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Reading: Griffiths chap 8.

Note that in working the extended version of Griffiths’ prob. 5.42 (Set 5), you have
already worked Griffiths’ prob. 8.3.

1. Griffiths’ prob. 7.57. Work the new part d) before parts a)-c), then do new part e).

It is not useful to think of the wire as infinite (since there are no infinities in physics),
but rather as having length L À b so that we can ignore end effects over most of the
length of the wire. For a current I to flow in a wire of nonzero resistivity ρ there must
be a power source (battery) AND a return wire to complete the circuit. The question
of surface charges is easiest to analyze if the return wire is a tube of very low resistivity
that is coaxial with the resistive wire. The batteries then are at one or both ends of
the wire.

The resistance per unit length of the inner wire is R = ρ/πa2, assuming the current
density is uniform. Then the voltage difference between the two ends of the inner
wire is ∆V = IRL when current I is flowing. We take the return wire to be at zero
potential.

For the current to flow in the +z direction, the potential within the inner conductor
must vary as V (s < a, z) = V0 − IRz. A general solution can be based on the
convention that V0 = 0, i.e., that V (s < a, z) = −IRz. The actual wire has a battery
at least one end, and possibly a load resistor or “short-circuit” termination at the
other. The voltage at the left end, Vleft and the voltage at the right end, Vright obey
Vleft − Vright = IRL. To be consistent with the convention that V (z = 0) = 0, the left
end of the wire is at z = −Vleft/IR, and the right end is at zright = −Vright/IR. A
short circuit termination implies that the inner wire has zero potential there, so such
a termination must be at z = 0. A load resistor Rload would require the inner wire to
be at potential ±IRload, and hence must be located at zload = ±Rload/R (remember,
R is resistance per unit length).

For example, if the system includes only a single battery at one end and is shorted at
the other, this could be realized in the above convention by having the shorted end at
z = 0 and the battery at z = L with voltage −IRL (at the inner conductor), or the
battery at z = −L with voltage IRL. If we suppose instead that there is a battery at
each end of the system, each with voltage IRL/2 (which is the unstated scenario of
Griffiths prob. 7.57) we take the system to extend from z = −L/2 to L/2.

For uniform current density J = I/πa2 to flow down the inner conductor there must
be a uniform electric field of strength E = IR inside the tube of length L and radius
a. We could start with conducting electrodes of radius a at the ends of the tube, and
place potential difference ∆V = IRL between them. For the moment, imagine the
rest of space is empty. Then, the fringe field of this “capacitor” would result in a
very nonuniform electric field inside the tube. We desire the equipotential surfaces for
radius s < a to be planes perpendicular to z, and uniformly spaced in z. To achieve
this, we might add a set of conducting rings of radius a uniformly spaced along z,
setting the rings to potentials that vary linearly with position. The charge on a ring
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is related by Q = CV , where C is the capacitance of the ring. Hence, the charge on
the rings, like the voltage, varies linearly with position.

Below is a sketch of a device that I’m building that uses such a set of field shaping
rings:

A current-carrying wire has an aspect of the continuum limit of a discrete set of field-
shaping rings. Namely, the wire takes on a surface charge that varies linearly with
position to create equipotential planes perpendicular to z (inside the wire), and hence
a uniform longitudinal electric field inside the wire.

d) Calculate the capacitance per unit length between the wire of radius a and the outer
conductor of radius b. Then calculate the surface charge density σ by finding the charge
Q = CV per unit length needed to maintain the desired potential V (a, z) = −IRz at
the surface of the wire.

For a long wire, the charge Q(z) per unit length varies slowly, and the electric field at
a plane of constant z0 is essentially the same at that for a wire of uniform charge per
unit length with the value Q(z0). Use this assumption to find V (a < s < b, z), and the
electric field E(a < s < b, z).

At positions far from the ends of the wire, the capacitance C per unit length has a
well-defined value. Depending on exactly how the ends of the wire are made, C will
vary somewhat over distance a few times b from the ends. However, our solution for
the potential and charge distribution near the center of the wire is clearly independent
of such details.

Now do Griffiths’ parts a)-c) to verify the results of part d). The proposed technique is
a separation of variables solution to Laplace’s equation, which holds in the charge-free
region a < s < b.

You can obtain a solution based on the convention that V (s, 0) = 0 without knowing
the precise form of V (a < s < b) at the ends of the wire. This is to be expected since
the behavior in the central region of a long system should be insensitive to the details
at the ends.

Note that your solution for V (s, z) is consistent with the “natural” boundary condition
that at the ends of the system the current flows radially from s = a to b in a resistive
material, where current conservation implies that Js ∝ 1/s, so Ohm’s law requires that
Es ∝ 1/s, which implies that V (a < s < b) = A ln(s/B). The boundary conditions
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that V (b, z) = 0 and V (a, z) = −IRz determine constants A and B to be exactly your
separation of variables solution at the endpoint z!

This means in practice that if you tried imposing some other boundary condition on
the potential at the ends of the system, nature would do its best to ignore you, and
after a few times distance b from the ends of the wire the potential would behave again
according to the separation of variables solution, since this holds independent of the
details of the “missing” boundary condition.

In the language of guided waves, which we will study in sec. 9.5, the zero-frequency
“wave” V (s, z) can propagate long distances down the waveguide structure only if it is
properly set up at the boundary. Otherwise, it dies out in a few waveguide diameters.
Not yet knowing about waveguides, we are solving the problem from the inside out,
and by assuming that a potential exists in the center of the structure, we are able
predict what it must be like at the distant boundary.

The figure below is from Sommerfeld. The dashed lines are along the electric field,
while the solid lines are along the Poynting vector.

Because there is a positive longitudinal electric field inside the wire, and the tangential
component of the electric field is continuous at a boundary, the field lines do not leave
the surface s = a at right angles. For z < 0, the surface charge is positive, so the field
lines point outwards from s = a and are bent somewhat towards positive z; for z > 0,
σ < 0, so the field lines point inwards towards s = a and again are bent somewhat
towards positive z by the requirement of continuity of Ez at s = a. For |z| <∼ b, the
field lines do not reach the outer conductor, but run from positive charge at z < 0
to negative charge at z > 0. In a circuit where b > L, or in a wire bent into a loop,
essentially all field lines outside the conductor behave this way.

e) Assuming that the current density is uniform in the center conductor (s < a),
it consumes power I2R per unit length. Calculate the Poynting vector S(s, z) for
0 < s < b and show that the Poynting flux per unit length across the surface s = a is
equal to the power consumption I2R, and that the Poynting flux across a surface of
constant z0 > 0 for a < s < b is equal to the power consumed by the center conductor
for 0 < z < z0. The interpretation is that electromagnetic energy flows from the distant
ends of the circuit where the “batteries” are located, down the vacuum (or air or other
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dielectric) gap and into the wire where it is transformed into heat.

Note that this interpretation holds for both the case of one and two batteries, and with
either a short or a resistor at the other end in case of a single battery, once we have
properly identified the coordinates zleft and zright of the ends of the wire. The case of
a circular loop of wire plus a battery was considered, as shown below, in the original
paper by J.H. Poynting (1884), available in his Collected Scientific Papers (Cambridge
U. Press, 1920).

We also realize that the details of the “batteries” cannot perturb our solution for more
than a few wire diameters. This problem, though idealized, contains a robust core of
truth.

As Sommerfeld has said: “Electromagnetic energy is transported without losses only
in nonconductors. ‘Conductors’ are nonconductors of energy, which is dissipated in
Joule heating”.

2. Griffiths’ prob. 8.4.

3. Griffiths’ prob. 8.8.

4. Griffiths’ prob. 8.9.

5. Griffiths’ prob. 8.11.

6. Griffiths’ prob. 8.12.


