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Reading: Griffiths chap.1 as needed, secs. 2.1-2.3.

1. Griffiths’ prob. 1.60.

2. Griffiths’ prob. 1.62. In part a), comment on whether ∇ · rnr̂ is meaningful at the
origin, by using the divergence integral theorem for a sphere of radius a, and for a
spherical shell of inner radius b and outer radius a.

3. Variant of Griffiths’ prob. 2.7. After working Griffiths’ prob. 2.7 you are meant to be
impressed at how effective Gauss’ law (2.13-14) is for problems of high symmetry. But
since you already know Gauss’ law, it may be more instructive to work a variant: Find
the electric potential V (z) relative to infinity everywhere along the axis of symmetry
(the z axis) of a HEMISPHERICAL shell of radius R with uniform charge density
σ. In particular, what is V (z = 0) at the center of curvature of the shell. Then use
eq. (2.23) to find the electric field Ez(z). Show that the value Ez(z) − Ez(−z) based
on a hemispherical shell corresponds to the field Ez at a distance z from the center of
a uniform spherical shell of charge.

4. Griffiths’ prob. 2.18.

5. Griffiths’ prob. 2.47.

The following digression is not part of the cirriculum of Ph304, but you might find
it interesting.

Electric potential problems in two dimensions can often be usefully related to functions
of a complex variable, z = x + iy. In particular, any analytic function f(z) = u + iv
obeys
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Since both of the above lines are equal to if ′, we can equate their real and imaginary
parts to find the so-called Cauchy-Reimann relations:
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Taking second derivates, we also find
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Thus, both functions u(x, y) and v(x, y) obeys Laplace’s equation, ∇2V = 0 for the
electric potential in a charge-free region in two dimensions.

Hence, any analytic function of a complex variable provides us with not one but two
solutions to electrostatics problems. Mathematics hands us the solutions; the game is
to figure out what the problem is.....
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From the functions u and v we can, of course, deduce the associated electric fields
Eu = −∇u and Ev = −∇v. In general, lines of electric field are orthogonal to their
corresponding equipotential surfaces.

Note that the Cauchy-Riemann equations imply that the lines of the field Eu are
orthogonal to the lines of the field Ev. Hence the equipotentials of field Eu (= lines of
constant u lie along the lines of field Ev, and vice versa.

So the use of complex functions for two dimensional problems can give us quick pre-
scriptions for both equipotentials and field lines.

Example: The function defined by the inverse relation z = f +ef describes the eqiupo-
tentials and electric fields of a (semi-infinite) parallel plate capacitor. Can you show
that the plates are at −∞ < x < −1 and y = ±π?

From sec. 202 of A Treatise on Electricity and Magnetism by J.C. Maxwell.

http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v1_04.pdf

Example: The function f = −2λ ln(z − z0) describes the potential and field due to a
line charge λ located at (x0, y0), where, of course, z0 = x0 + iy0. From this, we see that
the situation of Griffiths’ prob. 2.47 is described by the function

f(z) = −2λ ln
z − a

z + a
.

Then, Re(f) = V (x, y) can be used to show that the equipotentials are circles, AND
by considering Im(f) = constant, you can show that the electric fields lines are also
circles (which always include the wires at (±a, 0). See the figure on p. 3.
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6. Griffiths’ prob. 2.48. For an additional viewpoint on the Child-Langmuir law, see
http://kirkmcd.princeton.edu/examples/vacdiode.pdf

It turns out the equipotentials of two wires carrying opposite line charges have the same
form as the magnetic field lines of two wires carrying opposite currents:

From sec. 61.2 of Electromagnetic Fields and Interactions by R. Becker.

Griffiths’ prob. 2.52 is not assigned, but summarizes a famous bit of lore. The derivation
of eq. (2.57) given in the book of Smythe is elegantly algebraic.
http://kirkmcd.princeton.edu/examples/EM/smythe_50.pdf

For a highly geometric derivation due to Lord Kelvin, see
http://kirkmcd.princeton.edu/examples/ellipsoid.pdf


