.  
Use the 100 second interval. 

Measure the period for 0  = 10, timing the pendulum for a total of ten periods in 

a single measurement (rather than making 10 measurements of a single period), and 
dividing that result by 10.  Estimate the random error by repeating the measurement 
about five times.  Feel free to use Excel to help you with averaging or other calculations.  
After using your computer to calculate g in part III below, go back and repeat the 
measurement for 0  = 5 and 15.  

Tips on Technique:   

 Be certain to time 10 complete periods (= an even number of half periods); otherwise 
the placement of the light beam affects the measurement.  If your value of g is off by 
more that 2%, you likely did not measure  10 complete measurements. 

 Center the light beam to make the durations of half cycles the same on both sides.  
There would be a small systematic shift in the measurement of the period due to the 
damping of the amplitude, if the light beam is not centered.   

 Do not use amplitudes below 5°.  Even if the light beam is centered, the finite size of 
the light beam causes a systematic error that is significant for small amplitudes.  

 Check that when you release the bob it swings to a maximum angle close to the 
desired release angle.  If your release is “hesitant”, you may need to release the bob at 
a slightly larger angle than what you desire to achieve during the motion.  

II.   Other Measurements 

Measure the lengths and masses needed to calculate g from equation (7).  Measure 
the effective length of the pendulum wire from the pivot point to the top of the bob 
(which length is slightly longer than that of the physical wire itself) using a metal 2-meter 
ruler. (Wooden ones warp and shrink.)  Measure L from the bottom of the V notch at the 
pivot point to the top of the mass.  Do not rest the ruler on top of the mass as its weight 
may elongate the wire.   Keep the ruler vertical to be than 1/2 during the measurement. 
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Do not disassemble your pendulum to measure the mass of the bob or the 
wire.    Instead, there are additional bobs and wires on the table in the center of the 
lab which you can weigh and measure.   

III. Using the Computers to Do the Tedious Calculations 

Calculating g and doing error propagation with something as messy as equation 
(7) is, to put it nicely, the perfect job for a computer.  We have programmed an Excel 
worksheet to help you with your calculations.  An image of the worksheet is appended at 
the end of this write-up, and a .xls file is posted on Blackboard, so you can check it out 
before you get to Lab. 

In the Physics 103 folder, double-click on Precision Measurement of g (Rev 
C).xls to open the worksheet.  Since you will be adding your own data to it, you may 
want to click on File  Save As to allow you to rename and save a copy of the 
worksheet in the student data folder for your lab period.  Then, any time you save the file, 
it will be saved there under its new name. 

Many of the cells in the original worksheet have been “write protected” to keep 
you from accidentally changing or deleting the parts that do your calculations for you.  
You can type your values into the yellow, boxed regions, and you can also do any 
additional calculations to the side or below the ready-made part, which is contained in 
columns A-Q and rows 1-66. 

Let's start by understanding the spreadsheet's logic: 

In section (a) of the worksheet, you will want to put something recognizable for a 
group name and date so that you and others will be able to recognize it later, for instance 
as printouts become scattered around the lab. 

In section (b) of the worksheet, you can enter your raw data for all measured 
quantities (L, M, h, r, m, T, and 0 ), along with their absolute uncertainties.  The 

worksheet automatically computes the relative (percentage) uncertainty for you. 

In section (c), the worksheet shows you the Amplitude Correction Factor 0/TT  

that comes from your pendulum not being a true harmonic oscillator.  It also calculates 
the “corrected period” 0T  of your pendulum in the limit of very small oscillations. 

In section (d), the worksheet calculates the individual geometric correction factors 
related to your pendulum being a “physical pendulum” rather than an idealized point 
mass.  Each one of the terms A, B, C, D, E, and F corresponds to one of the terms in 
equation (7).  The worksheet also calculates an overall “mass and dimension” correction 
factor, and combines this with the length L and the corrected period 0T  to give you the 

best value of g from your measurements according to equation (7). 

In section (e), the worksheet calculates the absolute and relative uncertainty in g 
from the uncertainties in each of the original measurements, and combines them in 
quadrature (i.e., by taking the square root of the sum of the squares) to give the final 
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uncertainty in g from your experiment (as implied by your original uncertainty 
estimates). 

Start by entering your basic measurements into section (b) of the worksheet.  If 
you do not get a reasonable value for g (between 9.77 and 9.83 m/s2), check for mistakes 
in your data entry.   Did you actually measure 10 full periods, and not 9 ½ or 10 ½?   Did 
you actually measure the effective length of the pendulum, or only the physical length of 
the wire?   Was the pivot wedge seated in the V-notch so that the pendulum swung freely 
and reliably? 

Next, think about the numbers reported by the spreadsheet.  Do the geometric 
(mass and dimension) correction factors behave as they should?  Does the corrected 
period give reasonable answers?  (When the computer is doing all of the heavy lifting for 
you, it’s easy for the lab to turn into a “plug and chug” activity, with your brains totally 
tuned out.  Don’t let that happen!) 

Next, add your uncertainties to the worksheet.  Do they propagate through as they 
should?  Which ones are the biggest sources of error? 

Once you have put your numbers in for one set of measurements at 0  = 10 and 

are satisfied with your results, repeat the experiment with 0  = 5 and with 0  = 15.  
Your calculated value for T0 should not vary with 0 ; if it does, you have a systematic 

error somewhere, which you should try to locate. 

IV. Points to Ponder 

These are things you should make a particular point of pondering in your 
notebook.  The AI’s will be looking for these when they check the notebooks.   

1.  About how big does your 0  have to be for the period T of your pendulum to differ 

from the small amplitude period 0T  by 0.1%?  By 1%? 

2.  Which leads to the largest “correction” in your calculation: the fact that your 
pendulum is not a true harmonic oscillator, or the fact that it is not a simple (point mass) 
pendulum? 

3.  In section (b) of the spreadsheet, you estimated errors for all of your measured 
quantities, and the spreadsheet calculated percentage errors for you.  Rank these from 
most accurate to least accurate. 

4.  Each of the uncertainties in your measured quantities contributes some uncertainty to 
the calculation of g, as is shown in section (e) of the spreadsheet.  Rank these from the 
largest contribution to the total uncertainty in g to the smallest contribution.  Are these 
the same as your rankings as for question 3?  Why or why not? 

5.  Suppose you could spend five hours and $100 in the lab cutting any one of your 
measured uncertainties in half.  (That is, with 5 hours of your time and $100 you could 
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decrease the uncertainty in L, M, h, r, m, T, or m  by a factor of two.)  Which one would 

give you the “biggest bang for your buck” in terms of reducing your overall uncertainty 
in g? 

6.  The premise of question 5 is kind of bogus, in that you probably can’t guarantee that 
one afternoon and $100 would cut the uncertainty in any one of your variables by a factor 
of 2.  In reality, some of those uncertainties would be easy to improve, some wouldn’t be.  
So where would you spend your time?  What would be the next thing you would do to 
make a significant improvement in some part of your measurement to reduce your overall 
uncertainty in g?  (There’s no one right answer here; this is your chance to think and be 
creative.)   

V.  The “Right” Answer 

This section violates a fundamental law of Physics 103/105 Lab, namely: there is 
no “right” answer.  But it turns out that what was at the time the world’s best 
measurement of g was made in Palmer Hall (now Frist Campus Center) in 1963, when 
the Physics Department was still housed there.  Jim Faller, working in room 130, got 

g = 980.1604±0.0007 cm/sec2 (J. E. Faller, Ph. D. Thesis, Princeton, 1963). 

In 1998, Physics 103/105 labs moved from Palmer Hall to McDonnell Hall.  How 
much do you think Jim Faller’s measurement would have changed had he made it on the 
second floor of McDonnell Hall?  Could his experiment tell the difference?  Can yours? 

We only have a “right” answer because Faller worked for 3 years and used a very 
fancy technique.  Incidentally, he built a “suitcase” version of his apparatus, which he 
carried around comparing values of g in standards labs all over the world  London, 
Paris, Geneva.   Anyway, what is the discrepancy between your value of g and Faller’s?  
Do they agree within the errors? 

VI. Report your Values to Your AI 

When you are satisfied with your results and understand the uncertainty that the 
spreadsheet has calculated for you, report your results to your AI, who will tabulate the 
results for each group, and will give each of you two graphs showing your results plotted 
along with those of your classmates.  At the end of the week, we will collect the values 
for all of the lab sections and post them in the hallway, and possibly on the course web 
site. 

How do your results compare to those of your classmates?  Do your results agree 
to within your uncertainty?  If not, then why?  These kinds of “friendly” discussions are 
what good science is all about. 
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(Physics 103/105)

(a)  Group Name, Date, etc.

(b)  Measurements and Estimated Errors:

+/- (Per Cent)

Wire length L = 1.95300 m +/- 0.00050 m 0.026%
Bob mass M = 1.20610 kg +/- 0.00005 kg 0.004%
Bob length h = 0.07200 m +/- 0.00050 m 0.694%
Bob radius r = 0.02550 m +/- 0.00025 m 0.980%
Wire mass m = 0.00370 kg +/- 0.00010 kg 2.703%
Period T = 2.83390 sec +/- 0.00005 sec 0.002%

Amplitude  = 15.0 deg +/- 0.3 deg 2.000%

(c)  Calculation of Corrected (i.e., small-amplitude) Period:

T/T0 = 1.00430 -- +/- 0.00017 -- 0.017%

Corrected period T0 = 2.82177 sec +/- 0.00049 sec 0.017%

(d)  Calculation of "g":
(Per Cent)

First term ( 4 2 L / T0
2 ) = 9.68322 m/sec2

+/- 0.00343 m/sec2
0.035%

Correction terms for dimensions and masses (best estimates only):

A = h / L =
B = h2   / 3 L2 =
C = r2   / 4 L2 =
D = m / 3 M =
E = h / 2 L =
F = m / 2 M =

Overall mass and dimension correction factor: 

( 1 + A + B + C + D ) / ( 1 + E + F )        = 1.01806

Best Value of "g" (first term multiplied by overall correction factor):

g = 9.85807  m/sec2

(e)  Uncertainty in "g" -- Propagation of Errors:

Source of Error % Error Propagated Errors in Value of "g"
(Original Estimates) (Percent)

Wire length L 0.026% +/- 0.00248  m/sec2 0.0251%
Bob mass M 0.004% +/- 0.00000  m/sec2 0.0000%
Bob length h 0.694% +/- 0.00125  m/sec2 0.0127%
Bob radius r 0.980% +/- 0.00001  m/sec2 0.0001%
Wire mass m 2.703% +/- 0.00014  m/sec2 0.0014%
Measured Period T 0.002% +/- 0.00035  m/sec2 0.0035%

Amplitude  2.000% +/- 0.00333  m/sec2
0.0344%

0.01843
0.00153

Absolute

0.03687
0.00045
0.00004
0.00102

Amplitude Correction
       Factor

Best Value Uncertainty

Calculation Spreadsheet for Precision Measurement of "g"

NOTE: Input data only into cells in the boxed regions (yellow on the screen). All other entries are calculated
automatically. Except for the boxed regions, all the cells in Rows 1 through 64 and in columns A through Q are write-
protected. If you need to do calculations other than those that have been provided for, you must use cells outside
this region.

12/5/2006

Best Value Estimated Error
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BEFORE YOU COME TO LAB: 

1.  Read Knight's Chapter 14 (Oscillations), as assigned for lecture.  Note 
that the equations describing Simple Harmonic Motion have 
applications in physics and engineering extending far beyond the 
simple systems described. 

2.  Read the lab writeup.  Focus on the relationship between the physical 
phenomena and the equations as you carefully go through the 
Introduction and then through Appendix I of the writeup. 

3.  Consider the optional PreLab problem set attached. 

 
Princeton University     Physics 103/105 Lab 
Physics Department  
 
 

LAB #7: COUPLED PENDULA AND 
NORMAL MODES 

 

 

 

 

 

 

 

 

A.   Introduction 

In this week's Lecture and Lab, you will be studying the motion of simple harmonic oscillators.  
Small departures from equilibrium in almost any system result in a restoring force proportional 
to the departure, and consequently the motion is Simple Harmonic Motion (SHM). Electrical, 
acoustical, and optical systems oscillate with SHM, completely analogous to the mass-plus-
spring and pendulum systems you’ll be looking at during this Lab.  Many physicists use their 
“physical intuition” about how systems with springs and masses behave to predict how many 
different systems will act. “Physical intuition” is not an innate human characteristic; a person 
develops physical intuition with experience.  This Lab gives you the opportunity to develop such 
intuition about SHM in a “simple” mechanical system that exhibits surprising complex behavior.   

The main apparatus in this Lab is two “identical” physical pendula (wooden 2 4s withan axle at 
one end), connected by a weak spring.  In the absence of the spring, the two pendula would 
oscillate at (nearly) the same angular frequency 2 f  , with angle  to the vertical 

obeying
0
cos( ),i i it     with independent amplitudes 

0i
 and phases .i  

Coupling the two pendula by the spring produces two characteristic frequencies, which in turn 
lead to a complex motion, which is not a simple sinusoid.  But the motion can be analyzed as a 
sum of two sinusoidal motions, each of which obeys the simple equations of SHM, and oscillates 
at its characteristic frequency.   (See Appendix A.) 
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As you pursue your interest in science and engineering, you will that a powerful approach to 
analyzing the time dependence of a complicated system is to look for special “characteristic” 
frequencies, and to determine the patterns of motion associated with simple sinusoidal 
oscillations at those frequencies.  With these solutions in hand, then any general motion of a 
“linear” system can be described as a sum of these simple motions.  This is the concept of 
normal modes, which refers to the set of patterns which each leads to simple sinusoidal 
variations in time. 

In this Lab, you should observe various possible patterns of motion of the two-pendulum system, 
and record carefully descriptions of the patterns of motion that you see.   Using a stopwatch, you 
can determine the frequencies associated with the various patterns which occur.  Then, using a 
computer model which sums and graphs the combined effects of two sinusoids, you can simulate 
the patterns that you observe, and other patterns as well (for example, the first overtone in a 
musical instrument). 

 

B.  The Apparatus and the Measurements 
 

This apparatus consists of two pendula connected at their centers of mass with a spring, as 
sketched in Figure 1.   Slide the two pendula ( 2 4 's ) far enough apart that the spring is 
stretched when at rest.  When you swing the pendula, the spring should never collapse 
completely.  If it does, restart the pendula with smaller amplitudes, and/or slide the pendula 
farther apart. 

                                               

pivot

CM
L

2

k

1
Figure 1: Coupled pendulums; each pendulm is 
made from a length of 2x4 A spring connects the 
two pendulums at their centers of mass (CMs).

 
 
Displace one pendulum while holding the other fixed, and then let both go free at the same time.   
The motion is complicated!  At first one pendulum oscillates, but after a while its oscillations 
become small and the other pendulum oscillates.  Later, the first pendulum oscillates again and 
the second does not.   And then, this cycle of “transference of oscillation” repeats over and over 
(until friction damps all oscillations to zero). 
 
Next, displace both pendula and let them go.   You should find special combinations of the initial 
displacements such that there is no “transference of oscillation”, and both pendula oscillate with 
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the same frequency.  How many different ways can you generate these “normal modes” of 
oscillation? 
 
 
Using a stopwatch, measure the frequencies of the pendula without the spring, and then the 
frequencies of the normal modes that you have discovered when the spring is attached.  
 
After you have analyzed the simple patterns of motion, again displace one pendulum while 
holding the other one fixed.  Then release them simultaneously.  Describe the resulting motion.  
Using the stopwatch, measure any relevant frequencies, and relate these to the frequencies of the 
normal modes they you previously observed.   
 
Make a VideoPoint movie of the complex motion, using a capture rate of 5 frames per second.  
(Since you will be interested mainly in frequencies, there is no need to include a meter stick in 
the field of view.)  Make sure that the video covers at least two (2) complete cycles of the 
“transference of oscillation” (and so includes 5 times at which the left pendulum has minimal 
amplitude of oscillation).   Digitize the positions of some identifiable point near the bottom of 
each of the pendula.   Make plots of horizontal position of these points versus time.   
 
The challenge now is to extract the frequencies and amplitudes of the normal modes from your 
plots.  You will do this by varying the parameters in a computer model of your experiment until 
you obtain a good match between your plots of position vs. time and the computer simulation. 
 

C.  Computer Modeling of Your Results 
 

An Excel program, Normal_Modes_Modeling, can be found in your Physics 103 folder (and 
on the Blackboard).  It provides a way of confirming that two sinusoidal normal modes can 
generate the complex behavior that you observed with the two pendulums. 
 
The program calculates the functions  
        1 0 0( ) cos cos ,u u v vt u t v t                      2 0 0( ) cos cos ,u u v vt u t v t         

found in eqs. (7) and (8) of the Appendix. 
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The figure on p. 49 shows an example Excel screen.  Amplitudes, frequencies and phases can be 
changed at will.  Note also that you may need to change the maximum value of the range of time 
plotted in order to see the entire behavior. 
 
Your plots of horizontal position x  vs. time of points on your two pendula should have the same 
form as the computer plots of 1( )t  and 1( )t  since 0 sin ,x x D x D      where D  is the 

vertical distance from the pivot to the point you digitized.   Adjust the input parameters (in 
yellow cells) in the Excel program until the computer plots match your data plots.   Since the 
vertical scale of the plots is arbitrary, you can leave parameter 0u  (or 0v ) fixed to speed up the 

process of “fitting” the parameters.    Another trick is to leave u  fixed at first, while adjusting 

parameters 0v  and v  until the computer pattern matches that of your data, except for an offset in 

time.   You can determine the frequencies uf  and vf  without determining the phase u , but if 

you wish to obtain the best match between the computer plots and your data, make the final 
adjustment of u  while keeping the difference u v   constant 

 
What are the uncertainties on the frequencies uf  and vf  that you determine by this “fitting” 

procedure?   That is, how much can you change these parameters in the computer model such 
that the match between the model and your data is “good enough?” 

 
D.  Optional Computer Modeling 
 
You can download the Excel program from the Blackboard and use it to model other systems 
that involve the sum (or difference) between two simple harmonic oscillations. 
 
In the following, you may want to make the amplitude of the higher-frequency term smaller than 
that of the fundamental. 
 
(a)  Look at two frequencies which are exactly a factor of two apart.  These are most relevant to 
such instruments as the flute and the organ, in which the overtones tend to be almost exact 
multiples of the fundamental note being played. 
 
(b)  Look at two frequencies which are almost, but not quite, a factor of two apart.  (Say, with a 
frequency ratio of 2.2 to 1.)  Such waveforms are perhaps relevant to the sound produced by a 
saxophone, in which the tapered bore causes the overtones to not be exact multiples of the 
fundamental note. 
 
(c)  What about non-integer ratios of frequencies?  Think about what period of time makes such 
a system return to its initial state.  (Use simple integer ratios first, such as 3:2.) 
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Appendix: Coupled Oscillations 
 

Consider the case of the two pendula coupled with a spring at their centers of mass, as shown in 
Fig. 1.  We suppose that the distances L  from the pivots to the centers of mass are the same, and 
that the masses m  and the moments of inertia I  about the pivots are the same for the two 
pendula. Positive angles   correspond to counterclockwise displacements from the vertical.   
 
There are two torques on each pendulum.  The weight of a pendulum gives a torque, which tries 
to restore the pendulum to vertical, 

   1, 1 1sin ,W m gl m gl      
using the small-angle approximation.  The spring provides a restoring torque on the left 
pendulum which acts to bring the separation SL  between the centers of mass of the pendula to 

the unstretched length of the spring, 0.L   Assuming that 0L equals the distance between the 

centers of mass of the pendula when vertical, the force on the left pendulum due to the spring is  
      0 2 1 ,S SF k L L kL       

and the torque on the left pendulum due to the spring is 
  1 2 .S SLF kL      

The restoring torque on the right pendulum is equal in magnitude, but in the opposite direction.  
 
Newton’s law in angular variables applied to each pendulum gives the following equations of 
motion: 

                                               
2

1
1 1 1 1 22

,
d

I I I mgL kL
dt

                               (1) 

                                              
2

2
2 2 2 1 22

.
d

I I I mgL kL
dt

                    (2) 

 
Neither of these equations describes simple harmonic motion because of the spring coupling 
terms.  However, then by adding and subtracting eqs. (1) and (2) we obtain two new equations 
each of which describes simple harmonic motion. 

                                                         1 2 1 2 ,I mgL                              (3) 

and                                                    2
1 2 1 22 .I mgL kL                                              (4) 

 
Equation (3) is an equation for simple harmonic motion in the variable  

          1 2 ,u           such that1       0( ) 2 cos ,u uu t u t        where        2 .u

mgL

I
              (5) 

Similarly, equation (4) describes simple harmonic motion in the variable 

          1 2 ,v         such that          0( ) 2 cos ,v vv t v t        where      
2

2 2
.v

mgL kL

I
 

     (6) 

The solutions ( )u t  and ( )v t  are called normal modes = motions in which both pendula move at 
the same frequency.  The normal mode u(t) is excited when both pendula are displaced equally in 
the same direction.  The spring then has no effect.  The normal mode v(t) is excited by starting 
the pendula with equal and opposite displacements.  The frequency for this mode is higher 

                                                 
1 The factor of 2 in ( )u t  and ( )v t  is inserted to make eqs. (7) and (8) look simpler. 
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because this motion excites the spring, which increases the forces and torques on the pendula, 
which then move faster.. 

 
The variables that we observe directly are 1( )t  and 2( )t , 

                                           1 0 0( ) cos cos ,
2 u u v v

u v
t u t v t    
                                    (7) 

                                          2 0 0( ) cos cos .
2 u u v v

u v
t u t v t    
                                     (8) 

Using some trig identities, eqs. (7) and (8) can be rewritten as 
 
               1 0 0 0 0( ) 2 cos cos 2 sin sin ,t u v t t u v t t                                   (9) 

                2 0 0 0 0( ) 2 sin sin 2 cos cos ,t u v t t u v t t                              (10) 

 

where       ,
2

u v 


         ,
2

u v 


          ,
2

v u 


          .
2

v u 


                   (11) 

 
These complicated forms can be thought of (or heard as!) an oscillation at the average frequency 
  that is modulated by an oscillation at the much lower frequency .   As example of this is 

shown in the figure below, for the case that 0 0.u v  

 

  

In acoustics, when the frequency difference  is very small, the sound you hear seems to come 

in pulses or “beat”, and the difference / 2 / 2v u v uf f        is call the “beat frequency.”
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PRELAB Problems for Lab #7:  Coupled Pendulums and Normal Modes 

 

1.  Consider a simple pendulum consisting of a mass m suspended on a string of length L.   

(a)  What is the pendulum's natural frequency if   L = 1 m?   

(b) What length L for a clock pendulum would make the clock “tick” once every second, 
if the tick occurs every time the clock's pendulum passes through its equilibrium 
position? 

2.  Two identical carts are placed on a frictionless air track, so that they are free to move along a 
horizontal line.  Weak springs of negligible mass are used to join the two cars and to connect 
each of the cars with a fixed point its end of the air track.   The three springs have identical 
spring constants k.   Each car has a mass M. 

(a)  What will be the frequency of motion if each cart is moved some distance D to the 
right of its equilibrium position, and they are simultaneously released from that 
position?  (Hint:  Think of the springs, and use the similarity of the two cart's 
situations.) 

(b)  What will be the frequency of motion if, instead of the above, one cart is moved a 
distance D to the right of its equilibrium position, and the other cart is moved a 
distance D to the left? 
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Princeton University Physics 103/105 Lab 
Physics Department  
 

LAB #8: THE SPEED OF SOUND  
AND SPECIFIC HEATS OF GASES 

 

Introduction 
 
This week you will measure the velocity of sound in a gas, and you will weigh the 

gas in order to find its density.  These measurements will lead to a determination of 
CP/CV, the ratio of specific heats at constant pressure and constant volume, and thus 
should allow you to determine the molecular structure of the gas.  It is a beautiful 
example of how measurements of macroscopic lengths, masses, and forces provide 
information about molecules having sizes and masses of 10-10 meters and 10-23 grams!  
 

Let's quickly review how these quantities relate -- that is, how the speed of sound 
ultimately relates to degrees of freedom and specific heat.  The speed c  of longitudinal 
waves is given by (see Appendix A for a derivation) 

                                                     / ,c B   

where is the density of the medium, and B is the bulk modulus defined by the 

relationship          
/ /

P P
B

V V 
 

  
 

            (noting that changes in density and 

volume have opposite signs).  The bulk modulus is a property of a substance: it describes 
the fractional change in the volume V  when the pressure is increased by an amount P. 
 

Now consider sound traveling in an ideal gas.  If the temperature of the gas were 
unaffected by a sound wave, then the ideal gas law, ,PV NRT  could be differentiated 

as 0,V P P V    such that   / / .P V V P    

 
However, it is not correct for a gas that B = P.  Sound waves propagate as a series 

of compressions and expansions, which change the local kinetic energy of the gas.  Since 
temperature is a measure of the internal energy of a system, temperature is not constant 
during a sound wave.  But, the variations in density of the gas take place so rapidly that 
there is no time for heat transfer from one part of the medium to another.  A process in 
which there is no heat flow is called adiabatic.  For an adiabatic process involving a gas 
the quantity PVremains constant, where  is the ratio CP / CV, as shown in Appendix B.  
In this case, 0,V P P V     and   / / .B P V V P     

From this it follows that the speed of sound is given by 
 

.
P

c



  
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Gas Safety 
Tanks of various gases will be available in the lab.  Choose one of these for your 
measurement of the speed of sound and, of course, use the same gas for measurement of 
the density.  The tanks contain gas at high pressure: do not try to move the tanks.  Every 
tank has three valves: one on the throat of the bottle, which allows gas to enter a large 
reduction valve in the regulator, which bleeds the gas slowly out of a small needle valve 
to which the rubber tubing is attached.  You need to use only the needle valve.  The 
others have been adjusted: do not tamper with them.  The pressure has been set high 
enough to give a flow that will fill your flask in a reasonable time.  If someone should 
increase the pressure it could cause a flask to blow up!  When you open the needle valve 
you should feel a gentle breeze of gas flowing out of the rubber tube when held near your 
lips.  Keep the needle valve closed when you are not taking gas, open it when you need 
some. 
 

Velocity of Sound 
 

The apparatus for measuring the speed of sound is a vertical cylinder of gas. The 
length of the column of gas is adjusted by changing the height of a metal reservoir of oil.  
A loudspeaker is attached to the top of the cylinder, and it generates sound from an 
electrical audio oscillator.  The loudspeaker also responds to sound vibrations (like a 
microphone) and thus the sound waves set up in the cylinder of gas affect it also.  This 
action is detected by a meter. When the cylinder is in resonance you will get a significant 
change in the reading of the meter included in the speaker circuit. 
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 As a preliminary step, turn on the oscillator at a convenient frequency (1000 
cycles/sec) and let the oil descend from the top down about 60 cm.  Watch the meter and 
listen to the sound. You should be able to find several positions of the oil level at which 
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resonance occurs.  You will want to adjust the output level of the oscillator so that the 
meter reading is near the end of the scale when the system is off resonance.  When the 
system is at a resonance, the meter reading should change by about 10 or 15%.  You 
might find that a different frequency (10-20%) will give a stronger indication of 
resonance.  Explore a bit. 

 You are now ready to fill the cylinder with gas from one of the tanks.  Note that 
you will need to flush out the air (or other gas) previously there.  Raise the oil as high as 
possible in the transparent column to minimize the volume of air ``trapped at its top.    
Connect your flask of gas to the oil reservoir, so that as the gas enters the reservoir it 
creates a higher pressure there, which further raises the level of the oil in the column.   

Be sure to open and close the valves in an order such the pressure in the system never 
gets too high, and causes the oil to overflow the top of the column.  

 Lower the oil level from the top and note the approximate location of the first 
three resonances.  Then raise the oil slowly through each resonance.  (Upward motion 
makes is easier to determine the level of oil, as you will discover on trying it both ways.)  
Find the position of resonance as accurately as possible.  
  Compute the speed of sound from the spacing between resonances and the 
frequency of the audio oscillator.  
 
 
 
 
 
 
 
 
 
Figure from Tipler's 4th Edition (p. 492) – The first four harmonics of standing waves 
on a string fixed at both ends. 
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Density of the Gas 
 The density is found by weighing a known volume of the gas at atmospheric 
pressure.  Two flasks of equal size are provided, one coated with plastic and the other 
clear.   

 Evacuate the coated flask with the vacuum pump (you can tell when this is 
achieved when a sharp clacking sound of the pump replaces the initial slurping sound).  
Weigh the evacuated flask (be careful not to drop it, the plastic coating has been put on to 
minimize hazard).  Then fill the flask with your gas and reweigh.   

 Use the clear flask to find the volume by filling it with water to the proper level 
(remember the rubber stopper in the plastic coated flask).   Measure the volume of water.  

 You can check your measurement of the density by comparing to the density of an 
ideal gas of particular molar mass:  p V = n R T  and so M n / V = M p / R T, where M is 
the molar mass.   Consider such gases as Ar, N2, and CO2. What density does the ideal 
gas law predict? 

 From the measured density and speed of sound for your gas, and the pressure of 
the atmosphere in the lab, determine the value of for your gas. 

Tips on Technique 
 A good way find a resonance position is for one person to slowly raise the oil level 

while another records the meter readings.  The resonance position can be found by 
graphing the meter reading versus position.  

 You must measure the change in weight (few grams) of the evacuated and filled flask, 
which can be done by moving the rider on the balance.  Be sure that the weights in 
the balance pan are not changed while you fill the flask with gas.  

 To fill the flask, open the needle valve, repeat the lip test, and if a gentle flow is 
found attach the hose to your flask and open the stopcock.  It will be filled when the 
hissing noise at the needle valve stops.  Shut the stopcock.  Shut the needle valve and 
remove the tubing.  The pressure in the flask is slightly above atmospheric.  Open the 
stopcock slightly and gas will hiss out allowing the pressure to drop to normal.  
Weigh the filled flask.  After a minute, open the stopcock again briefly and close. 
Reweigh.  Repeat after another minute.  Reweigh.  If the weight has not changed 
again you are finished.  If it has, repeat again.  Why does the weight change at all? 

 

What Gas Did You Use? 
 

The tanks will be labeled so that they can be distinguished, but the labels 
indicating what gases they contain will be hidden.  Some time into the lab your AI will 
provide you with a list of gases which might have been in the tanks.  Can you determine 
from your measurements of density and   which gas you used?  How confident are you?  
I.e., what's your error, and how well can you distinguish between monatomic, diatomic, 
and polyatomic gases? 
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Appendix A: Wave Equation for Sound 
 

Sound waves cause small changes in the density   and pressure P of the gas.  

We write 0 1     and 0 1P P P   where the perturbations 1  and 1P  are small 

compared to the equilibrium values 0  and 1.P   Recalling the definition of the bulk 

modulus,                                     ,
/ /

P P
B

V V 
 

  
 

 

we see that the small changes in density and pressure are related by 

1
1

0

.P P B B
 
 


     

For simplicity, we suppose that the sound wave propagates along the x -axis. 
 
In the absence of the sound wave the average velocity of the gas molecules is 

zero.  The sound wave imparts an average velocity v  (in the x -direction) to the 
molecules in a small volume dx dy dz .  The mass in this volume is 

0 ,dx dy dz dx dy dz   

and the force on this volume due to the pressure difference on its faces at  x  and x dx  

is                                   1( ) ( ) .
dP

F P x P x dx dy dz dx dy dz
dx

      

Newton’s equation of motion for this small mass of molecules is therefore, 

1
0 ,

dv dP
F ma dx dy dz dx dy dz

dt dx
               i.e.,                   1 1

2
0 0

1
.

dv dP B d

dt dx dx


 

       

The density and the velocity are related in another way, because the density of the 
small volume can only change if the velocity is different at its two x -faces.  In particular, 
the length of the small volume changes from dx  to   

 ( ) ( ) 1
dv dv

dx dx v x dx v x dt dx dx dt dx dt
dx dx

          
 

 

during time  dt .  The resulting change in the density during time dt is 

1 0

1
1 ,

1

m m m dv
d d dt

dvdx dy dz dx dy dz dx dy dz dxdt
dx

  

 
 

         
 

 

 and hence                                         1
0

d dv

dt dx

                      (equation of “continuity”). 

Taking the time derivative of the equation of motion for /dv dt , we obtain the wave 

equation,                                 
2 2

1
2 2 2

0 0

d v B d B d v

dt dx dt dx


 

                            (wave equation). 

For a travelling wave, ( ),v f x ct   we find that  
2 2

2
2 2

,
d v d v

c
dt dx

 so the speed of sound is 

given by     
0

B
c


       (Newton, 1687, with ;B P  Laplace, 1816, noted that B P ). 



 60

Appendix B: Adiabats of an Ideal Gas 
 

The First Law of Thermodynamics expresses conservation of energy for a gas as 
,U Q W    

where U  is the change in the internal energy U  of the gas when energy Q  flows into 
the gas in the form of heat, and the gas does work W  on the external system.   The gas 
only does work if its volume V  changes, in which case 

,W P dV   

where in general, the pressure P  changes as the volume changes.  If N  moles of a gas 
are heated at constant volume, the change in internal energy is given by 

,V VU Q NC T     

Where VC  is the molar heat capacity at constant volume, and T is the resulting change 

in temperature of the gas.  The heat capacity of an ideal gas is independent of 
temperature, such that the internal energy of a gas at absolute temperature T is given by 

.VU NC T  

Of course, an ideal gas also obeys the ideal gas law, 
,PV NRT  

where 8.31R   J/(mole-K) is the ideal gas constant. 
 

In an adiabatic process there is no heat flow, by definition.   Hence, in an 
adiabatic process that makes only small changes in the parameters of the gas, the First 
Law can be written                                     ,VNC dT dU dW P dV      

And the ideal gas law tells us that 

.
P dV V dP

N dT
R


  

Combing these equations, we find that                          0 ,V

V

dP C R dV dP dV

P C V P V


     

where                                                V P

V V

C R C

C C
 
    

is the ratio of specific heat at constant pressure to that at constant volume. 
Integrating, we obtain ln ln ,a P V   and hence  

                                                      aPV e   constant. 
 

For completeness, we demonstrate that the molar heat capacity PC  at constant 

pressure is related by                          .P VC C R   

If the gas is heated at constant pressure, then the heat required is ,PQ NC T   the work 

done by the gas is ,W P V NR T     and the change in the internal energy of the gas is  

.VU NC T     Inserting these relations in the First Law, we obtain 

,V PNC T U Q W NC T NR T          

which confirms that .P VC C R   
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REFERENCE INFORMATION 
 
The following pages contain general information which you may find useful.  They 
include: 
 

 A table from Tipler, on specific heats of gases.  Values of  may be derived from 
this data. 

 A table of densities of various gases, directly relevant to your calculation of v.   
 A Periodic Table of the Elements, giving the atomic weights of the various 

elements.  This will be useful if you want to consider gas densities from the point 
of view of the ideal gas law, .PV NRT  

 
You may recall that 1 atm = 101.3 kPa = 76.00 cm Hg .   
 

Table 18-3 from Tipler (5th edition): 
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PRELAB Problems for Lab #8;  The Speed of Sound and Specific Heats of Gases 

 
1.  In this experiment, you will vary the height of the oil in a column of air, producing an 

air column with varying length.  At certain lengths, acoustic resonances will occur for 
a given frequency of sound,  f .  Given two different (consecutive) heights h1 and h2,  
of the oil in the column that produce resonance, derive an expression for the speed of 
sound, v, in terms of   f ,  h1 and h2 . 

 
2.  What are the resonant wavelengths, λn , for standing sound waves in a small-diameter 

pipe of length L having one end open and the other end closed ?  Assume that there is 
a displacement node at the closed end of the pipe, and a pressure node at the open end, 
and write down a few words as to why you think these assumptions are reasonable.  
(Tipler's pages 517 and 518 are relevant to this problem.) 

 
3.  Assume that various traveling waves can exist in the same space, described by the 

equations 
ψ1 (x,t) = A sin (  7 m-1 · x  -  520 sec-1 · t )        ,         

 
ψ2 (x,t) = A sin (  7 m-1 · x  +  520 sec-1 · t )       , 

 
ψ3 (x,t) = A sin ( - 7 m-1 · x  -  520 sec-1 · t )       ,                     and 

 
ψ4 (x,t) = A sin ( - 7 m-1 · x  +  520 sec-1 · t )      . 
 

 (a)  Which waves are traveling in the direction of the positive x axis, and which 
in the negative x direction? 

 
(b)  What are the frequencies f and wavelengths λ of the waves?  What are their 

speeds of propagation? 
 
(c)  What are the angular frequencies (ω) and wave numbers (k) of the waves? 
 
(d)  Are any of the four wave functions identical with each other?  Explain why or 

why not.  (A is the same in each case.)  You may want to consider the 
behavior of the four functions in the vicinity of x = 0 , t = 0. 

 
 

Note:  It is irrelevant to answering these questions whether the ψ's 
(and A) describe sound waves, the electric fields of a radio or 
light wave, or a quantum-mechanical wave function.  
Superposition, and the conditions leading to standing waves and 
resonance, are important aspects of any wave phenomenon. 

 
 



Appendix A

Data Analysis with Excel

Computers are used for data analysis in any modern physics laboratory, and the Physics
103 lab is no exception. We have built our data analysis system around the program Excel,
which is widely used on and off campus. We’ve added some Workshop Physics (WP) tools to
make graphing data easier, and to let you do regression calculations with uncertainties, but
otherwise we are using the standard, off-the-shelf software.1

If you are already familiar with Excel, great! If not, we’ll give brief instructions here.
Like any software, it can be confusing at first, so don’t hesitate to ask your instructors and
your fellow students for help. Play around with the program a bit to get comfortable with
it.

A.1 Starting Things Up

• If the computer isn’t already on, turn it on and wait for it to boot up.

• If the Physics 103 window isn’t already open, double click on the Physics 103 icon to
open it

• Double click on Excel with WPtools (look for the X logo) to get the program running.

A.2 Entering Data: a Simple Example1

When Excel is started up, you need to open a spreadsheet to work in. If you are asked if
you want to reopen WPtools, click No. Then go to File→New and click on OK to open a new
Workbook. (If you wanted to open a pre-existing spreadsheet, you would use the File→Open
menu command; if you want to save the new spreadsheet, use the File→Save menu command.
Since we’ll be working with fairly small datasets, neither of these is really necessary for your
lab work.)

Suppose you wish to record some (x, y) data pairs in two columns of a spreadsheet. Go
to Excel, and start entering the data in the upper left most cell (called A1). To do this, move
the cursor to this cell and click on it with the left mouse button. Enter the first x data value

1Some online documentation for WPtools is at
http://physics.dickinson.edu/~wp_web/wp_resources/Documentation.html

1Note: Menu commands are described as follows: File→Open means move the cursor to the word File on
the line near the top of the screen, press and hold the left mouse button, drag the cursor down to the word
Open, and release the button.
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here, pressing Return when you are done. The cell below it (called A2) will automatically be
selected next; enter the second x data value here. Work down the first data column in this
way. If you need to go back and correct any of the numbers, simply move the cursor with
the mouse, click on the relevant cell, and re-enter the number.

Once you’ve entered the first column of numbers, move the cursor to the top cell of the
second column (cell B1) and click the left button to select it. Enter the first y data value.
Press Return/Enter, and enter subsequent y data in the rest of the cells.

A.3 Calculations in Excel

Now that your two columns of data are in the computer, select them. Do this by moving the
cursor to the top left cell, pressing and holding the left mouse button, dragging the cursor to
the lowest filled cell in the second column, and then releasing the mouse button. The block
of numbers you entered will now be “selected”, indicated by a blue-grey color.

Go to the WPtools pull-down menu and select Linear Fit. Immediately Excel will display
a plot of your data, along with the values and uncertainties of the best-fit line. Print out a
copy of the results if desired.2

Sometimes you will want to transform your raw data in some way before plotting it. For
example, you may have entered two columns of data as above, but you want to convert the
y values from inches to meters. This is where a spreadsheet program becomes really handy.
Select a blank cell somewhere on the sheet (cell C1 would be a good place). Instead of
entering a number, enter the formula ‘=0.0254*B1, and press Return. Excel will display the
expected numerical value in cell C1, and it will also remember the formula. This is useful
for two reasons, first, if you change the value in B1, the number in C1 will be automatically
updated. Second, you can copy the formula in C1 to other cells, transforming the rest of
column B using the same formula. To do this, first select cell C1. The cell becomes outlined,
and note that there is a little square in the lower right corner of the outline. Move the cursor
to this square, push and hold the left mouse button, drag the cursor down several cells, and
release the mouse button. Voila! Excel will use the same formula to multiply all the cells in
column B by 0.0254.

Excel can do much more complicated arithmetic. For example, you could use the formula
=sqrt(A1) * B1 to take the square root of the values of cells in column A, multiply them by
the values in column B, and put the result in some other column.

You might also want to take differences between the successive items in your data list. If
you type into cell C2 the formula =B2-B1, and then use the little square to fill this formula
into the cells B3, B4, etc., then you will obtain the differences in column C.

If you do a transformation like this, and then you want to do a plot or a curve fit, the
columns of data you want to plot may not be adjacent to each other. No problem. Say you
want to plot cells A1-A10 on the horizontal axis and cells C1-C10 on the vertical axis. First

2You must first “grab” the plot by left-clicking on an open area inside it. If the plot legends are obscuring
the graph, drag them aside with the mouse. Your can add labels to your plot using the Edit labels option on
the WPtools menu bar.
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select A1-A10. (Go to cell A1, hold down the left button, drag the cursor to A10, then release
the mouse button). Then hold down the Ctrl key and select C1-C10. Now both cell groups
A1-A10 and C1-C10 will be selected, but not B1-B10. Run the WPTools→LinearFit routine,
and you will get the plot you want.

A.4 Accumulating Values via Excel Tricks

There will be times in the Physics 103 lab when you want to accumulate sums of a series of
values. For example, you might have measured a series of time intervals,

Δt1 = interval between event 1 and event 2,
Δt2 = interval between event 2 and event 3,
Δt3 = interval between event 3 and event 4,
etc.

You may wish to convert these into a continuous time scale. In other words, you may want
to declare that t = 0 at the time of event 1, and then find

time of event 2 = Δt1,
time of event 3 = Δt1 + Δt2,
time of event 4 = Δt1 + Δt2 + Δt3,
etc.

This is easy to do. Say that Δt1, Δt2, etc., are in cells A1, A2, etc., and you want to put
the accumulated times in column B. First put a 0 in cell B1 (since t = 0 for the first event).
Then go to cell B2 and enter the formula =SUM($A$1:A1). The SUM function simply adds
up the cells in the range specified.

The usefulness of the $ notation becomes apparent when you want to calculate the rest
of the times. Select B2, move the cursor to the square in the lower righthand corner of the
cell border, press and hold the left mouse button, drag the cursor down several cells, and
release the button. The cells in column B are now filled with SUM functions, but in a special
way: The $A$1 in the SUM function call remains the same in all the cells (because of the
$), but the second part of the function call changes from A1 to A2 to A3, ... In other words,
cell B3 now reads =SUM($A$1:A2), cell B4 reads =SUM($A$1:A3), and so on. These are
exactly the formulae we want for the event time calculations, so column B is now filled with
calculated values of t.

A.5 Further Notes about Workshop Physics Routines

• Use the WPtools→Polynomial Fit menu command, and set Order=2 to fit lines of the
form y = c0 + c1x + c2x

2.

• If you enter non-numerical text in the cell above each column of data, it will be used
to label the horizontal and vertical axes on the plot.
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• The fitting routines always use the first selected column for the horizontal (x) points,
and the second selected column for the vertical (y) points.

• Empty rows are usually ignored (but partially-empty rows may corrupt the fit).

• To delete a plot, select it (move cursor to it and click once), then press the Delete key.
To delete a column of the sheet, select the entire column (by clicking on the letter at
the top) and use Edit→Delete.

• If data are modified after running a fit, the associated plot will be automatically up-
dated, but the fit parameters will not be re-calculated. Usually it is best to delete both
the old plot and fit parameters after updating data.



Appendix B

Estimation of Errors

While the subject of error analysis can become quite elaborate, we first emphasize a basic
but quite useful strategy, discussed in secs. B.1-2. Then, we distinguish between random (or
statistical uncertainties and systematic uncertainties in sec. B.3. Random uncertainties follow
the famous bell curve, as sketched in secs. B.4-5. The important distinction between the
uncertainty on a single measurement, and the uncertainty on the average of many repeated
measurements is reviewed in secs. B.7-7. The subject of propagation of errors on measured
quantities to the error on a function of those quantities is discussed in sec. B.8.

B.1 67% Confidence

Whenever we make a measurement of some value v, we would also like to be able to say that
with 2/3 probability the value lies in the interval [v−σ, v +σ]. We will call σ the uncertainty
or error on the measurement. That is, if we repeated the measurement a very large number
of times, in about two thirds of those measurements the value v would be in the interval
stated.

B.2 A Simple Approach

Repeat any measurement three times, obtaining a set of values {vi}, i = 1, 2, 3. Report the
average (mean),

v̄ =
1

N

N∑
i=1

vi (for N = 3), (B.1)

as the best estimate of the true value of v, and the uncertainty σ as

σ =
vmax − vmin

2
. (B.2)

If you take more than three measurements, you can still implement this procedure with
the aid of a histogram. Divide the range of observed values of v into 5-10 equal intervals
(called bins). Located the bin that contains each measurement, and draw a box one unit
high above that bin. Stack the boxes on top of one another if more than one measurement
falls in a bin. To estimate the error, determine the interval in v that contains the central 2/3
of the measurements, i.e., the central 2/3 of the boxes you just drew, and report the error
as 1/2 the length of this interval.
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B.3 Random and Systematic Uncertainties

The uncertainty in a measurement of a physical quantity can be due to intrinsic random
uncertainty (colloquially: error) as well as to systematic uncertainty.

Random uncertainties lead to difference in the values obtained on repetition of measure-
ments. Systematic uncertainties cause the measurement to differ from its ideal value by the
same amount for all repetitions of the measurement.

Random uncertainties can arise from vibrations of the components of a set-up driven by
random thermal fluctuations, random noise in the electronics, and/or many other small but
uncontrolled effects including quantum fluctuations.

In principle, the effect of random uncertainties can be made as small as desired by
repetition of the measurements, such that the dominant uncertainty is due to systematic
effects (which can only be reduced by designing a better measurement apparatus).

B.4 The Bell Curve

In many cases when a measurement is repeated a large number of times the distribution of
values follows the bell curve, or Gaussian distribution:

P (v) =
e−(v−μ)2/2σ2

√
2πσ

, (B.3)

where P (v)dv is the probability that a measurement is made in the interval [v, v + dv], μ
is true value of the variable v, and σ is the standard deviation or uncertainty in a single
measurement of v. See Figure B.1.

Figure B.1: The probability distribution measurements of a quantity with true value μ and
Gaussian uncertainty σ of a singe measurement. About 68% of the measurements would fall
in the interval between μ − σ and μ + σ, and 95% would fall in the interval μ ± 2σ.

The Table lists the confidence that a single measurement from a Gaussian distribution
falls within various intervals about the mean. If the 100 students in Ph103 each make 100
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Table B.1: The probability (or confidence) that a measurement of a Gaussian-
distributed quantity falls in a specified interval about the mean.

Interval Confidence

±σ 68%

±2σ 95%

±3σ 99.7%

±4σ 99.994%

measurements during these lab sessions, then 10,000 measurements will be taken in all. The
Table tells us that if those measurements have purely Gaussian ‘errors’, then we expect one
of those measurements to be more than 4σ from the mean.

B.5 Estimating Uncertainties When Large Numbers of

Measurements Are Made

One can make better estimates of uncertainties if the measurements are repeated a larger
number of times. If N measurements are made of some quantity resulting in values vi, i =
1, ...N then the mean is, of course,

v̄ =
1

N

N∑
i=1

vi, (B.4)

and the standard deviation of the measurements is

σ =

√√√√ 1

N − 1

N∑
i=1

(vi − v̄)2. (B.5)

Calculus experts will recognize that the operation (1/N)
∑N

i=1 becomes
∫

P (v) dv in the limit
of large N . Then, using the Gaussian probability distribution (B.3) one verifies that

v̄ = 〈v〉 =
∫ ∞

−∞
vP (v) dv, and σ2 =

〈
(v − v̄)2

〉
=
∫ ∞

−∞
(v − v̄)2P (v) dv. (B.6)

B.6 The Uncertainty on Mean of a Uniformly

Distributed Quantity

Not all measurable quantities follow the Gaussian distribution. A simple example is a quan-
tity with a uniform distribution, say with values v equally probable over the interval [a, b].
It is clear that the average measurement would be (a + b)/2, but what is the uncertainty
of the measurement? If we adopt the simple prescription advocated in secs. B.2 we would
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report the uncertainty as (b − a)/3 since 2/3 of the time the measurement would fall in an
interval 2(b − a)/3 long. If instead we use the calculus prescription for σ given in eq. (B.6)
we find that

σ =
b− a√

12
=

b − a

3.46
, (B.7)

which result is often used by experts.

B.7 The Uncertainty in the Mean

Thus far we have considered only the uncertainty or spread in measured values of some
quantity v. A related but different question is: what is the uncertainty on our best estimate
of v (which is just the mean value of our measurements, v̄ = (1/N)

∑
vi)?

The uncertainty on the mean v̄ is surely less that the uncertainty, σ, on each measurement
vi. Indeed, the uncertainty on the mean is given by

σv̄ =
σ√
N

, (B.8)

where σ is our estimate of the measurement error obtained from one of the methods sketched
previously.

Appendix C illustrates eq. (B.8) using measurements of g from past Ph103 labs.

B.8 The Uncertainty on a Function of Several

Variables (Propagation of Error)

In many cases we are interested in estimating the uncertainty on a quantity f that is a
function of measured quantities a, b, ... c. If we know the functional form f = f(a, b, ...c)
we can estimate the uncertainty σf using some calculus. As a result of our measurements
and the corresponding ‘error analysis’ we know the mean values of a, b, ... c and the error
estimates σa, σb, ... σc of these means. Our best estimate of f is surely just f(a, b, ...c) using
the mean values.

To estimate the uncertainty on f we note that the change in f due to small changes in
a, b, ... c is given by

Δf =
∂f

∂a
Δa +

∂f

∂b
Δb + ... +

∂f

∂c
Δc. (B.9)

If we just averaged this expression we would get zero, since the ‘errors’ Δa, ... Δc are some-
times positive, sometimes negative, and average to zero. Rather, we square the expression
for Δf , and then average.

Δf2 =

(
∂f

∂a

)2

Δa2 + ... +

(
∂f

∂c

)2

Δc2 + ... + 2
∂f

∂a

∂f

∂c
ΔaΔc + ... (B.10)

On average the terms with factors like ΔaΔc average to zero (under the important assump-
tion that parameters a, b, ... c are independent). We identify the average of the squares of
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the changes relative to the mean values as the squares of the errors: 〈Δa2〉 = σ2
a, etc. This

leads to the prescription

σ2
f =

(
∂f

∂a

)2

σ2
a + ... +

(
∂f

∂c

)2

σ2
c + ... (B.11)

Some useful examples are

f = a ± b ± ... ± c ⇒ σf =
√

σ2
a + σ2

b + ... + σ2
c , (B.12)

and

f = albm...cn ⇒ σf

f
=

√
l2
(

σa

a

)2

+ m2

(
σb

b

)2

+ ... + n2

(
σc

c

)2

, (B.13)

where l, m and n are constants that may be negative.

For more detailed and rigorous analyses one can consult, for example:

• P.R. Bevington and D.K. Robinson, Data Reduction and Error Analysis for the Physical
Science, 2nd ed. (McGraw-Hill, New York, 1992).

• J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements, 2nd ed. (University Science Books, 1997).





Appendix C

Standard Deviation of the Mean of g

Suppose you make N repeated measurements of a quantity g, such as the acceleration due
to gravity. How well is the value of g determined by these measurements?

For example, during the 2006 sessions of Ph103 Lab 6 a total of 37 different measurements
of g were made, as shown in the histogram Fig. C.1.

Figure C.1: Histogram of the values of g measured in the 2006 Ph103 Lab 3. The horizontal
axis is g, and the vertical axis is the number of times a value of g was reported to lie with
the range of g corresponding to the width of a vertical bar.

A histogram is a graph containing M vertical bars in which the height of a bar indicates
the number of data points whose value falls within the corresponding “bin”, i.e., within
the interval [gj − Δ/2, gj + Δ/2], where gj , j = 1, M and the centers of the M bins and
Δ is the bin width. One can make a histogram of a data set {gi} using Excel/Tools/Data
Analysis/Histogram. Enter the data {gi} in one column of an Excel spreadsheet. Click on the
Input Range: box of the Histogram window; then click and hold the left mouse button on the
first data point, and drag the mouse to the last data point to enter the cell addresses of the
data. Click on Chart Output and then OK to create a basic histogram. If the number/spacing
of “bins” chosen by Excel is awkward, fill a new column with a linear series of 5-10 steps
that begins near the lowest gi and ends near the highest; create a new histogram with the
Excel addresses of the first and last elements of the bin list in the box Bin Range:.
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The mean value ḡ is calculated according to

ḡ =

∑N
i=1 gi

N
, (C.1)

and was found to be ḡ = 939.5 cm/s2 for the data shown in Fig. C.1.

The distribution of the value of g is approximately Gaussian, and the standard deviation
of this distribution is calculated according to

σg =

√∑N
i=1(gi − ḡ)2

N − 1
, (C.2)

with the result that σg = 9.1 cm/s2.

The standard deviation σg is a good estimate of the uncertainty on a single measurement
of g. However, after 37 measurements of g, the uncertainty on the mean value ḡ is much
smaller than σg.

An important result of statistical analysis is that the standard deviation (i.e., the un-
certainty) of the mean of the N measurements is related to the standard deviation of the
distribution of those measurements by,

σḡ =
σg√
N

. (C.3)

For the data shown in Fig. C.1, where N = 37, we obtain

σḡ =
9.1√
37

= 1.5 cm/s2. (C.4)

That is, we can report the result of all 37 measurements of g as

g = 979.5 ± 1.5 cm/s2. (C.5)

As a check that eq. (C.3) is valid, we can analyze the data another way. Namely, we can
first calculate the means ḡi for the 5 different sessions of Ph103 Lab 3. Then, we can make
a histogram of these 5 values, as shown in Fig. C.2.

The mean of the 5 means is 979.6 cm/s2, which is essentially identical to the mean of the
37 individual measurements of g. The standard deviation of the 5 means shown in Fig. C.2
is calculated to be 1.6 cm/s2, which is essentially identical to the previous calculation (C.4)
of the standard deviation of the mean.

Concluding Remarks: If N were much larger than what we have here, the histogram
C.1 would approach the Gaussian distribution (the bell-curve) shown in Appendix B. The
peak in the histogram would be very close to the mean value ḡ of the measurements, which
represents the best estimate of g from the data. The standard deviation σg ≈ width/2 is a
measure of the uncertainty of a single measurement,1 while σg/

√
N is the uncertainty on the

best estimate ḡ.

1Strictly speaking, the full width at half maximum of a Gaussian distribution is 2.35σg.
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Figure C.2: Histogram of the mean values of g measured in the 5 sessions of Ph103 Lab 6
in 2006.





Appendix D

Polynomial Fits in WPtools

D.1 Polynomial Regression

In this technical Appendix we sketch the formalism used in the polynomial regression method
for fitting data. This is a generalization of the method of linear regression.

We start with a set of data (xj, yj), j = 1, ...m, and we wish to fit these data to the
nth-order polynomial

y(x) =
n∑

i=0

aix
i. (D.1)

In general each measurement yj has a corresponding uncertainty σj. That is, if the measure-
ments were repeated many times at coordinate xj the values of yj would follow a gaussian
distribution of standard deviation σj. We indicate in sec. D.2 how the program WPtools
proceeds in the absence of input data as to the σj.

Because of the uncertainties in the measurements yj we cannot expect to find the ideal
values of the coefficients ai, but only a set of best estimates we will call âi. However, we will
also obtain estimates of the uncertainties in these best-fit parameters which we will label as
σâi.

The best-fit polynomial is then

ŷ(x) =
n∑

i=0

âix
i. (D.2)

The method to find the âi is called least-squares fitting as well as polynomial regression
because we minimize the square of the deviations. We introduce the famous chi square:

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
j

=
m∑

j=1

(
yj −∑n

i=0 âix
i
j

)2

σ2
j

. (D.3)

Fact: exp(−χ2/2) is the (un-normalized) probability distribution for observing a set of vari-
ables {yj(xj)} supposing the true relation of y to x is given by eq. (D.2).

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-
normalized) probability distribution that the polynomial coefficients have values ai when
their best-fit values are âi with uncertainties due to the measurements {yj}. Expressing this
in symbols,

exp(−χ2/2) = const × exp

(
−

n∑
k=0

n∑
l=0

(ak − âk)(al − âl)

2σ2
kl

)
, (D.4)
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or equivalently

χ2/2 = const +
n∑

k=0

n∑
l=0

(ak − âk)(al − âl)

2σ2
kl

. (D.5)

The uncertainty on âk is σkk in this notation. In eqs. (D.4) and (D.5) we have introduced the
important concept that the uncertainties in the coefficients âk are correlated. That is, the
quantity σ2

kl is a measure of the probability that the values of ak and al both have positive
fluctuations at the same time. In fact, σ2

kl can be negative indicating that when ak has a
positive fluctuation then al has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to eq. (D.5) the
derivative of χ2 with respect to ak is

∂χ2/2

∂ak
=

n∑
l=0

al − âl

σ2
kl

, (D.6)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when
the coefficients take on their best-fit values âi. A further benefit is obtained from the second
derivatives:

∂2χ2/2

∂ak∂al
=

1

σ2
kl

. (D.7)

In practice we evaluate the χ2 according to eq. (D.3) based on the measured data. Taking
derivatives we find

∂χ2/2

∂âk
=

m∑
j=1

(
yj −∑n

i=0 âix
i
j

) (
−xk

j

)
σ2

j

=
n∑

i=0

m∑
j=1

âix
i
jx

k
j

σ2
j

−
m∑

j=1

yjx
k
j

σ2
j

, (D.8)

and
∂2χ2/2

∂âk∂âl
=

m∑
j=1

xk
jx

l
j

σ2
j

≡ Mkl. (D.9)

To find the minimum χ2 we set all derivatives (D.8) to zero, leading to

n∑
i=0

m∑
j=1

xi
jx

k
j

σ2
j

âi =
m∑

j=1

yjx
i
j

σ2
j

≡ Vk. (D.10)

Using the matrix Mkl introduced in eq. (D.9) this can be written as
n∑

i=0

Mikâi = Vk. (D.11)

We then calculate the inverse matrix M−1 and apply it to find the desired coefficients:

âk =
n∑

l=0

M−1
kl Vl. (D.12)

Comparing eqs. (D.7) and (D.9) we have

1

σ2
kl

= Mkl. (D.13)

The uncertainty in best-fit coefficient âi is then reported as

σâi = σii =
1√
Mii

. (D.14)
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D.2 Procedure When the σj Are Not Known

This method can still be used even if the uncertainties σj on the measurements yj are not
known. When the functional form (D.1) correctly describes the data we claim that on
average the minimum χ2 has value m− n− 1.1 To take advantage of this remarkable result
we suppose that all uncertainties σj have a common value, σ. Then

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
≈ m− n − 1, (D.15)

so that

σj = σ =

√∑m
j=1[yj −∑n

i=0 âixi
j]

2

m − n − 1
. (D.16)

In practice it appears that the error estimates from this procedure are more realistic if a
fit is made using a polynomial with one order higher than needed for a ‘good’ fit to the data.

Using eq. (D.16) as the estimate of the uncertainty σ on each of the measurements yj,
the matrix Mkl of eq. (D.9) becomes

Mkl =
m − n − 1∑m

j′=1[yj′ −∑n
i′=0 âi′xi′

j′]
2

m∑
j=1

xk
jx

l
j. (D.17)

The estimate (D.14) of the uncertainty on the fit coefficient âi is now given by

σâi =
1√
Mii

=

√√√√∑m
j′=1[yj′ −∑n

i′=0 âi′xi′
j′]

2

(m − n − 1)
∑m

j=1 x2i
j

(D.18)

When WPtools performs a polynomial regression it generates a plot of the data points
and the best-fit curve, along with numerical values of various parameters associated with the
fit. Figure D.1 gives an example of a fit to a set of 8 data points of the form y = x2. The
fit is to the form y = a0 + a1x + a2x2. The fit coefficients are a0 = −0.4107, a1 = −0.3274
and a2 = 1.1964. The uncertainties (standard errors) on the fit coefficients are reported as
SE(a0) = 4.0070, SE(a1) = 2.0429 and SE(a2) = 0.2216, as calculated according to eq. (D.18).
Note that the uncertainties on coefficients a1 and a1 are larger than the coefficients them-
selves, which tells us that these coefficients are indistinguishable from zero.

Also indicated on the plot are the values R2 = 0.9915 and σ = 2.8721. The latter is the
uncertainty in the data points {yj}, calculated according to eq. (D.16) with m = 8 and
n = 2. The quantity R2 is defined by

R2 =

∑m
j=1[ŷ(xj) − y]2∑m
j=1[y(xj) − y]2

, (D.19)

where the average y =
∑m

j=1 y(xj)/m. This is a measure of the “goodness of fit”. If the fit is
perfect then ŷj = yj for all j and R2 = 1. It is not obvious, but R2 ≤ 1 always. The extreme
case of R2 = 0 occurs when the fit has the trivial form ŷ(x) = y for all x, which in general is
a bad fit. The qualitative conclusion is that if R2 is not close to 1, the fit results are to be
regarded with suspicion.

1The whole fitting procedure does not make sense unless there are more data points (m) than parameters
(n + 1) being fitted.



82 Princeton University Ph103 Lab Polynomial Fits in WPtools

-10

0

10

20

30

40

50

60

70

80

90

100

0 5 10

Series1
Series1 Fit

Series1(X)=a0+Σan(X)n

a0=-0.4107
a1=-0.3274
a2=1.1964

SE(a0)=4.0070
SE(a1)=2.0429
SE(a2)=0.2216

R2=0.9915
σ =2.8721

Figure D.1: Sample plot from WPtools Polynomial Fitting.




