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Please do all work in the exam booklets provided.

You may use either Gaussian or SI units on this exam.

1. (10 pts.) What is the electric potential in cylindrical coordinates V (r, θ, z) when a
charge q is located at (r0, z0 > 0) and there is a grounded conducting plane at z = 0

that has a (conducting) hemispherical boss of radius a < b =
√

r2
0 + z2

0 whose center is
at the origin. What is the electrostatic force on the charge q for the case that r0 = 0?

2. (10 pts.) An Iarocci tube is a low-cost descendent of a Geiger counter whose walls form
a square prism of edge a, with a wire along its center. In the basic configuration, the
walls are conducting, and grounded, as shown below

Give a series expansion the electrostatic potential V (x, y) inside the Iarocci tube sup-
posing the wire carries charge q per unit length.

The potential has a logarithmic divergence at the wire, so we specify the charge per
unit length on the wire rather than its potential. Then, the presence of (nonsingular)
surfaces at a specified potential permits a “simple” series expansion at points not on
the wire.

A physical device with this geometry will have a wire of nonzero radius r0 ¿ a.

For points (x, y) close to the wire, the series can be summed. Do so, to relate the
potential of a wire of radius r0 to the charge q.

3. (10 pts.) A cylinder of relative dielectric constant εr rotates with constant angular
velocity ω about its axis. A uniform magnetic field B is parallel to the axis, in the
same sense as ~ω. Find the resulting dielectric polarization P in the cylinder and the
surface and volume charge densities σ and ρ, neglecting terms of order (ωa/c)2, where
a is the radius of the cylinder.

This problem can be conveniently analyzed by starting in the rotating frame, in which
P′ = P and E′ = E + v×B, when (v/c)2 corrections are neglected. Consider also the
electric displacement D.
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Solutions (in Gaussian units)

1. We use the image method.

First, we bring the hemispherical boss to zero potential by imagining that a charge
q′ = −qa/b is placed at distance a2/b along the line from the origin to charge q. The
cylindrical coordinates of charge q′ are

a2

b2
(r0, 0, z0). (1)

Next, to bring the plane z = 0 to zero potential, we add images charges for both q and
q′. Namely, we imagine charge q′′ = −q at

(r0, 0,−z0), (2)

and q′′′ = −q′ = qa/b at
a2

b2
(r0, 0,−z0). (3)

Then, both the plane z = 0 and the spherical shell of radius a about the origin are at
zero potential.

The potential at an arbitrary point (r, θ, z) outside the conductor is therefore

V (r, θ, z) =
q

r1

− q

r2

− qab

r3

+
qab

r4

, (4)

where
r1,2 =

√
r2 − 2rr0 cos θ + r2

0 + (z ∓ z0)2, (5)

and
r3,4 =

√
b4r2 − 2a2b2rr0 cos θ + a4r2

0 + (b2z ∓ a2z0)2. (6)

When r0 = 0, the force on charge q is in the −z direction, with magnitude

F =
q2

4z2
0

+
q2a/z0

(z0 − a2/z0)2
− q2a/z0

(z0 + a2/z0)2
=

q2

4z2
0

+
4q2a3z3

0

(z4
0 − a4)2

. (7)

2. To use techniques for solving Laplace’s equation, ∇2V = 0, for the potential V , we
subdivide the cell into rectangular regions that have no charge in their interior. We
work in a rectangular coordinate system with origin at the center of a cell.

For the basic Iarocci tube shown on p. 1, we solve separately in the regions x < 0 and
x > 0, and match solutions at the “boundary” x = 0. In each region, we know the
potential on three of the four bounding surfaces, and we know the charge distribution
σ ∝ ∂V/∂n on the fourth:

V (x,−a/2) = V (x, a/2) = V (−a/2, y) = V (a/2, y) = 0,
∂V (0+, y)

∂x
= −2πqδ(y),

(8)
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in Gaussian units, where the symmetry of the potential and the antisymmetry of
Ex about x = 0 imply that Ex(−ε, y) = −Ex(ε, y) = ∂V (ε, y)/∂x = −2πσ(0, y) =
−2πqδ(y).

The potential V (x, y) for this problem is symmetric in x and y separately, and should
also be symmetric with respect to the interchange of x and y. However, the method
of separation of variables in two rectangular coordinates leads to oscillatory functions
in one coordinate, and exponential functions in the other. Our solutions is built up of
sums of products of these oscillatory and exponential functions. Any particular term of
this series will not be invariant under exchange of x and y; yet we can have confidence
that the sum of the series will have this symmetry. If you are not satisfied with the
apparent noninvariance of the potential V (x, y) so obtained, you could declare your
solution to be U(x, y) = [V (x, y) + V (y, x)]/2, since if V (x, y) is a valid expression for
the potential, then V (y, x) is also.

We chose to use oscillatory functions of y, and therefore exponetial functions of x.
Symmetric oscillatory functions are cosines, so we write cos kny for the y functions.
The exponential functions must vanish at x = ±a/2, so these must involve hyperbolic
sines, for which sinh kn(a/2−|x|) displays the required symmetry in x. Thus, a suitable
form of the solution to Laplace’s equation for a potential that vanishes on the outer
boundaries and is symmetric in both x and y is

V (x, y) =
∑
n

An sinh kn(a/2− |x|) cos kny. (9)

The boundary condition at y = ±a/2 requires that cos kna/2 = 0, and hence that
kn = (2n + 1)π/a. The boundary condition at x = 0 can now be written

−2πqδ(y) =
∂V (0+, y)

∂x
= −∑

n

(2n + 1)π

a
An cosh

(2n + 1)π

2
cos

(2n + 1)πy

a
. (10)

On multiplying eq. (10) by sin(nπy/a) and integrating from 0 to a we find that

An =
4q

(2n + 1) cosh (2n+1)π
2

. (11)

Hence, the potential for a basic Iarocci tube with a wire at its center can be written as

V (x, y) = 4q
∑
n

sinh (2n+1)π(a/2−|x|)
a

(2n + 1) cosh (2n+1)π
2

cos
(2n + 1)πy

a
(wire, origin at center)

= 4q
∑
n

tanh (2n+1)π
2

cosh (2n+1)π|x|
a

− sinh (2n+1)π|x|
a

(2n + 1)
cos

(2n + 1)πy

a
. (12)

I claim that eq. (12) has the symmetry V (x, y) = V (y, x), but that would only be
obvious if we were able to sum the series. I don’t know how to do this in general, but
we can sum the series for small x and y, where we will find the potential depends only
on r =

√
x2 + y2, which has the desired exchange symmetry.
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The image method can be used to generate another solution to this problem. A doubly
infinite set of charges (−1)m+nq at positions (ma, na), where m and n are any integer
(positive or negative), is consistent with all four bounding planes of the box-channel
being at ground potential. Hence, we can write

V (x, y) = 2q
∑
m

∑
n

(−1)m+n ln
1√

(x−ma)2 + (y − na)2
+ C

= −q
∑
m

∑
n

(−1)m+n ln
[
(x−ma)2 + (y − na)2

]
+ C. (13)

We require that the potential be zero on the boundary, which leads to an infinite set
of representations of constant C. For example, forcing V (a/2, a/2) = 0, we can write

V (x, y) = −q
∑
m

∑
n

(−1)m+n ln
(m− x/a)2 + (n− y/a)2

(m− 1/2)2 + (n− 1/2)2
. (14)

This form is “obviously” invariant under the exchange of x and y, since it is invariant
under the exchange of indices m and n. For (x, y) near the origin, we can suppose
that the series is dominated by the term with m = n = 0, which implies that V ≈
2q ln(a/

√
2r). Note that the potential of a wire on the axis of a grounded cylinder of

radius a is Vcyl = 2q ln(a/r), where q is the linear charge density on the wire.

The potential (12) at the origin diverges. But, of course, a physical realization of an
Iarocci tube involves a wire of finite radius r0. We can estimate the potential at the
surface of the wire, where x2 + y2 = r2

0 ¿ a, using the second form of eq. (12):

Vwire = 4q
∑

n=0

tanh (2n+1)π
2

cosh (2n+1)π|x|
a

− sinh (2n+1)π|x|
a

2n + 1
cos

(2n + 1)πy

a

≈ 4qRe
∑

n=0

cosh (2n+1)π|x|
a

− sinh (2n+1)π|x|
a

2n + 1
e(2n+1)πiy/a

= 4qRe
∑

n=0

e−(2n+1)π|x|/ae(2n+1)πiy/a

2n + 1
= 4qRe

∑

n=1

[
eπ(−|x|+iy)/a

]2n+1

2n + 1

= 2qRe ln
1 + eπ(−|x|+iy)/a

1− eπ(−|x|+iy)/a
= 2qRe ln

sinh π|x|
a

+ i sin πy
a

cosh π|x|
a
− cos πy

a

. (15)

Then, writing ln
[(

sinh π|x|
a

+ i sin πy
a

)
/

(
cosh π|x|

a
− cos πy

a

)]
= u + iv we have

eu+iv = eu cos v + ieu sin v = 1− e−2π(x−iy)/a =
sinh π|x|

a
+ i sin πy

a

cosh π|x|
a
− cos πy

a

(16)

e2u =
sinh2 π|x|

a
+ sin2 πy

a(
cosh π|x|

a
− cos πy

a

)2 =
cosh π|x|

a
+ cos πy

a

cosh π|x|
a
− cos πy

a

≈ 2
1
2
[(πx

a
)2 + (πy

a
)2]

=
(

2a

πr0

)2

, (17)
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u ≈ ln
2a

πr0

, (18)

and we finally have

Vwire ≈ 2q ln
2a

πr0

= 2q ln
0.64a

r0

. (19)

Which is the better approximation to Vwire, the value (19) or the value 2q ln(a/
√

2r0) =
2q ln(0.71a/r0) that was inferred from the image method?

As a possible guide, we now find a problem for which eq. (19) is the “exact” solution.

Suppose the box channel had width b in x, but still has height a in y. Then, the form (9)
would still apply, with the replacement of the x-functions by sinh(2n+1)π(b/2−|x|)/a.
The boundary condition (10) leads to Fourier coefficients An in which the hyperbolic
cosine is now cosh(2n + 1)πb/2a, so that the potential can now be written

V (x, y) = 4q
∑
n

tanh (2n+1)πb
2a

cosh (2n+1)π|x|
a

− sinh (2n+1)π|x|
a

(2n + 1)
cos

(2n + 1)πy

a
. (20)

For b À a, this becomes exactly the second line of eq. (15). Using the first line of
eq. (17), we see that this potential can also be written

V (x, y) = q ln
cosh π|x|

a
+ cos πy

a

cosh π|x|
a
− cos πy

a

, (21)

which vanishes at y = ±a/2. For points near the origin, this becomes eq. (19). Hence,
the approximation (19) is “exact” for points near a wire that is halfway between a pair
of grounded conducting planes. This configuration seems to me to be farther from the
case of a wire in square box channel than is a wire inside a circular tube. Hence, I
infer that the potential on the wire in a square box channel is closer to 2q ln(a/

√
2r0)

than 2q ln(2a/πr0).

3. The v×B force on an atom in the rotating cylinder is radially outwards, and increasing
linearly with radius, so we expect a positive radial polarization P = P r̂.

There will be an electric field E inside the dielectric associated with this polarization.
We now have a “chicken-and-egg” problem: the magnetic field induces some polariza-
tion in the rotating cylinder, which induces some electric field, which induces some
more polarization, ...

One way to proceed is to follow this line of thought to develop an iterative solution
for the polarization. This is done somewhat later in the solution. Or, we can avoid
the iterative approach by going to the rotating frame, where there is no interaction
between the medium and the magnetic field, but where there is an effective electric
field E′.

Solution via the Rotating Frame

However, we must be cautious when using the rotating frame as to what part of the
lore of nonrotating frames still applies.
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In the rotating frame, any polarization charge density is at rest, and so does not
interact with the magnetic field. Individual molecules are polarized by the effective
field E′ according to p′ = αE′, where α is the (scalar) molecular polarizability, whose
value is that same in any frame in which the molecules are at rest. Summing up
the microscopic polarization, we obtain the macroscopic polarization density (in the
rotating frame),

P′ = χE′, (22)

where E′ and P′ are the electric field and dielectric polarization in the rotating frame,
and χ is the (scalar) dielectric susceptibility. If v = ωr ¿ c, then the electric field in
the rotating frame is related to lab frame quantities by

E′ = E +
v

c
×B, (23)

where E is the electric field due to the polarization that we have yet to find. Since
polarization is charge times distance, in the nonrelativistic limit the polarization is the
same in the lab frame and the rotating frame: P′ = P.

We do NOT expect that E′ = 0 (as would hold in the rest frame of a conductor with
no external emf’s), since the polarization would vanish in this case.

The velocity has magnitude v = ωr, and is in the azimuthal direction. Thus, v×B =
ωBr, so that

P = χ
(
E +

ωB

c
r
)

. (24)

We need an additional relation to proceed. The suggestion is to consider the electric
displacement D. But, in which frame? This is the trickiest point in the problem. In
the rotating (rest) frame of the dielectric, we expect that D′ = εrE

′ and (naively) that
∇ ·D′ = 4πρ′free, where ρ′free = ρfree in the nonrelativistic limit. Since ρfree = 0 in the
lab frame for this problem, the preceding arument would imply that D′ = 0, and hence
that E′ = 0, which in turn implies that P′ = P = 0, which is not the case!

It’s safer to consider the displacement in the lab frame, where we know that ρfree = 0,
and hence that D = 0 since it has no sources. But we do not necessarily expect that
D = εrE in the lab frame, because in this frame we consider that the magnetic field is
causing some of the polarization. So, we invoke the basic relation between D, E and
P to write

D = 0 = E + 4πP. (25)

Thus,
E = −4πP (26)

is the additional relation that we need. Recalling that χ = (εr − 1)/4π, (24) leads to

P =
εr − 1

4πcεr

ωBr. (27)

The surface charge density is

σpol = P(a) · r̂ =
εr − 1

4πcεr

ωBa, (28)
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where a is the radius of the cylinder. As well as this surface charge density, there is a
volume charge density,

ρpol = −∇ ·P = −1

r

∂rPr

∂r
= −εr − 1

2πcεr

ωB, (29)

so that the cylinder remains neutral over all.

Both the surface and volume charge densities are proportional to v(r)/c, and are mov-
ing at velocity v(r). Hence, the magnetic field created by these charges is of order
v2/c2, and we neglect it in this analysis.

This example is perhaps noteworthy in that a nonvanishing, static volume charge
density arises in a linear dielectric material (with no external charges). In pure elec-
trostatics this cannot happen, since P = χE together with ∇·D = 0 = ∇·E+4π∇·P
imply that ρpol = −∇ ·P = 0.

We can now go back and examine the fields E′ and D′ = εrE
′ in the rotating frame.

Combining eqs. (23), (26) and (27) we find

E = −(εr − 1)
ωB

cεr

r, E′ =
ωB

cεr

r, and hence D′ =
ωB

c
r. (30)

If the relative dielectric constant εr were unity (as if the cylinder were a vacuum),
then eq. (30) tells us that the lab electric field would vanish, as expected. The result
that D′ = ωBr/c is independent of the dielectric constant, and holds even if the
cylinder were empty. The fact that ∇ ·D′ = 2ωB/c 6= 0 would imply that ρ′free 6= 0 IF
∇ ·D′ = 4πρ′free. Since this cannot be, we must re-examine our assumptions.

A useful excerise is to transform the lab-frame Maxwell equation∇·D = 4πρfree into the
rotating frame. For this, we note that D = E + 4πP transforms (in the nonrelativistic
limit) to E′−v/c×B′+4πP′, and that ρfree transforms to ρ′free. Hence our transformed
Maxwell equation is ∇·(E′−v/c×B′+4πP′) = 4πρ′free. If we suppose that the electric
displacement in the rotating frame obeys the basic definition D′ = E′ + 4πP′, then

∇ ·D′ = 4πρ′free +∇ · v
c
×B′. (31)

In the present problem, B′ = B to first order, so v/c×B′ = ωBr/c, whose divergence
is 2ωB/c, which is the value for ∇·D′ found above. Hence, we retain consistency with
ρ′free = 0 while having a nonzero displacement D′ in the rotating frame.

Experts will note that the result D′ = ωBr/c is consistent with the (nonrelativistic)
field transformation1

D′ = D +
v

c
×H, (32)

since in the present problem D = 0 and H = B. Further, experts know that the lab
frame relation of the displacement D to the field E involves the magnetic field H as
well, according to (in the nonrelativistic limit)

D = εrE + (εrµr − 1)
v

c
×H. (33)

1See chap. E III of R. Becker, Electromagnetic Fields and Interactions (Dover, New York, 1964).
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Then, using E from eq. (30), plus µr = 1 and B = H again leads to the result that D
= 0 in the lab frame.

For the record, we pursue the consequence of supposing that since there is no free
charge in this problem, the displacement obeys D′ = 0 in the rotating frame. Then,
since D′ = εE′ we have that E′ = 0, and eq. (22) implies that P′ = P = 0 also.
But, eq. (23) now tells us that E = −ωBr/c 6= 0, so that D = E + 4πP = E, and
∇ ·D = −2ωB/c 6= 0, independent of the dielectric constant. The rotating cylinder
could be imaginary, and the above analysis still should hold. This is implausible.

Additional discussion of Maxwell’s equations in a rotating frame has been given by
G.N. Pelligrini and A.R. Swift, Am. J. Phys. 63, 694 (1995).

Iterative Solution in the Lab Frame

The preceding analysis via the rotating from was somewhat tricky, so it is desirable to
confirm the results by another method. Hence, we consider an iterative solution.

The axial magnetic field acts on the rotating molecules to cause a v×B force radially
outwards. This can be described by an effective electric field

E0 =
ωB

c
r. (34)

This field causes polarization

P0 = χE0 = χ
ωB

c
r. (35)

Associated with this is the uniform volume charge density

ρ0 = −∇ ·P0 = −2χωB. (36)

According to Gauss’ Law, this charge density sets up a radial electric field

E1 = 2πρ0r = −4πχωBr. (37)

At the next iteration, the total polarization is

P1 = χ(E0 + E1) = χ(1− 4πχ)
ωB

c
r. (38)

This polarization implies a bound charge density ρ1, which leads to a correction to
field E0 that we call E2, ...

At the nth iteration, the polarization will have the form

Pn = kn
ωB

c
r. (39)

Then, the bound charge density is

ρn = −∇ ·Pn = −2knωB, (40)
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which implies that the correction to the electric field becomes

En+1 = 2πρnr = −4πknωBr. (41)

The effective electric field at iteration n + 1 is the sum of E0 due to the v × B force
and En+1 due to the polarization charge. Thus,

Pn+1 = χ(E0 + En+1) = χ(1− πkn)
ωB

c
r. (42)

But by definition,

Pn+1 = kn+1
ωB

c
r. (43)

Hence,
kn+1 = χ(1− 4πkn). (44)

If this sequence converges to the value k, then we must have

k = χ(1− 4πk), (45)

so that

k =
χ

1 + 4πχ
=

εr − 1

4πεr

, (46)

which again gives (24) for the polarization.


