Ph 406 Problem Set 10

Due May 7, 1993

1. The elastic scattering reactions $\nu_{\mu}e \to \nu_{\mu}e$ and $\bar{\nu}_{\mu}e \to \bar{\nu}_{\mu}e$ can only take place via Z^0 exchange. Estimate the total cross sections for these reaction at high energies.

Recall that the piece of the gauge-covariant derivative relevant to the Z^0 can be written

$$i\frac{g}{\cos\theta_W}Z(I_3-\sin^2\theta_WQ),$$

where $g^2/\cos^2\theta_W M_Z^2 = G/\sqrt{2}$, I_3 refers to weak isospin, and Q is electric charge in units of +e. Also, the total cross section is the integral over the angular distribution, which should be examined separately for left- and right-handed electrons (in the center-of-mass frame, of course)....

- 2. The final-state products from \bar{p} -p annihilation at rest can include K^0 and \bar{K}^0 mesons which can then be used for studies of CP violation. For Kaons so produced:
 - (a) Predict the value of the CP-violating asymmetry

$$A = \frac{\Gamma(K_{\text{phys}}^0 \to \pi^+ e^- \bar{\nu}) - \Gamma(\bar{K}_{\text{phys}}^0 \to \pi^- e^+ \nu)}{\Gamma(K_{\text{phys}}^0 \to \pi^+ e^- \bar{\nu}) + \Gamma(\bar{K}_{\text{phys}}^0 \to \pi^- e^+ \nu)},$$

where K_{phys}^0 means a neutral Kaon produced as a K^0 . You may approximate the Kaon mass eigenstates K_S and K_L as

$$K_S \approx K_1 + \epsilon K_2$$
 and $K_L \approx K_2 + \epsilon K_1$,

and assume CPT invariance.

- (b) Explain why an observation that $A \neq 0$ could be considered as direct evidence for time-reversal violation, without invoking the usual argument that CPT invariance plus CP violation implies T violation.
- 3. From data on the Z^0 from LEP and Standard Model calculations of radiative corrections some people infer that the Higgs boson (H^0) has mass less than $2M_Z$. If so, the H^0 will be difficult (though not impossible) to detect at LHC or SSC. Here you are asked to consider the merits of producing the Higgs boson in $\mu^+\mu^-$ collisions.

When obtaining numerical values you may assume that $M_H=120~{\rm GeV}.$

- (a) Estimate the total decay width $\Gamma(H \to \text{all})$ in GeV assuming $M_Z < M_H < 2M_W$, noting that the vertex factor for Higgs decay to fermions is $-im_f\sqrt{\sqrt{2}G_F}$. Here m_f is the mass of a fermion. Ignore possible effects due to virtual W's and Z's.
- (b) Calculate the peak cross section in cm² for the reaction $\mu^+\mu^- \to H \to \text{all}$.

1

(c) At the hypothetical $\mu^+\mu^-$ colliding-beam facility suppose the spread in center-of-mass energy is $\Delta E/E \approx 0.1\%$. Deduce the effective production cross section for the reaction of part b in view of this energy spread.

- (d) Compare the result of part c to the cross section for continuum production of the dominant final state you have assumed for Higgs decay.
- (e) The muon beams could be polarized. Explain what choice of polarization would suppress the 'background' of part d.