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1. Spinning Coin Revisited.

It is possible to spin a coin on a horizontal table about a vertical diameter, with its
center at rest. But, if the angular velocity becomes too low, the coin falls over and
takes on the motion considered in Prob. 6, Set 9.

Consider a thin, uniform disk of mass m and radius a that spins without friction on
a horizontal table (such that its center moves only vertically). Use Euler angles θ, φ
and ψ, in the manner of Fig. 47, p. 110 of L.D. Landau and E.M. Lifshitz, Mechanics,
3rd ed. (Pergamon, 1976), http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf,
and Lagrange’s method to analyze the motion.

(a) Show that the steady precession rate about the vertical is,

φ̇steady =
ω3 ±

√
ω2

3 + 4g cos2 θ/a sin θ

cos θ
, (1)

where θ is the angle between the symmetry axis 3 of the disk to the vertical, and
ω3 is the angular velocity about that axis.

This relation becomes invalid at θ = 90◦, when the coin is “on edge”.

(b) Show that in this case the two possible classes of steady motion are,

• ω3 arbitrary, φ̇ = 0,⇔ rolling and slipping.

• ω3 = 0, φ̇ arbitrary, ⇔ spinning on edge.

For the second case (spinning on edge), use a small-angle approximation, θ =

π/2 + ε, to show that the motion is stable if φ̇ > 2
√
g/a; otherwise the coin falls

over.
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2. Rolling Disk Revisited.

Consider arbitrary motion of a disk that rolls without slipping on a horizontal plane.
Experts will note that this example has 5 coordinates and 2 nonholonomic constraints.
But, try it without resort to Lagrange multipliers.

The thin, uniform disk has mass m and radius a. Use a coordinate system that is
similar to, but not quite the same as that of Euler:

• ẑ is vertical.

• Principal axis 1̂ is always horizontal.

• Principal axis 2̂ lies in a vertical plane that includes the center of the disk.

• Principal axis 3̂ = 1̂× 2̂ is the symmetry axis of the disk. Axes 2̂ and 3̂ lie in the
same vertical plane.

The axes (1, 2, 3) are principal axes, but they are not body axes (that are fixed with
respect to the rotating disk).

Also define,

• θ = angle between 2̂ and ẑ.

• φ̇ = angular velocity of the disk (and of the (1, 2, 3) axes) about the vertical.

• F = the (as yet unknown) force on the disk at the point of contact with the
horizontal surface.

The “elementary” equations of motion are,

Ftotal = m
dvcm

dt
, τ cm =

dLcm

dt
. (2)

The constraint of rolling without slipping can be written in terms of velocities (as a
time-dependent version of Chasles’ theorem),

vcontact = 0 = vcm + ω × a, (3)

where,• a = −a 2̂ = vector from the center of mass to the point of contact.

• ω(1,2,3) = −θ̇ 1̂ + φ̇ ẑ = angular velocity of the axes (1, 2, 3).

• ω = ω(1,2,3) + ψ̇ 3̂ = total angular velocity of the disk.

• ψ̇ = (spin) angular velocity of the disk relative to the (1, 2, 3) axes.
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Then, ω3 = ω(1,2,3)3 + ψ̇.

Eliminate F and vcm to arrive at the equation of motion,

ma2

4

d

dt

(
−θ̇ 1̂ + φ̇ sin θ 2̂ + 2ω3 3̂

)
= mga cos θ 1̂ −ma2 2̂ × d

dt

(
ω3 1̂ + θ̇ 3̂

)
. (4)

Note that for axis î,

d î

dt
= ω(1,2,3) × î. (5)

Show that for steady motion (φ̇, ω3 constant, θ̇ = 0),

φ̇
2
sin θ cos θ − 6ω3φ̇ sin θ − 4g

a
cos θ = 0. (6)

At θ = π/2 the disk is “on edge”. Here, we are interested in the rolling motion φ̇ = 0
but ω3 arbitrary. Is this motion stable?

To answer this, consider θ = π/2 + ε for small ε, small φ̇ and arbitrary ω3. Ignore
2nd-order terms in the equation of motion, such as ε2 and ε θ̇, to show that the:

• 1̂ terms ⇒ ε̈ ≈ −4
5

(
3ω2

3 − g
a

)
ε.

• 2̂ terms ⇒ φ̇ ≈ 2 ε ω3ε.

• 3̂ terms ⇒ ω̇3 ≈ 0 (ω3 constant).

Hence, the rolling “on edge” is stable if ω3 >
√
g/3a; otherwise the disk falls over into

(generally unstable) motion of the form considered in Prob. 5, Set 9.
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3. Marble Rolling on a Turntable. (Is this how you lost your marbles?)

A marble (uniform sphere of massm and radius a) rolls without slipping on a horizontal
turntable that rotates with constant angular velocity Ω about the symmetry axis of
the turntable.

Use the vectorial approach of Prob. 2 to analyze the motion by “elementary” methods
in the lab frame.

(a) What is the (nonholonomic) rolling constraint between a, r, v, Ω and ω where,

• a = vector from the center of the marble to the point of contact with the
turntable.

• r = vector perpendicular to the symmetry axis of the turntable to the center
of the marble.

• v = velocity of the center (of mass of) the marble.

• ω = total angular velocity of the marble in the lab frame.

(b) Consider arbitrary motion of the marble (rolling without slipping on the turntable).

Note that by differentiating the constraint relation, you can eliminate dω/dt

from the equations of motion, leading to,

I +ma2

I

dv

dt
=

d

dt
(Ω× r) , (7)

with Ω constant. Show that this leads to,

v =
I

I +ma2
Ω × ρ, where r = R + ρ and R = r0 +

I +ma2

I

Ω× v0

Ω
, (8)

where ρ is the radius vector and r0 and v0 are the initial position of velocity of
the center of the marble. This is motion in a circle of radius ρ about the axis
parallel to a at distance R from the axis of the turntable.

Ignore a possible “spin” angular velocity of the marble about the axis a, which
“spin” would be independent of Ω, and find the total angular velocity ω of the
marble.

You should find that the angular velocity component about the vertical is
ΩI/(I +ma2) = 2Ω/7 for a uniform sphere..

(c) Suppose that the plane of the turntable makes angle α to the horizontal.

Note that the normal force of the turntable on the marble is not necessarily
mg cosα.

Consider axes 1̂ perpendicular to the tilted turntable, 2̂ pointing up the slope,
and 3̂ horizontal.
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Deduce the equation of motion, slightly modified from that in part (b). Show that
a solution is v = v(b) + vdrift where v(b) is that found in part (b) (in the (1, 2, 3)
coordinate system) and,

vd =
mga2 sinα

IΩ
3̂. = constant vector (9)

Hence, the motion involves a horizontal drift, as sketched in the figure below.

Why not try it?
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4. Gyrocompass.

A gyrocompass is a spinning flywheel whose axis ω of rotation is constrained to lie in
a horizontal plane at the surface of the Earth.

If we analyze the motion in a frame fixed to the surface of the (spinning) Earth, the
Coriolis force must be taken into account. When ω makes angle θ to the North, as
shown in the figure, the left side of the flywheel is moving up, and the Coriolis force
on it is to the West. Similarly, the right side of the flywheel is moving down, and the
Coriolis force on it is to the East. Hence, there is a net torque on the flywheel that
tends to restore θ to zero, i.e., to the North.

(a) Suppose the flywheel is a hoop of mass m and radius a. Calculate the total
Coriolis torque about the center of the hoop to show that,

τ 1 = ma2 ω Ωsinλ sin θ, τ 2 = −ma2 ωΩsin λ cos θ, τ 3 = 0, (10)

where 1̂, 2̂, 3̂ are principal axes (but not body axes), with 1̂ vertical upwards (i.e.,
1̂ = ẑ), 2̂ horizontal, and 3̂ along the symmetry axis of the hoop; Ω is the angular
velocity of the Earth, and λ is the colatitude of the gyrocompass.

Show that this torque causes the gyrocompass to make small oscillations in θ with
angular frequency

√
2ω Ωsinλ.

(b) Analyze the motion in an inertial frame, where the torque equation about the
center of the hoop is τ = dL/dt, where L is the angular momentum. In this frame,
the torque is only due to the constraint forces on the axle of the gyrocompass,
which keep the axle in the horizontal plane with respect to the Earth, but which
do not make the gyro point North.

Note that L = I · ωtotal, where the total angular velocity has three pieces,

• Rotation about the gyro axle (axis 3̂) with angular velocity ω.

• Rotation at angular velocity θ̇ about the local vertical axis (ẑ = 1̂) with
respect to the Earth.

• Rotation at angular velocity Ω of the Earth about its axis.

The principal axes 1̂, 2̂, 3̂ introduced in part (a) rotate with angular velocity
ω123 = θ̇ + ω.

Show that the components of the torque equation for with τ i = 0 (in the inertial
frame) lead to ω̇ = 0 and θ̈ + (2λΩsinλ) θ = 0, which leads again to the result
of part (a).

In practice, a motor is required to keep ω constant. And, the gyrocompass must
have a mechanism to find the horizontal plane even when its supports are tipping,
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as on an airplane or ship. This requires a “plumb bob”, and a mechanism to defeat
the effect of a possibly oscillation point of support...
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5. The Tennis Racquet Theorem.

Consider a rigid body whose principal moments of inertia are I1 < I2 < I3. As discussed
in sec. 37 of Landau’s Mechanics, free rotation with angular velocity ω pointing close
to axis 2 is “unstable”.

Examine the special case where the kinetic energy has the form T = L2/2I2, and L
is the angular momentum about the center of mass. Use expressions for T and L to
show that,

ω2
1 =

I3 − I2
I3 − I1

L2 − I2
2ω

2
2

I1I2
, ω2

3 =
I2 − I1
I3 − I1

L2 − I2
2ω

2
2

I2I3
, (11)

and that Euler’s equations lead to,

ω1 = ω1,max sech[k ω2,max (t− t0)], (12)

ω2 = ω2,max tanh[k ω2,max (t− t0)], ω2,max =
L

I2
, k =

√
(I3 − I2)(I2 − I1)

I1I3
, (13)

ω3 = ω3,max sech[k ω2,max (t− t0)]. (14)

As t → ∞, ω1, ω3 → 0 while ω2 → ω2,max, and the final rotation is about axis 2.
Thus, for this special case of motion along “separating polhodes”, a kind of stability
occurs. That is, the motion consider in this problem is along the dashed lines in the
figure below.

In practice, the special case is hard to achieve, since for any slight perturbation of the
kinetic energy T away from L2/2I2, ω will move towards axis 2 along a path close to
one of the separating polhodes, then “bounce away” from the 2̂ axis and move towards
axis −2̂ along a path close to the other separating polhode, “bounce away” from this
axis, and repeat the cycle.... To a viewer of the spinning tennis racquet, this cycle
seems “unstable” because the axis of rotation migrates between 2̂ and −̂2 every half
cycle, although in the mathematical sense it is a “stable” orbit.
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We infer from this problem that the cycle time for trajectories very close to the sep-
arating polhodes is very long, approaching infinity in the limit considered here. The
long period of such cycles contributes to the impression by the “casual” observer that
the motion is “unstable”.

One of many YouTube videos on this theme: https://www.youtube.com/watch?v=1VPfZ_XzisU
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6. Ball and Paper

A uniform ball initially rolls without slipping on a sheet of paper that is at rest on
a horizontal surface (also at rest). Then, the paper is given an arbitrary, horizontal
motion (which may include jerks), such that the ball eventually rolls off the paper onto
the horizontal surface.

In the trivial case that the paper is not moved, the velocity of the ball once off the
paper is the same as its initial velocity. Show that the final velocity of the ball (after
it rolls off the paper) is the same as its initial velocity even when the paper is moved
(and the ball rolls with slipping when it first comes off the paper).
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7. Gyroscope Revisited (Optional Challenge Problem)

In Lecture 19 of the Notes, http://kirkmcd.princeton.edu/examples/Ph205/ph205l19.pdf
the problem of a gyroscope with one point fixed was analyzed in the classic method of
Lagrange, which avoids mention of the force on the pivot.

Give a discussion of that force when the gyro is launched from rest at angle θ1, such that
the pattern of the nutation is Fig. 11-17(c) below (from S.T. Thornton and J.B. Marion,
Classical Dynamics of Particles and Systems, 5th ed. (Brooks/Cole, 2004),
kirkmcd.princeton.edu/examples/EM/marion.pdf

Use the center of mass as the reference point for torque, the inertia tensor and angular
momentum, as well as the pivot point.
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Solutions

1. Spinning Coin Revisited.

This appears as Prob. 11-58, p. 353 of W. Chester, Mechanics (Allen & Unwin, 1979),
http://kirkmcd.princeton.edu/examples/mechanics/chester_mechanics_79.pdf

We consider a coin spinning without friction on a horizontal table. Unlike Prob. 6, Set
9, the instantaneous axis is not necessarily the diameter in the vertical plane.

We use Lagrange’s method to find the motion in terms of three Euler angles, θ = angle
of the symmetry axis of the coin to the vertical, φ = azimuthal angle of the horizontal
diameter of the coin, and ψ = angle to the horizontal of body axis 1, where body axes
1 and 2 are in the plane of the disk and axis 3 is the symmetry axis.

(a) As deduced in eq. (35.2), p. 111 of L.D. Landau and E.M. Lifshitz, Mechanics, 3rd

ed. (Pergamon, 1976), http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf,
the kinetic energy of rotation about the center of the disk is,

Trot =
I1
2

(
θ̇

2
+ φ̇

2
sin2 θ

)
+
I3
2

(
φ̇ cos θ + ψ̇

)2
, (15)

where for a thin, uniform disk of mass m and radius a, I1 = I2 = ma2/4 and
I3 = ma2/2.

The center of the disk is at height z = a sin θ above the table, so the kinetic energy
of the motion of the center of mass of the disk is,

Tcm =
mż2

2
=
ma2θ̇

2
cos2 θ

2
, (16)

and the potential energy can be written as,

V = mga sin θ. (17)

The energy E = T + V = Tcm + Trot + V is conserved, and as the Lagrangian
L = T − V does not depend on either φ or ψ, the generalized momenta Pφ and
Pψ are also conserved,

Pφ =
∂L
∂φ

=
∂Trot

∂φ
=
(
I1 sin2 θ + I3 cos2 θ

)
φ̇+ I3 ψ̇ cos θ, (18)

Pψ =
∂L
∂ψ

=
∂Trot

∂ψ
= I3

(
φ̇ cos θ + ψ̇

)
. (19)
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Note that the total angular momentum vector is (from eq. (35.1), p. 111 of the
above link),

ω =
(
φ̇ sin θ sinψ + θ̇ cosψ, φ̇ sin θ cosψ − θ̇ sinψ, φ̇ cos θ + ψ̇

)
, (20)

so we recognize that the conserved, generalized momentum Pψ is the angular
momentum about axis 3,

Pψ = I3
(
φ̇ cos θ + ψ̇

)
= I3 ω3 = L3. (21)

The forces on the spinning coin are only vertical, so the angular momentum Lz
about the vertical axis is also conserved. Since angle φ is the azimuth about the
vertical axis, we anticipate that the conserved, generalized momentum Pφ is Lz.
To verify this, we consider a moment when angle ψ = 0, axis 1 is horizontal,
and axis 2 is in a vertical plane containing the center of the coin. Then, the
total angular momentum in the (1, 2, 3) system is ω =

(
θ̇, φ̇ sin θ, φ̇ cos θ + ψ̇

)
,

the angular momentum is,

L = I · ω =
(
I1θ̇, I2 φ̇ sin θ, I3

(
φ̇ cos θ + ψ̇

))
, (22)

and,

Lz = L2 sin θ + L3 cos θ = I1 φ̇ sin2 θ + I3
(
φ̇ cos2 θ + ψ̇ cos θ

)
= Pφ. (23)

Of the equations of motion, only that for coordinate θ remains to be discussed,

d

dt

∂L
∂θ̇

= I1 θ̈ =
∂L
∂θ

= I1 φ̇
2
sin θ cos θ − I3

(
φ̇ cos θ + ψ̇

)
φ̇ sin θ −mga cos θ

= sin θ

(
I1 φ̇

2
cos θ − I3 ω3 φ̇− mga cos θ

sin θ

)
=
ma2 sin θ

4

(
φ̇

2
cos θ − 2ω3 φ̇− 4g cos θ

a sin θ

)
.(24)

For steady motion, θ̈ = 0, and,

φ̇steady =
ω3 ±

√
ω2

3 + 4g cos2 θ/a sin θ

cos θ
. (25)

This relation becomes invalid at θ = 90◦, when the coin is “on edge”.

For θ = 0, eq. (24) provides no constraint on the steady motion, so φ̇ = ω3 (in
this case) is arbitrary (in the idealization of zero friction).

(b) For steady motion at θ = 90◦, eq. (24) reduces to I3 ω3 φ̇ = 0, which implies that,

• Either ω3 arbitrary, φ̇ = 0,⇔ rolling and slipping,

• Or ω3 = 0, φ̇ arbitrary, ⇔ spinning on edge.

To discuss the stability of the second case, spinning on edge, we consider a small
departure, θ = π/2+ε from the steady motion. Then, θ̈ = ε̈, cos θ ≈ −ε, sin θ ≈ 1,
and the equation of motion (24) becomes,

I1 ε̈ ≈ −I1 φ̇2
ε− I3 ω3 φ̇+mgaε = −

(
I1 φ̇

2 −mga
)
ε− L3 φ̇, (26)

which is stable (simple harmonic motion in ε with constant φ̇) for,

φ̇ >

√
mga

I1
= 2

√
g

a
. (27)
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2. Rolling Disk Revisited.

We consider arbitrary motion of a thin, uniform disk of mass m and radius a that rolls
without slipping on a horizontal plane.

We use a coordinate system that is similar to, but not quite the same as that of Euler:

• ẑ is vertical.

• Principal axis 1̂ is always horizontal.

• Principal axis 2̂ lies in a vertical plane that includes the center of the disk.

• Principal axis 3̂ = 1̂ × 2̂ is the symmetry axis of the disk.

The axes (1, 2, 3) are principal axes, but they are not body axes (that are fixed with
respect to the rotating disk).

We also define,

• θ = angle between 3̂ and ẑ.

• φ̇ = angular velocity of the disk, and of the (1, 2, 3) axes, about the vertical.

• F = the force on the disk at the point of contact with the horizontal surface.

The “elementary” equations of motion are,

Ftotal = F −mg ẑ = m
dvcm

dt
, τ cm = a× F =

dLcm

dt
. (28)

The constraint of rolling without slipping can be written in terms of velocities (as a
time-dependent version of Chasles’ theorem),

vcontact = 0 = vcm + ω × a, (29)

where,

• a = −a 2̂ = vector from the center of mass to the point of contact.

• ω(1,2,3) = θ̇ 1̂ + φ̇ ẑ = angular velocity of the axes (1, 2, 3).

• ψ̇ = (spin) angular velocity of the disk relative to the (1, 2, 3) axes.

• ω = ω(1,2,3) + ψ̇ 3̂ = total angular velocity of the disk.
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We also have that the principal moments of inertial about the center of the disk are
I1 = I2 = I3/2 = ma2/4, and,

ẑ = sin θ 2̂ + cos θ 3̂, (30)

ω = θ̇ 1̂ + φ̇ ẑ + ψ̇ 3̂ = θ̇ 1̂ + φ̇ sin θ 2̂ +
(
ψ̇ + φ̇ cos θ

)
3̂, (31)

Lcm = Icm · ω =
[
I1θ̇ 1̂ + I1φ̇ sin θ 2̂ + I3

(
ψ̇ + φ̇ cos θ

)
3̂
]
. (32)

We note that ω3 = ψ̇ + φ̇ cos θ.

From the rolling constraint (29), we have that,

vcm = −ω × a = aω × 2̂,
dvcm

dt
= a

d

dt
(ω × 2̂). (33)

The equation of motion of the center of mass can now be rewritten as,

F = mg ẑ +m
dvcm

dt
= mg(sin θ 2̂ + cos θ 3̂) +ma

d

dt
(ω × 2̂), (34)

and the torque equation about the center of mass can be rewritten as,

τ cm = a × F = −a 2̂ ×
[
mg(sin θ 2̂ + cos θ 3̂) +ma

d

dt
(ω × 2̂)

]

= −mga cos θ 1̂ +ma2 2̂ × d

dt

(
ω3 1̂ − θ̇ 3̂

)

=
dLcm

dt
=

d

dt

(
I1θ̇ 1̂ + I1φ̇ sin θ 2̂ + I3ω3 3̂

)
. (35)

Note that for axis î,

d î

dt
= ω(1,2,3) × î =

(
θ̇ 1̂ + φ̇ ẑ

)
× î =

(
θ̇ 1̂ + φ̇ sin θ 2̂ + φ̇ cos θ 3̂

)
× î, (36)

d 1̂

dt
= φ̇ cos θ 2̂ − φ̇ sin θ 3̂,

d 2̂

dt
= −φ̇ cos θ 1̂ + θ̇ 3̂,

d 3̂

dt
= φ̇ sin θ 1̂ − θ̇ 2̂. (37)

For steady motion, φ̇, ω3 constant, θ̇ = 0, we have,

d 1̂

dt
= φ̇ cos θ 2̂ − φ̇ sin θ 3̂,

d 2̂

dt
= −φ̇ cos θ 1̂,

d 3̂

dt
= φ̇ sin θ 1̂, (38)

and only the 1̂-component of eq. (35) is nonzero,

−mga cos θ −ma2ω3 φ̇ sin θ =
(
−I1φ̇2

sin θ cos θ + I3 ω3 φ̇ sin θ ) (39)

φ̇
2
sin θ cos θ − 6ω3φ̇ sin θ − 4g

a
cos θ = 0. (40)
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At θ = π/2 the disk is “on edge”. Here, we are interested in the rolling motion φ̇ = 0
but ω3 arbitrary. Is this motion stable?

To answer this, we consider θ = π/2 + ε for small ε, small φ̇ and arbitrary ω3. Then,
θ̇ = ε̇, θ̈ = ε̈, cos θ ≈ −ε, sin θ ≈ 1, and on ignoring small terms like ε φ̇, and we have,

d 1̂

dt
≈ −ε φ̇ 2̂ − φ̇ 3̂,

d 2̂

dt
≈ ε φ̇ 1̂ + ε̇ 3̂,

d 3̂

dt
≈ φ̇ 1̂ − ε̇ 2̂, (41)

and eq. (35) becomes, (again ignoring 2nd-order terms),

τ ≈ εmga 1̂ + 2̂ ×ma2 d

dt

(
ω3 1̂ − ε̇ 3̂

)
≈ εmga 1̂ + 2̂ ×ma2

(
ω̇3 1̂ − ε̈ 3̂ − ε ω3 φ̇ 2̂ − ω3 φ̇ 3̂ − ε̇ φ̇ 1̂

)
= εmga 1̂ +ma2

(
−ω̇3 3̂ − ε̈ 1̂ − ω3 φ̇ 1̂ + ε̇ φ̇ 3̂

)
=
(
εmga−ma2(ε̈+ ω3 φ̇)

)
1̂ −ma2

(
ω̇3 − ε̇ φ̇

)
3̂

=
dL

dt
≈ d

dt

(
I1 ε̇ 1̂ + I1 φ̇ 2̂ + I3 ω3 3̂

)
≈ I1 ε̈ 1̂ + I1 φ̈ 2̂ + I3 ω̇3 3̂ − I1 ε̇ φ̇ 3̂ + I1 φ̇ ε̇ 3̂ + I3 ω3 φ̇ 1̂ − I3 ε̇ ω3 2̂

=
(
I1 ε̈+ I3 ω3 φ̇

)
1̂ +

(
I1 φ̈− I3 ε̇ ω3

)
2̂ + I3 ω̇3 3̂. (42)

Then,

• 3̂ terms ⇒ (ma2 + I3) ω̇3 ≈ ma2 ε̇ φ̇ ≈ 0, ⇒ ω3 ≈ constant, since ε φ̇ is
of 2nd order.

• 2̂ terms ⇒ I1 φ̈ ≈ I3 ε̇ ω3 ⇒ φ̇ = I3 ε ω3/I1 = 2 ε ω3.

• 1̂ terms ⇒ (ma2+I1) ε̈ ≈ −(ma2+I3)ω3φ̇+εmga ≈ −ε(I3(ma2+I3)ω
2
3/I1−mga).

Hence, the rolling “on edge” is stable if ω3 >
√
I1mga/I3(ma2 + I3) =

√
g/3a; oth-

erwise the disk falls over into (generally unstable) motion of the form considered in
Prob. 5, Set 9.

This problem is Ex. 11.6.5, p. 339 of W. Chester, Mechanics (Allen & Unwin, 1979),
http://kirkmcd.princeton.edu/examples/mechanics/chester_mechanics_79.pdf

Additional aspects of this problem are discussed in
http://kirkmcd.princeton.edu/examples/rollingdisk.pdf
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3. Marble Rolling on a Turntable.

This problem first appeared on pp. 280-283 of S. Earnshaw, Dynamics, 3rd ed. (Cam-
bridge, 1844), http://kirkmcd.princeton.edu/examples/mechanics/earnshaw_44.pdf

See also, http://kirkmcd.princeton.edu/examples/mechanics/gray_18.pdf, pp. 514-516
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf, pp. 303-307
http://kirkmcd.princeton.edu/examples/mechanics/weltner_ajp_47_984_79.pdf

http://kirkmcd.princeton.edu/examples/mechanics/burns_ajp_49_56_81.pdf

http://kirkmcd.princeton.edu/examples/mechanics/romer_ajp_49_985_81.pdf

http://kirkmcd.princeton.edu/examples/mechanics/fufaev_jamm_47_27_84.pdf

http://kirkmcd.princeton.edu/examples/mechanics/weltner_ajp_55_937_87.pdf

http://kirkmcd.princeton.edu/examples/mechanics/eriksen_ejp_12_135_91.pdf

http://kirkmcd.princeton.edu/examples/mechanics/gersten_ajp_60_43_92.pdf

http://kirkmcd.princeton.edu/examples/mechanics/sokirko_ajp_62_151_94.pdf

http://kirkmcd.princeton.edu/examples/mechanics/ehrlich_ajp_63_351_95.pdf

http://kirkmcd.princeton.edu/examples/mechanics/weckesser_ajp_65_736_97.pdf

http://kirkmcd.princeton.edu/examples/mechanics/zengel_ajp_85_901_17.pdf

http://kirkmcd.princeton.edu/examples/mechanics/borisov_ejp_39_065001_18.pdf

A marble (uniform sphere of massm and radius a) rolls without slipping on a horizontal
turntable that rotates with constant angular velocity Ω about the symmetry axis of
the turntable.

We make a vectorial analysis in the lab frame.

(a) The marble rolls without slipping, so the (nonholonomic) rolling constraint (and
its time derivative) can be written as,

vcontact = v + ω × a = Ω× r,
dvcontact

dt
=
dv

dt
+
dω

dt
× a = Ω × dr

dt
= Ω× v,(43)

where vcontact is the velocity, in the lab frame, of the point of contact on the
turntable of the ball (and NOT the instantaneous velocity of the point of contact
on the ball),

• a = −a ẑ = vector from the center of the marble to the point of contact with
the turntable.

• r = vector perpendicular to the symmetry axis of the turntable to the center
of the marble.

• v = dr/dt = velocity of the center (of mass of) the marble.

• ω = total angular velocity of the marble in the lab frame.
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The equations of motion of the marble are,

m
dv

dt
= mg + Fcontact, I

dω

dt
= τ cm = a× Fcontact = a ×

(
m
dv

dt
−mg

)
, (44)

where the moment of inertia about the center of the (uniform) marble is I =
2ma2/5.

(b) In the first part of this problem, the turntable is horizontal, so a (and −ẑ) is
parallel to g, and the torque equation simplifies to,

I
dω

dt
= ma× dv

dt
. (45)

To combine eqs. (43) and (45), we write,

a × I
dω

dt
= a ×

(
ma× dv

dt

)
= m

(
a · dv

dt

)
a−ma2dv

dt
= −ma2dv

dt

= I

(
dv

dt
− Ω × v

)
, (46)

dv

dt
=

I

I +ma2
Ω× v =

I

I +ma2
Ω× dr

dt
. (47)

The acceleration dv/dt is constant in magnitude and perpendicular to the velocity
v, which corresponds to circular motion of the center of the marble.

We integrate eq. (47) to find that the speed v = |v| of the marble is constant,

v =
I

I +ma2
Ω× (r − R) =

I

I +ma2
Ω× ρ, v =

I

I +ma2
Ω ρ, (48)

where R is the (constant) vector from the center of the turntable to the center
of the circle (on the turntable) in which the marble moves in the lab frame, and
ρ = r−R is the vector from the center of the circle to the point of contact of the
marble.

From eq. (48) we have, since Ω is perpendicular to ρ,

Ω × v =
I

I +ma2
Ω × (Ω× ρ) = − I

I +ma2
Ω2 ρ, (49)

ρ =
I +ma2

IΩ2
v × Ω, ρ =

I +ma2

IΩ
v, (50)

R = r − ρ = r − I +ma2

IΩ2
v × Ω. = r0 +

I +ma2

IΩ2
Ω× v0. (51)
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If we ignore a possible “spin” angular velocity ω about the z-axis (i.e., no z-
component of the angular velocity relative to the c.m.), then the angular velocity
component ωz is just that due to the motion of the marble in the circle of radius
ρ,

ωz =
v

ρ
=

I Ω

I +ma2
(ωz,spin = 0), (52)

and so for a solid, uniform marble, ωz = 2Ω/7 and ρ = 7v/2Ω, independent of
the distance R of the center of the circular orbit of the marble from the center of
the turntable.

For what it’s worth, from the rolling constraint (43) we can now write,1

a × (ω × a) = a2ω − (a · ω)a = a2ω − a2ωz ẑ

= a × (Ω × r − v) = aΩ r − a ×
(

I

I +ma2
Ω × ρ

)
= aΩ r − aΩI

I +ma2
ρ, (53)

ω = ωz ẑ +
Ω

a

(
r − I

I +ma2
ρ
)

= ωz ẑ +
Ω

a

ma2r + IR

I +ma2
. (54)

A simple, special case is that the center of the marble remains at rest in lab frame,
i.e., v = 0, such that the radius ρ of the circle is zero, according to eq. (50). If
the marble has no “spin” about the z-axis, its angular velocity ω is in the radial
direction, r̂, and the rolling constraint (43) reduces to ω a = Ω r (as also follows
from eq. (54) with ωz = 0 = ρ).

A video of the motion for a horizontal turntable is at
https://www.youtube.com/watch?v=3oM7hX3UUEU&authuser=0

So far, we have explained the motion of the marble, without identifying the forces
and torques on the ball that “cause” the motion according to Newton.

It is convenient to consider components of the contact force F and the torque
τ = a × F about the center of the ball in terms of units vectors ρ̂, v̂ and ẑ.

Since the marble moves in a horizontal plane, Fz = mg is the normal force on the
ball from the turntable.

Since the marble moves in a circle of radius ρ at constant speed v = 2Ωρ/7 (for a
uniform sphere), the tangential force is zero, Fv = 0, while the centripetal force
is Fρ = −mv2/ρ = −2mΩv/7 = −4Ω2ρ/49.

The torque on the marble about its center is (for a uniform sphere),

τ = a× F = aFρ v̂ =
2mΩav

7
v̂ = Iω̇ =

2ma2

5
ω̇ , (55)

which is consistent with the time derivative of the last form of eq. (54).

1For a uniform sphere with I = 2ma2/5, eq. (54) can be written as ω = ωz ẑ + (5Ω/7a)(r + 2R/5), and
ω̇ = (5Ω/7a)v.
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(c) We now suppose that the plane of the turntable makes angle α to the horizontal.

We consider principal axes 1̂ perpendicular to the tilted turntable, 2̂ pointing up
the slope, and 3̂ horizontal.

Then, the vertical axis is ẑ = cosα 1̂ + sinα 2̂, and the vector from the center of
the marble to the point of contact with the tilted turntable is a = −a 1̂.

The rolling constraint can still be written as eq. (43), and the equations of motion
are again given by eq. (44). However, since a is no longer (anti)parallel to g,
eq. (45) becomes,

I
dω

dt
= ma× dv

dt
−ma× g = ma× dv

dt
+mag sinα 3̂. (56)

We combine the second of eq. (43) with (56) to find,

a × I
dω

dt
= a ×

(
ma× dv

dt
+mag sinα 3̂

)
= −ma2dv

dt
+ma2g sinα 2̂

= I

(
dv

dt
− Ω × v

)
, (57)

dv

dt
=

I

I +ma2
Ω × v +

ma2g sinα

I +ma2
2̂. (58)

We try a solution of the form v = v(t) + vdrift for constant drift velocity vdrift.

dv(t)

dt
=

I

I +ma2
Ω× v(t) +

I

I +ma2
Ω × vdrift +

ma2g sinα

I +ma2
2̂, (59)

v(t) =
I

I +ma2
Ω× (r − R) = v(b),

I

I +ma2
Ω × vdrift = −ma

2g sinα

I +ma2
2̂,(60)

where v(b) is the form found in eq. (48) above. Finally, noting that Ω = Ω 1̂,

Ω× (Ω × vdrift) = −Ω2vdrift = −Ω× ma2g sinα

I
2̂ = −ma

2gΩsinα

I
3̂, (61)

vdrift =
ma2g sinα

IΩ
3̂, r = R + vdriftt+ ρ. (62)

Hence, the motion involves a horizontal drift, as sketched in the figure below.
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This like the motion of a charged
particle in crossed, uniform E and
B fields (just as the circular mo-
tion in part (b) is like that of a
charged particle in a uniform mag-
netic field).
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4. Gyrocompass.

A gyrocompass is a spinning flywheel whose axis ω of rotation is constrained to lie in
a horizontal plane at the surface of the Earth.

If we analyze the motion in a frame fixed to the surface of the (spinning) Earth, the
Coriolis force must be taken into account. When ω makes angle θ to the North, as
shown in the figure, the left side of the flywheel is moving up, and the Coriolis force
on it. is to the West. Similarly, the right side of the flywheel is moving down, and the
Coriolis force on it is to the East. Hence, there is a net torque on the flywheel that
tends to restore θ to zero, i.e., to the North.

(a) We first analyze the motion in a frame fixed to the surface of the Earth, which
latter rotates about its axis with angular velocity Ω with respect to the “fixed
stars”. We suppose the flywheel is a hoop of mass m and radius a. It is subject to
torques about its center of mass due to the Coriolis (of order Ω, and the centrifugal
force (of order Ω2 which latter we neglect here.

In the frame fixed to the Earth, the flywheel has angular velocity ω about its
symmetry axis, 3̂, which axis is constrained to lie a the horizontal plane containing
the center of the wheel. The symmetry axis makes (variable) angle θ to the local
North direction (in the horizontal plane).

We also define principal axes 1̂ to be vertical (also called ẑ, and 2̂ in the horizontal
plane.

Then, an element dφ of the hoop at angle φ from the 1̂ axis in the 1-2 plane has
velocity relative to the 123 axes,

vrel = aω(− sinφ 1̂ + cos φ 2̂), (63)

while these axes have angular velocity −θ̇ 1̂ relative to the coordinate system fixed
to the Earth. In calculating the Coriolis force and torque, we neglect the small
velocity of the hoop due to small θ̇.

The (constant) angular velocity Ω of the Earth is,

Ω = Ω(cos λ ẑ + sinλ N̂) = Ω(cos λ 1̂ − sinλ sin θ 2̂ + sinλ cos θ 3̂), (64)

where N̂ = − sin θ 2̂ + cos θ 3̂ points to the local North. The Coriolis force on the
mass element mdφ/2π, at position a(cos φ 1̂ + sinφ 2̂), is (neglecting the small
velocity associated with θ̇),

dF = −2dmΩ × vrel (65)

=
mdφ

π
aωΩ[sinλ cos θ cos φ 1̂ + sinλ cos θ sinφ 2̂ + (sin λ sin θ sinφ− cosλ cos φ) 3̂].
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The torque about the center of the wheel on the mass element is,

dτ = a(cosφ 1̂ + sinφ 2̂) × dF (66)

=
mdφ

π
a2 ωΩ[sinλ sin θ sin2 φ− cos λ cos φ sinφ) 1̂

+sinλ cos θ sinφ− sinλ cos θ cos2 φ 2̂

+(sinλ cos θ sinφ cos φ− sinλ cos θ cos φ sinφ) 3̂].

Integrating over dφ, we find the total Coriolis torque to be,

τ = ma2 ωΩ(sin λ sin θ 1̂ − sinλ cos θ 2̂) (67)

Torque component τ 2 tends to rotate the plane of the wheel out of the vertical,
which action is compensated by the constraint mechanism of the gyrocompass.
Torque component 1 leads to the equation of motion,

τ 1 = ma2 ω Ωsinλ sin θ =
dL1

dt
=

d

dt
(−I1 θ̇) = −ma

2

2
θ̈, (68)

which implies simple harmonic motion for small θ with angular frequency√
2ω Ωsin λ.

(b) We now analyze the motion in an inertial frame, where the torque about the
center of the gyrocompass is only due to the constraint forces on the axle of the
gyrocompass, which keep the axle in the horizontal plane with respect to the
Earth (but which do not make the gyro point North). That is, τ = τ2 2̂ in this
frame (ignoring the small torque component τ3 needed to keep the spin angular
velocity ω 3̂ constant).

This is discussed in Ex. 11.6.4, p. 337 of W. Chester, Mechanics (Allen & Unwin,
1979), http://kirkmcd.princeton.edu/examples/mechanics/chester_mechanics_79.pdf

Here, the angular momentum is L = I ·ωtotal, where the total angular velocity has
three pieces,

• Rotation about the gyro axle (axis 3̂) with angular velocity ω.

• Rotation at angular velocity −θ̇ about the local vertical axis (ẑ = 1̂) with
respect to the Earth.

• Rotation at (constant) angular velocity Ω of the Earth about its axis, given
in eq. (64) above.

That is,

ωtotal = ω 3̂ − θ̇ 1̂ + Ω = ω 3̂ + ω123,
d̂i

dt
= ω123 × î, (69)

where the principal axes 1̂, 2̂, 3̂ introduced in part (a) rotate with angular velocity,

ω123 = −θ̇ 1̂ + Ω = (−θ̇ + Ωcos λ) 1̂ − Ωsin λ sin θ 2̂ + Ωsin λ cos θ 3̂. (70)
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The angular momentum is,

L = I · ωtotal = I1(−θ̇ + Ωcos λ) 1̂ − I2Ωsin λ sin θ 2̂ + I3(ω + Ωsinλ cos θ) 3̂. (71)

The torque equation is now,

τ = τ 2 2̂ =
dL

dt
=
∂L

∂t
+ ω123 × L

= −I1 θ̈ 1̂ − I2 Ω θ̇ sinλ cos θ 2̂ + I3(ω̇ −Ω θ̇ sinλ sin θ) 3̂

+I1(−θ̇ + Ωcos λ)(Ω sin λ sin θ 3̂ + Ωsin λ cos θ 2̂)

+I2(−Ωsin λ sin θ)((−θ̇ + Ωcos λ) 3̂ − Ωsin λ cos θ 1̂)

+I3(ω + Ωsin λ cos θ)((θ̇ −Ωcos λ) 2̂ − Ωsin λ sin θ 1̂). (72)

The 1-component of eq. (72) is, ignoring terms in the very small quantity Ω2,

0 = −I1 θ̈ − I3 ω Ωsin λ sin θ, (73)

θ̈ = −I3
I1
ω Ωsinλ sin θ ≈ −(2ω Ωsinλ)θ, (74)

so small oscillations in θ have angular frequency
√

2ω Ωsinλ as found in part (a).

The 3-component of eq. (72) is,

0 = I3(ω̇ − Ω θ̇ sinλ sin θ) + I2Ω θ̇ sinλ sin θ ≈ I3 ω̇, ω ≈ constant, (75)

noting that θ̇ � ω, such that terms in ω θ̇ are negligible.
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5. The Tennis Racquet Theorem.

Consider a rigid body whose principal moments of inertia are I1 < I2 < I3. We have
claimed that free rotation with angular velocity ω pointing close to axis 2 is “unstable”.

For a kind of exception to this behavior, we consider the special case where the kinetic
energy has the form T = L2/2I2, and L is the angular momentum about the center of
mass. In general,

T =
I1 ω

2
1

2
+
I2 ω

2
2

2
+
I3 ω

2
3

2
, (76)

L = I1ω1 1̂ + I2ω2 2̂ + I3ω3 3̂, L2 = I2
1 ω

2
1 + I2

2 ω
2
2 + I2

3 ω
2
3, (77)

so for the special case, 2I2T = I1I2 ω
2
1 + I2

2 ω
2
2 + I2I3 ω

2
3 = L2. From eq. (77), we can

also write I2
3 ω

2
3 = L2 − I2

1 ω
2
1 − I2

2 ω
2
2, which leads to,

2I2I3T = I1I2I3 ω
2
1 + I2

2I2 ω
2
2 + I2(L

2 − I2
1 ω

2
1 − I2

2 ω
2
2) = I3L

2, (78)

ω2
1I1I2(I3 − I2) = (I3 − I2)(L

2 − I2
2 ω

2
2), (79)

ω2
1 =

I3 − I2
I3 − I1

L2 − I2
2ω

2
2

I1I2
, and with 1 ↔ 3, ω2

3 =
I2 − I1
I3 − I1

L2 − I2
2ω

2
2

I2I3
. (80)

Then, Euler’s equation for ω̇2 in torque-free motion leads to,

ω̇2 = −I1 − I3
I2

ω1ω3 = −I1 − I3
I2

√
I3 − I2
I3 − I1

I2 − I1
I3 − I1

L2 − I2
2ω

2
2

I2
√
I1I3

=

√
(I3 − I2)(I2 − I1)

I1I3

(
L2

I2
2

− ω2
2

)
, (81)

dω2

ω2
2,max − ω2

2

= k dt, with k =

√
(I3 − I2)(I2 − I1)

I1I3
, ω2,max =

L

I2
, (82)

1

ω2,max
tanh−1 ω2

ω2,max
= k(t− t0), ω2 = ω2,max tanh[k ω2,max (t− t0)], (83)

using Dwight 140.1, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf

Then, from eq. (80),

ω2
1 =

I3 − I2
I3 − I1

I2
I1

(ω2
2,max − ω2

2) =
I3 − I2
I3 − I1

I2
I1
ω2

2,max sech2[k ω2,max (t− t0)], (84)

ω1 = ω2,max

√
I2
I1

I3 − I2
I3 − I1

sech[k ω2,max (t− t0)] = ω1,max sech[k ω2,max (t− t0)]. (85)
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And, exchanging indices 1 and 3,

ω3 = ω2,max

√
I2
I3

I2 − I1
I3 − I1

sech[k ω2,max (t− t0)] = ω3,max sech[k ω2,max (t− t0)]. (86)

As t → ∞, ω1, ω3 → 0, while ω2 → ω2,max, and the final rotation is about axis 2.
Thus, for this special case of motion along “separating polhodes”, a kind of stability
occurs. That is, the motion consider in this problem is along the dashed lines in the
figure below (from http://kirkmcd.princeton.edu/examples/mechanics/vandamme_physica_d338_17_17.pdf).

In practice, the special case is hard to achieve, since for any slight perturbation of the
kinetic energy T away from L2/2I2, ω will move towards axis 2 along a path close to
one of the separating polhodes, then “bounce away” from the 2̂ axis and move towards
axis −2̂ along a path close to the other separating polhode, “bounce away” from this
axis, and repeat the cycle.... To a viewer of the spinning tennis racquet, this cycle
seems “unstable” because the axis of rotation migrates between 2̂ and −̂2 every half
cycle, although in the mathematical sense it is a “stable” orbit.

We infer from this problem that the cycle time for trajectories very close to the sep-
arating polhodes is very long, approaching infinity in the limit considered here. The
long period of such cycles contributes to the impression by the “casual” observer that
the motion is “unstable”.

The tennis-racquet theorem was first deduced by L. Poinsot, Théorie Nouvelle de la
Rotation des Corps (Bachlier, 1851),
http://kirkmcd.princeton.edu/examples/mechanics/poinsot_motion_34.pdf

http://kirkmcd.princeton.edu/examples/mechanics/poinsot_motion_34_english.pdf
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6. Ball and Paper

This is Prob. 9.29 of D. Morin, Introduction to Classical Mechanics
http://kirkmcd.princeton.edu/examples/mechanics/morin_07.pdf

See also Prob. 8.71.

The velocity of the ball changes only if it slips (either at first on the paper or later
on the horizontal surface). Then, the force of horizontal, sliding friction changes the
(horizontal) momentum of the ball by ΔP during some time interval.

The torque about the center of the ball due to the sliding friction changes the angular
momentum of the ball (about its center) by amount

ΔLh = r × ΔPh = −r ẑ × ΔP, (87)

where r is the radius of the ball and ẑ is vertically upwards.2,3

Equation (87) holds while the ball rolls with slipping, and also holds once rolling
without slipping eventually occurs.4

For rolling without slipping, ωh = v/r, where ωh is the horizontal component of the
angular velocity of the ball, and v = ωh× r (hence ωh = −ẑ×v/r) is the (horizontal)
velocity of the center of the ball on the horizontal surface. The angular momentum of
the ball (about its center) has horizontal component Lh = Iωh with moment of inertia
I = kmr2 (about the center of the ball), where k = 2/5 for a uniform sphere, and
k < 1 for any ball in which all mass is within its nominal radius r. Then,

Lh = Iωh = −kmr2 ẑ × v

r
= −kr ẑ × P, (88)

where P = mv is the linear momentum of the ball.

The relation (88) holds for both the initial rolling without slipping of the ball on the
paper, as well as for the final rolling without slipping on the horizontal surface, so we
infer that,

ΔLh = −kr ẑ × ΔP, (89)

for the change, ΔLh, in the horizontal angular momentum between the initial and final
states of the ball when rolling without slipping. But, since k cannot be 1 for a uniform
ball, both eqs. (87) and (89) can only be satisfied if ΔP = 0, and the momentum
(and velocity) of the ball in its final motion are the same as its initial momentum (and
velocity).

2Note that the change in angular momentum, ΔL = ΔLh is in a horizontal plane even if the initial
angular momentum of the ball is not horizontal, which is possible for rolling without slipping as discussed
in Prob. 9.27 of Morin.

3There is no torque component in the z-direction, so the vertical angular velocity ωz is constant through-
out this problem.

4This behavior was discussed in Set 4, Prob. 4(c) under the heading of “English”.
http://kirkmcd.princeton.edu/examples/ph205set4.pdf
The path of the ball with initial velocity v not perpendicular to its initial, horizontal angular velocity ωh is
a parabola until rolling without slipping commences, after which it is a straight line.
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A special case is that the ball is initially at rest on the paper. Then, the ball comes to
rest after it rolls of the paper, no matter how the paper is moved.

A famous “trick” is to yank the paper/tablecloth out from under the ball/tableware so
quickly that the effect of frictional forces is negligible, and the ball/tableware remains
at rest, and at its initial position.



Princeton University 1988 Ph205 Set 10, Solution 7 29

7. Gyroscope Revisited

We consider a gyroscope of mass M with one point fixed (the pivot point) as sketched
below.

The center of mass is at fixed distance a from the pivot point along axis 1̂, which
makes angle θ to the vertical. If the gyro spins on the ground, angle θ to the vertical
can only be less than π/2.

We consider the components of force F of the pivot on the axle of the gyro in a cylindri-
cal coordinate system (ρ, φ, z) where ẑ is vertical upwards, ρ is horizontal and pointing
away from the pivot point, while φ is horizontal and pointing in the counterclock-
wise sense of steady precession as seen from above. Note that (ρ, φ, z) is a rotating
coordinate system, with the pivot on the z-axis.

The angular momentum of the gyro is most simply expressed by introducing a set of
principal axes, (1̂, 2̂, 3̂). For these, we take 1̂ to be along the axle of the gyro, pointing
away from the pivot, 2̂ is horizontal and in the φ̂ direction, while 3̂ = 1̂ × 2̂ is in the
plane of the “flywheel” of the gyro and makes angle π/2 − θ to the ẑ-axis.

The unit vectors (ρ̂, φ̂, ẑ) and (1̂, 2̂, 3̂) are related by,

1̂ = sin θ ρ̂ + cos θ ẑ, 3̂ = − cos θ ρ̂ + sin θ ẑ, (90)

ρ̂ = sin θ 1̂ − cos θ 3̂, ẑ = cos θ 1̂ + sin θ 3̂. (91)

The equation of motion of the center of mass of the gyro is,

M
dvcm

dt
= F −Mg ẑ,= Fρ ρ̂ + Fφ φ + (Fz −Mg) ẑ, (92)

where g is the acceleration due to gravity. The equation of motion of the angular
momentum of the gyro with respect to its center of mass is,

dLcm

dt
= τ cm = −a 1̂× F = −a(sin θ ρ̂ + cos θ ẑ) × F

= a[Fφ cos θ ρ̂ + (Fz sin θ − Fρ cos θ)φ − Fφ sin θ ẑ], (93)

where,

Lcm = I1 ω1 1̂ + I2 ω2 2̂ + I3 ω3 3̂

= (I1 ω1 sin θ − I2 ω3 cos θ) ρ̂ + I2 ω2 φ̂ + (I1 ω1 cos θ + I2 ω3 sin θ) ẑ, (94)
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Ii is the moment of inertia of the gyro about principal axis i, using its center of mass
as the reference point, with I3 = I2 because of the axial symmetry of the gyro, and ω
is the total angular velocity of the gyro.

Note that according to eq. (93),

dLcm

dt
· 1̂ = 0, (95)

which will be shown below to imply that ω1 is a constant of the motion.

Angular Velocities

The two equations of motion, (92)-(93), are related by the constraint that the pivot
point is at rest,

0 = vpivot = vcm + ω × (−a 1̂), vcm = ω × a 1̂. (96)

The angular velocity ω can also be thought of as composed of two parts,

ω = ω123 + ψ̇1̂, (97)

where ω123 is the angular velocity of the triad (1̂, 2̂, 3̂), and ψ̇ 1̂ is the “spin” angular
velocity of the disk relative to that triad; the relative/spin angular-velocity vector can
only have a component along 1̂ by definition. The angular velocity of the triad (1̂, 2̂, 3̂)
has component θ̇ about the horizontal axis 2̂ = φ̂ through the c.m., and is defined to
have component φ̇ about the vertical axis ẑ through the c.m. Since axis 2̂ is always
horizontal, ω123 has no component along the (horizontal) axis φ̂ × ẑ = ρ̂ through the
c.m. Hence, the angular velocity of the triad (1̂, 2̂, 3̂) can be written as,

ω123 = φ̇ ẑ + θ̇ φ̂ = φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂. (98)

Combining eqs. (97) and (98), we can write the total angular velocity vector as,

ω = ω1 1̂ + ω2 2̂ + ω3 3̂, (99)

where,
ω1 = ψ̇ + φ̇ cos θ, ω2 = θ̇, ω3 = φ̇ sin θ. (100)

The time rate of change of 1̂ at the center of mass is therefore,

d1̂

dt
= ω123 × 1̂ = φ̇ sin θ 2̂ − θ̇ 3̂, (101)

The angular velocity of the triad (ρ̂, φ̂, ẑ) is simply φ̇ ẑ, so that,

dφ̂

dt
= φ̇ ẑ × φ = −φ̇ρ, (102)

dρ̂

dt
= φ̇ ẑ × ρ̂ = φ̇ φ̂. (103)
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A Constant of the Motion

It is also useful to note that,

1̂ × d1̂

dt
= θ̇ 2̂ + φ̇ sin θ 3̂ = 1̂ × (ω × 1̂) = ω − (ω · 1̂) 1̂ = ω − ω1 1̂ = ω⊥ (104)

where ω⊥, the component of the total angular velocity ω that is perpendicular to the
symmetry axis 1̂. Hence, we can write,

ω = ω1 1̂ + 1̂ × d1̂

dt
= ω1 1̂ + ω⊥, (105)

in addition to eq. (99).

Then, the angular momentum Lcm, eq. (94), about the center of mass of the gyro is
also related by,

Lcm = I1 ω1 1̂ + I2 ω⊥ = I1 ω1 1̂ + I21̂ × d1̂

dt
, (106)

dLcm

dt
= I1 ω̇1 1̂ + I1 ω1

d1̂

dt
+ I2 1̂ × d21̂

dt2
. (107)

Recalling eqs. (95) and (101), we have that,

0 =
dLcm

dt
· 1̂ = I1 ω̇1, (108)

which integrates to,5,6

ω1 = constant. (111)

In general, the z-component, Lcm · ẑ, of the angular momentum about the c.m. is not
a constant of the motion, due to the nonzero vertical torque about the c.m. caused by
the φ-component of the force F of the pivot.

5Some people call ω1 1̂ = (ψ̇ + φ̇ cos θ) 1̂ the spin angular velocity, but I prefer to call only ψ̇ 1̂ the spin.
6We could now write the angular equation of motion, eq. (93), introducing the notation that Ii = kima

2,
as,

dLcm

dt
= I1 ω1

d1̂
dt

+ I2
d

dt

(
1̂× d1̂

dt

)
= τ , (109)

k2m
d

dt

(
a 1̂× d(a 1̂)

dt

)
= τ − k1ma

2 ω1
d1̂
dt

= τ + a 1̂×
(
k1maω11̂× d1̂

dt

)
, (110)

noting that d 1̂/dt = −1̂× (1̂× d 1̂/dt).
Formally, eq. (110) can be thought of as the torque equation for a point mass k2m at the end of a massless

rod of length a whose other end is the pivot point of the gyro, subject to two torques about the pivot point.
One of these torques has the same value as the torque τ on the gyro about its center of mass, and the other
torque is due to a force k1mrω11̂× d1̂/dt on the mass k2m.

This analogy may or may not be helpful, but is pursued on p. 324 of E.A. Milne, Vectorial Mechanics
(Metheun; Interscience Publishers, 1948),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf



Princeton University 1988 Ph205 Set 10, Solution 7 32

Components of Angular Equation of Motion about the C.M.

We now have all the ingredients to calculate the (ρ, φ, z) components of dLcm/dt.

First, we use eq. (100) in eqs. (94),

Lcm = (I1 ω1 sin θ − I2 φ̇ sin θ cos θ) ρ̂ + I2 θ̇ φ̂ + (I1 ω1 cos θ + I2 φ̇ sin2 θ) ẑ, (112)

and then recall eqs. (102)-(103) to find,

dLcm

dt
=
(
I1 ω1θ̇ cos θ − I2 φ̈ sin θ cos θ − 2I2 φ̇θ̇ cos2 θ

)
ρ̂

+
(
I1 ω1φ̇ sin θ − I2 φ̇

2
sin θ cos θ + I2 θ̈

)
φ̂

−
(
I1 ω1θ̇ sin θ − I2 φ̈ sin2 θ − 2I2 φ̇θ̇ sin θ cos θ

)
ẑ (113)

Finally, recalling the expression for the torque about the center of mass from eq. (93),
the ρ-, φ- and z-components of the angular equation of motion are,

I1 ω1θ̇ cos θ − I2 φ̈ sin θ cos θ − 2I2 φ̇θ̇ cos2 θ = aFφ cos θ, (114)

I1 ω1φ̇ sin θ − I2 φ̇
2
sin θ cos θ + I2 θ̈ = aFz sin θ − aFρ cos θ, (115)

I1 ω1θ̇ sin θ − I2 φ̈ sin2 θ − 2I2 φ̇θ̇ sin θ cos θ = aFφ sin θ. (116)

Components of Angular Equation of Motion about the Pivot

While eqs. (92) and (93) are sufficient to determine the motion, they do not determine
all of the force components in general. To remedy this we also consider the angular
equation of motion about the pivot point. We note that the principal moments of
inertia of the gyro about the pivot point are I1p = I1, I2p = I3p = I2 + Ma2 according
to the principal-axis theorem, and so the angular momentum about this point is,

Lp = I1 ω1 1̂ + I2p ω2 2̂ + I2p ω3 3̂

= (I1 ω1 sin θ − I2p ω3 cos θ) ρ̂ + I2p ω2 φ̂ + (I1 ω1 cos θ + I2p ω3 sin θ) ẑ (117)

Then we have,

dLp

dt
= τ p = a 1̂ × (−Mg ẑ) = −a(sin θ ρ̂ + cos θ ẑ) ×Mg ẑ = Mga sin θφ

=
(
I1 ω1θ̇ cos θ − I2p φ̈ sin θ cos θ − 2I2p φ̇θ̇ cos2 θ

)
ρ̂

+
(
I1 ω1φ̇ sin θ − I2p φ̇

2
sin θ cos θ + I2p θ̈

)
φ̂

−
(
I1 ω1θ̇ sin θ − I2p φ̈ sin2 θ − 2I2p φ̇θ̇ sin θ cos θ

)
ẑ (118)

The ρ-, φ- and z-components of the angular equation of motion (118) are,

I1 ω1θ̇ cos θ − I2p φ̈ sin θ cos θ − 2I2p φ̇θ̇ cos2 θ = 0, (119)

I1 ω1φ̇ sin θ − I2p φ̇
2
sin θ cos θ + I2p θ̈ = Mga sin θ, (120)

−
(
I1 ω1θ̇ sin θ − I2p φ̈ sin2 θ − 2I2p φ̇θ̇ sin θ cos θ

)
= 0. (121)



Princeton University 1988 Ph205 Set 10, Solution 7 33

Steady (Slow) Precession

In the case of steady precession, φ̇ = ωp = constant, θ = θ0 = constant, and 0 = φ̈ =
θ̇ = θ̈ = (dvcm/dt)φ = (dvcm/dt)z.

The equation of motion (92) of the c.m. of the gyro tells us that,

Fρ = −Mω2
p a sin θ0, Fφ = 0, Fz = Mg, (122)

noting that the c.m. of the gyro undergoes uniform circular motion in a horizontal
circle of radius a sin θ0, with centripetal acceleration (dvcm/dt)ρ = −ω2

p a sin θ0. Then,
the angular equations of motion (114) and (116) are trivially satisfied, while eq. (115)
leads to the quadratic equation for ωp,

I1 ω1ωp sin θ0 − I2 ω
2
p sin θ0 cos θ0 = aMg sin θ0 + a2Mω2

p sin θ0 cos θ0, (123)

I2p ω
2
p cos θ0 − I1 ω1ωp +Mga = 0, (124)

ωp =
I1 ω1

2I2p cos θ0

(
1 ±

√
1 − 4MgaI2p cos θ0

I2
1ω1

)
, (125)

where I2p = I2 + Ma2 is the moment of inertia of the gyro about the 2̂ = φ̂ axis with
respect to the pivot point rather than the c.m.

If θ0 < π/2 (as for a spinning top on the ground) the precession is not stable, and the
gyro will fall to the ground, unless,

ωp >
2

I1

√
mgrI2p cos θ0 (θ0 < π/2). (126)

Equation (125) indicates that there are two possible values for the angular velocity ωp
of steady precession, while experience emphasizes only one of these – the smaller value.
This story is clarified by considering the case that ω1 is large, and eq. (125) can be
approximated as,

ωp ≈ I1 ω1

2I2p cos θ0

[
1 ±

(
1 − 2MgaI2p cos θ0

I2
1ω1

)]
, (127)

ωp ≈ Mga

I1ω1
(slow) or

I1 ω1

I2p cos θ0
(fast). (128)

The constant angular velocity of slow (familiar) steady precession is, for large ω1,

ωp(slow) ≈ Mga

I1ω1
, (129)

which is independent of the vertical angle θ0 of the gyro.7

7For the special case of θ0 = π/2, there is only one steady motion, with ωp = Mga/I1ω1, as for “slow”
precession. This motion exist for any value of ω1, although for small ω1 the precession is “fast”.
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The less familiar fast precession (for θ0 
= π/2),

ωp(fast) ≈ I1 ω1

I2p cos θ0
, (130)

does not depend on gravity, and is essentially the free precession of the gyro in a
zero-gravity environment. Indeed for very large ω1, the torques due to the force F of
the pivot are negligible, and the motion is torque-free precession with constant, total
angular momentum L along in the ẑ direction.

Recall from p. 191 of Lecture 18,8 that for a symmetric top the torque-free precession
angular velocity, according to an inertial observer, is ωp = L/I2 with L1 = I1 ω1 and
1̂ at angle θ0 to the total angular momentum L. such that L1 = L cos θ0. That is,
ωp = I1ω1/I2 cos θ0, which agrees with eq. (130) with the understanding that in the
analysis of a gyro with a fixed point at the pivot rather than the c.m., I2 → I2p.

The special case of steady motion with θ0 = π/2 is considered in
http://kirkmcd.princeton.edu/examples/disk_prelim.pdf

The Gyro Is Held Fixed by Additional force F′

We now begin a survey of the forces associated with the gyro in various situations.

First, we consider that the gyro is prevented from moving by an additional force F′

applied to an extension of the axle of the gyro by length a, as sketched below.

In this case, the c.m. of the gyro is at rest, and its angular momentum vector is
constant.

The equation of motion of the center of mass of the gyro is now,

0 = M
dvcm

dt
= F + F′ −Mg ẑ,= (Fρ + F ′

ρ) ρ̂ + (Fφ + F ′
φ)φ + (Fz + F ′

z −Mg) ẑ.(131)

8http://kirkmcd.princeton.edu/examples/Ph205/ph205l18.pdf
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The equation of motion of the gyro with respect to the (fixed) pivot point,

0 =
dLp

dt
= τ p = 2a 1̂ × F′ + a 1̂ × (−Mg ẑ) = a(sin θ ρ̂ + cos θ ẑ) × (2F′ −Mg ẑ)

= −2aF ′
φ cos θ ρ̂ + a[(Mg − 2F ′

z) sin θ + 2F ′
ρ cos θ] φ + 2aF ′

φ sin θ ẑ, (132)

When the c.m. is at rest, eq. (131) tells us that,

F ′
ρ = −Fρ, F ′

φ = −Fφ, F ′
z = Mg − Fz. (133)

When the axle of the gyro is held fixed, the ρ- and z-components of eq. (132) then tells
us that,

F ′
φ = 0 = Fφ. (134)

Using eq. (133) in the φ-component of eq. (132) we find,

(2Fz −Mg) sin θ − 2Fρ cos θ = 0. (135)

The ρ- and z-components of the forces are indeterminant in the sense that one could
chose any value of, say, F ′

ρ and a solution would exist. Of interest is the minimal
solution in which,

Fρ = 0 = F ′
ρ, Fz =

Mg

2
= F ′

z. (136)

That is, F = F′ = Mg ẑ/2 when the gyro is held fixed in place by the additional force
F′ with no ρ- or φ-components, just as could hold if the flywheel of the gyro were not
spinning.

The Gyro Axis Is Constrained to Move in a Vertical Plane

In some demonstrations of gyroscopes, its axis is constrained to move in a vertical
plane. If the gyro is released from rest it falls down without precessing.

We can use the analysis of the previous section, now supposing the addition force F′

has only a φ-component, and that φ̇ = 0 = φ̈, but angle θ can vary.

The c.m. moves in a vertical Circe of radius a about the pivot point, so that,

vcm = −aθ̇ 3̂. (137)

dvcm

dt
= −aθ̈ 3̂ − aθ̇

d3̂

dt
− θ̇

2
a 1̂ = −aθ̈ 3̂ − 2aθ̇

2
1̂

= −aθ̇(− cos θ ρ̂ + sin θ ẑ) − 2θ̇
2
a(sin θ ρ̂ + cos θ ẑ)

= a
(
θ̈ cos θ − 2θ̇

2
sin θ

)
ρ̂ − a

(
θ̈ sin θ + 2θ̇

2
cos θ

)
ẑ, (138)

noting that the angular velocity of the axes is now ω123 = θ̇ 2̂, and hence d3̂/dt =

ω123 × 3̂ = θ̇ 1̂, while the centripetal acceleration (along −1̂ has magnitude θ̇
2
a, and

we recall eq. (90).
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The equation of motion of the center of mass, eq. (131) with F′ = F ′
φ φ̂, tells us that,

Fρ = Ma
(
θ̈ cos θ − 2θ̇

2
sin θ

)
, F ′

φ = −Fφ, Fz = Mg −Ma
(
θ̈ sin θ + 2θ̇

2
cos θ

)
.(139)

To get additional information about the forces, we consider the angular equation of
motion about the pivot point, dLp/dt = τ p. We can take the dependence of dLp/dt
on the moments of inertia from eq. (118), and τ p from eq. (132) to find the ρ-, φ- and
z-components of the angular equation of motion,

I1 ω1θ̇ = −2aF ′
φ = 2aFφ, (140)

I2p θ̈ = Mga sin θ. (141)

The differential equation (141), which holds even if the gyro is not spinning, can be
integrated using Wolfram Alpha. We scale time t in the plot below by the period T
of a simple pendulum of length I2p/Ma, in which the gyro was released from rest at
t = 0 and θ(0) = 0.1.

The time for the gyro to fall to θ = π is about 0.7T . As θ and θ̇ increase, the force
F ′
φ, needed to keep the motion in a vertical plane, increases in magnitude as I1ω1θ̇/2a,

where ω1 = ψ̇(0) is constant; this force is in the −φ̂-direction, opposing the tendency
of the gyro to precess.

The force exerted by the pivot can be computed from eq. (139) and the numerical
solution for θ(t).

Gyro Is Launched from Rest at Angle θ1

At length we take up discussion of forces and torques on a gyroscope with one point
fixed, with emphasis on the case that it is released from rest.

To complete the equation of motion (92) of the center of mass, we compute dvcm/dt
from the constraint that the pivot is at rest,

0 = vpivot = vcm + ω × a, (142)

vcm = −ω × a = ω123 × a 1̂ =
(
φ̇ ẑ + θ̇ φ̂

)
× a(sin θ ρ̂ + cos θ ẑ)

= aθ̇ cos θ ρ̂ + aφ̇ sin θ φ̂ − aθ̇ sin θ ẑ, (143)
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dvcm

dt
= a

(
θ̈ cos θ − θ̇

2
sin θ − φ̇

2
sin θ

)
ρ̂

+a
(
φ̈ sin θ + 2φ̇θ̇ cos θ

)
φ̂ − a

(
θ̈ sin θ + θ̇

2
cos θ

)
ẑ, (144)

noting that a = −a 1̂, and recalling eqs. (90) and (102)-(103). The ρ-, φ- and z-
components of eq. (92) now tell us that,

Fρ = Ma
(
θ̈ cos θ − θ̇

2
sin θ − φ̇

2
sin θ

)
, (145)

Fφ = Ma
(
φ̈ sin θ + 2φ̇θ̇ cos θ

)
, (146)

Fz = Mg − a
(
θ̈ sin θ + θ̇

2
cos θ

)
. (147)

The terms in θ̈ are associated with the tangential acceleration −aθ̈ 3̂ of the c.m. along

a vertical arc of radius a centered on the pivot, while the terms in θ̇
2

are associated

with the centripetal tangential acceleration −aθ̇2
1̂ of the c.m. in its motion along that

arc. The motion of the c.m. in a horizontal circle of radius a sin θ is association with
tangential acceleration a sin θφ̈ φ̂ and centripetal acceleration −a sin θφ̇

2
ρ̂. The term

in φ̇θ̇ does not seem to have a simple interpretation.

We recall that the angular equations of motion (114)-(115) with respect to the c.m.
are,

I1 ω1θ̇ − I2 φ̈ sin θ − 2I2 φ̇θ̇ cos θ = aFφ, (148)

I1 ω1φ̇ sin θ − I2 φ̇
2
sin θ cos θ + I2 θ̈ = aFz sin θ − aFρ cos θ, (149)

and those, eqs. (119)-(120) with respect to the pivot are,

I1 ω1θ̇ − I2p φ̈ sin θ − 2I2p φ̇θ̇ cos θ = 0, (150)

I1 ω1φ̇ sin θ − I2p φ̇
2
sin θ cos θ + I2p θ̈ = Mga sin θ. (151)

Note that use of eq. (145)-(147) in eqs. (114)-(115) converts them to eqs. (119)-(120).

The general motion of a gyroscope with one point fixed involves nutations about steady
precession of the c.m. in a horizontal circle. Various forms of the nutations are sketched
below, with the case of a gyro released from rest at vertical angle θ1 corresponding to
Fig. 11-17(c) below.
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The initial angular momentum of the gyro is L = I1 ω1 1̂, along the axle, with ω1 equal
to the initial value of ψ̇ (which is positive in the figure on p. 24).

Initially, the gyro falls vertically, and 0 < Fz < mg, such that θ̈ > 0 the vertical angle
θ increases with time.

The vertical force Fz also produces a torque about the c.m. of the gyro, τφ = aFz sin θ.
This torque pushes the angular momentum L, and the gyro, in the φ direction. Recall
from eq. (93) that,

dLcm

dt
= τ cm = −a 1̂ × F = a[Fφ cos θ ρ̂ + (Fz sin θ − Fρ cos θ)φ − Fφ sin θ ẑ], (152)

The gyro takes on initial azimuthal angular acceleration φ̈ > 0 and azimuthal angular
velocity φ̇ > 0.

The c.m. of the gyro now has a component of acceleration in the φ direction, so
Fφ > 0, and because there is now circular motion of the gyro around the pivot there
is also a component Fρ of the force in the −ρ direction. These forces generate torque
components (about the c.m.), τ z = −aFφ sin θ and τ ′φ = −aFρ cos θ.

The downward vertical torque τ z pushes the angular momentum, and the gyro down-
wards, which gives a different perspective on the initial fall of the gyro. The additional
azimuthal torque τ ′φ affects the azimuthal angular velocity φ̇ of the gyro, but never

enough to change the sign of φ̇.

The angular equation (151) indicates that at the azimuthal angular velocity φ̇ increases,
the vertical angular acceleration φ̈ decreases, and can go negative. Then, the vertical
force Fz−Mg on the c.m. can switch from negative to positive, slowing the vertical fall
of the gyro to a maximum vertical angle θ2, and eventually pushing it back up (rising).

Meanwhile, as φ̈ passes through zero and goes negative, the azimuthal angular velocity
φ̇ reaches a maximum value, greater than that for steady precession, and eventually
drops to zero as the gyro returns to vertical angle θ1.
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Then, the nutation cycle starts again.

The force components throughout this cycle are described in eqs. (145)-(147), but the
interplay of forces and torques is so complex that it is hard to state a simple version
of cause and effect at every moment in time.

Fictitious Forces, Torques and Changes in the Spin ψ̇

We found in eq. (111) that ω1 = ψ̇ + φ̇ cos θ is a constant of the motion, with the
implication that the angular velocity ψ̇ 1̂ of the “flywheel” of the gyro changes as φ̇ or
θ vary,

ψ̈ 1̂ =
(
φ̇θ̇ sin θ − φ̈ cos θ

)
1̂. (153)

This is perhaps surprising in that we presume there is no torque about the center of the
flywheel due to friction at the bearings of the flywheel. However, as we are analyzing
the gyro with respect to its c.m. in the rotating coordinate system (ρ, φ, z), whose
angular velocity with respect to the lab frame is Ω = ωρφz = φ̇ ẑ = φ̇(cos θ 1̂+ sin θ 3̂),
we must remember the existence of “fictitious” forces,9 such that the effective force on
mass m, at distance r = r(cosψ 2̂+sinψ 3̂) from the origin of the rotating frame (here
taken to be the c.m. of the gyro), is given by,

Feffective = F + FCentrifugal + FCoriolis + FAzimuthal + FCoord, (154)

where F is the force on mass m in the inertial lab frame,

FCentrifugal = −mΩ× (Ω × r) = m[Ω2r − (Ω · r)Ω], (155)

FCoriolis = −2mΩ× v = −2mv × Ω, (156)

FAzimuthal = −mΩ̇× r = −mr× Ω̇, (157)

FCoord = −md2R

dt2
, (158)

and,

v = (ω − Ω) × r =
(
ψ̇ 1̂ + θ̇ 2̂

)
× r(cosψ 2̂ + sinψ 3̂)

= r
(
θ̇ sinψ 1̂ − ψ̇ sinψ 2̂ + ψ̇ cosψ 3̂

)
, (159)

is the velocity of mass m in the rotating frame, and R is the origin of the rotating
coordinate system in the inertial lab frame.

9See, for example, p. 172 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l16.pdf



Princeton University 1988 Ph205 Set 10, Solution 7 40

To understand eq. (153), we are interested in the 1-component of the torque r×Feffective,
integrated over mass points on a circle of radius r on the “flywheel” of the gyro.

The force F on mass m in the lab frame consists of −mg ẑ plus the internal force of
the “flywheel” on the mass. The internal forces cannot lead to any motion of the c.m.
or change in the angular momentum of the gyro, so we neglect them in the subsequent
discussion.

The force of gravity on mass m, and the coordinate force, eq. (158), do not depend on
the position r of the mass, so the torque r× (F + Fcoord) has components that depend
linearly on either cosψ or sinψ (via the factor of r), which sum to zero on integration
over ψ for a ring of radius r.

The centrifugal torque associated with mass m is,

τCent = r ×FCent = −m(Ω · r) r ×Ω

= −mr2φ̇
2
sin θ sinψ(sin θ cosψ 1̂ + cos θ sinψ 2̂ − cos θ cosψ 3̂), (160)

whose 1-component (and 3-component) varies as cosψ sinψ, which integrates over ψ
to zero for a ring of radius r.

The Coriolis torque on mass m is,

τCor = r × FCor = 2m[(r · Ω)v − (r · v]Ω]

= 2mr2φ̇ sin θ sinφ
(
θ̇ sinψ 1̂ − ψ̇ sinψ 2̂ + ψ̇ cosψ 3̂

)
, (161)

whose 1-component integrates over ψ to a term proportional to ψ̇θ̇ sin θ as in eq. (153).

Finally, the torque associated with the Azimuthal “fictitious” force on mass m is, with
Ω̇ = φ̈ ẑ = φ̈(cos θ 1̂ + sin θ 3̂),

τAz = r × FAz = m
[
(r · Ω̇) r − r2Ω̇

]
= −mr2φ̈

[
cos θ 1̂ + sin θ 3̂ − sin θ sinψ

(
cosψ 2̂ + sinψ 3̂

)]
, (162)

whose 1-component integrates over ψ to the term −ψ̈ cos θ in eq. (153).

Thus, the “fictitious” torques associated with the Coriolis force and the Azimuthal
force in the rotating frame centered on the c.m. give a “Newtonian” explanation as to
how the “spin” angular velocity ψ̇ 1̂ of the gyro can vary during the nutations.

More extensive discussion along the lines of this solution is given in R. Usubamatov,
Theory of Gyroscopic Effects (Springer, 2020),
http://kirkmcd.princeton.edu/examples/mechanics/usubamatov_20.pdf

An example of Coriolis forces in biology is discussed in K.T. McDonald, Stabilization
of Insect Flight via Sensors of Coriolis Force (Feb. 17, 2007),
http://kirkmcd.princeton.edu/examples/stabilization.pdf


