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1. The combined symmetry CP of charge conjugation (C) and space inversion (parity, P )
is expected to be violated in the conjugate decay modes B0

d → π+π− and B̄0
d → π+π−.

As in the K0-K̄0 system, there is “mixing” in the B0
d-B̄

0
d system such that one state

can oscillate into the other. This makes possible an observable effect of CP violation
in the time dependence of the decay of an initially pure B0

d meson state, because of
interference between CP -violating effects in the mixing and in the decay.

The time evolution of an initially pure B0
d meson is (from Prob. 6, Set 9, with a change

of notation)

|B0
d,phys(t)〉 = e−imte−Γt/2

⎛
⎝cos

Δmt

2
|B0

d〉 + i sin
Δmt

2

√√√√〈B̄0
d |B0

d〉
〈B0

d |B̄0
d〉
|B̄0

d〉
⎞
⎠ , (1)

where m and Δm are the average mass of and the mass difference between the mass
eigenstates of the B0

d-B̄
0
d system, and Γ is the total decay rate of a B0

d meson.

The Lagrangian for the charged-current (CC) interaction of quarks with the W bosons
has the form

LCC =
g√
2

( ū c̄ t̄ )L γ
μW+

μ VCKM

⎛
⎜⎝ ds
b

⎞
⎟⎠

L

+ h.c., (2)

where the Cabibbo-Kobayashi-Maskawa matrix, VCKM, is a 3 × 3 unitary matrix of
coupling constants,

VCKM =

⎛
⎜⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠ , (3)

that you may approximate as being real numbers with the exception of Vtd = |Vtd| eiφtd

and Vub = |Vub| eiφub , which have imaginary terms.1

Facts: The quark content of the mesons are B0
d = (b̄d), π+ = (d̄u), and π− = (ūd).

a) Sketch the quark-level box diagrams for the mixing processes 〈B̄0
d |B0

d〉 and 〈B0
d |B̄0

d〉,
and determine the dependence of these matrix elements on the VCKM coupling
constants. If nature were CP invariant, what would be the relation between the
matrix elements?

Assume for simplicity that only t-quarks participate in internal quark lines.

1The gist of the Lagrangian is that a weak-interaction vertex q1 → q2W
− (or q1q2 → W− or W+q1 → q2

or W+ → q1q2) involves a factor Vq1q2 , while vertices q1 → q2W
+, q1q2 → W+, W−q1 → q2, W− → q1q2

involve a factor V �
q1q2

.
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b) Draw the Feynman diagrams in the tree-level2 spectator model for the conjugate
decay processes B0

d → π+π− and B̄0
d → π+π−, and extract the dependence of the

matrix elements for these processes on the VCKM coupling constants.

There also exist “penguin” diagrams for these decays, which need not be consid-
ered here.

c) Use the results of parts a) and b) to evaluate the time dependence of the decay
rate of an initially pure B0

d meson to π+π−. Identify the effect of CP violation in
this.

d) Use the unitarity constraint on VCKM and your knowledge of the charged-current
interaction to numerically approximate the ratio of the imaginary parts of Vub and
Vtd,

Im(Vub)

Im(Vtd)
. (4)

2. μ → eγ?

Although the particle now called the muon was discovered in 19373 its character was
little understood for the next 10 years. Yukawa4 had predicted a particle that would
decay into an electron and neutrino, but by 1940 there was weak evidence that the
muon/mesotron did not decay according to μ → eν or μ → eγ, and Nordheim5 spec-
ulated that the decay might be μ → eνν. Only after more-convincing experiments
in 1947-48 did it become generally accepted that this was indeed the dominant decay
mode.6

In 1958 Feinberg7 made a model of the decay μ→ eγ according to the diagram,

and noted that a quick estimate of the decay rate is only a factor α ≈ 10−2 times that
for μ → eνν. However, even at that time it was known that the branching fraction
of μ → eγ is less than 10−5. In this context, Pontecorvo’s suggestion8 began to gain

2Tree level means only two vertices in the language of Feynman diagrams.
3C.D. Anderson and S.H. Neddermeyer, Cloud Chamber Observations of Cosmic Rays at 4300 Meters

Elevation and Near Sea-Level, Phys. Rev. 50, 263 (1937),
http://kirkmcd.princeton.edu/examples/EP/anderson_pr_50_263_37.pdf.

4H. Yukawa, On the Interaction of Elementary Particles. I, Proc. Math. Phys. Soc. Japan 17, 48 (1935),
http://kirkmcd.princeton.edu/examples/EP/yukawa_ppmsj_17_48_35.pdf.

5L.W. Nordheim, On the Nature of the Meson Decay, Phys. Rev. 59, 554 (1941),
http://kirkmcd.princeton.edu/examples/EP/nordheim_pr_59_554_41.pdf.

6L. Michel, Energy Spectrum of Secondary Electrons from μ-Meson Decay, Nature 163, 959 (1949),
http://kirkmcd.princeton.edu/examples/EP/michel_nature_163_959_49.pdf.

7G. Feinberg, Decays of the μ Meson in the Intermediate-Meson Theory, Phys. Rev. 110, 1482 (1958),
http://kirkmcd.princeton.edu/examples/EP/feinberg_pr_110_1482_58.pdf. This may be the first ap-
pearance of the W boson (called I by Feinberg) in a Feynman diagram.

8B. Pontecorvo, Mesonium and Antimesonium, Sov. Phys. JETP 6, 429 (1957),
http://kirkmcd.princeton.edu/examples/EP/pontecorvo_spjetp_6_429_57.pdf.
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favor, that the dominant decay is μ− → e−νμνe where (e, νe) and (μ, νμ) have different,
conserved lepton numbers. But, as we now know that the neutrinos have mass and
there are oscillations between νe and νmu, and we might again expect a significant
branching fraction for μ→ eγ (present limit9 < 10−12).

Make a simple estimate of the muon branching fraction to eγ based on the above
diagram, including the possibility of neutrino oscillations. Recall the spirit of the
quick estimate of Prob. 1, set 9.

Pontecorvo (1957) was nominally concerned that unless the μ and e (and νμ and νe)
had different lepton number, it would be possible for a μ+e− “atom” (mesonium) to
oscillate into μ−e+ (antimesonium). This effect is forbidden in case of different lepton
numbers and massless neutrinos, but it might be possible in case of massive neutrinos
(with mass eigenstates ν1,2) that can transform into one another, as sketched in the
diagrams below.

Show that the total amplitude for these diagrams actually vanishes, by considering the
couplings at the various vertices (in a two-neutrino model).

3. Polarization States of Gravitational Waves

Discuss how the concept of gauge invariance leads to an understanding that gravita-
tional waves have only two independent polarization states, and briefly illustrate the
effect of plane gravitational waves of these two polarizations that are incident on a
massive sphere of radius small compared to a wavelength.

An argument for gravitation is an extension of that for electromagnetism.

Electromagnetic Waves

A familiar argument considers a unit, plane electromagnetic wave in free space with
electric field given by the real part of

E = Ê0 e
i(k·x−ωt), (5)

where Ê0 is a unit vector (possibly complex), k is the wave vector and ω = kc is the
angular frequency, with c being the speed of light in vacuum. This field obeys the first
Maxwell equation, ∇ · E = 0 (in empty space), which implies that

Ê0 · k = 0, (6)

9J. Adam et al., New Constraint on the Existence of the μ+ → e+γ Decay, Phys. Rev. Lett. 110, 201801
(2013), http://kirkmcd.princeton.edu/examples/EP/adam_prl_110_201801_13.pdf.
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and hence there are only two independent possibilities for the unit vector Ê0, which
are correspond to two independent “polarization” states of the wave, both of which
have electric field transverse to the wave vector. Whereas, for waves inside matter,
in general ∇ · E �= 0, so there can be waves with longitudinal, as well as transverse,
polarization.

Here, we consider a longer argument based on the scalar and vector potentials φ and
A, which has the merit of being extendable to the case of gravitational waves.

The potentials can be considered as components of a 4-vector potential,

φμ = (φ,A). (7)

Plane waves of the potentials have the form

φμ = εμ e
i(k·x−ωt), (8)

where εμ is a constant 4-vector. In principle, there are 4 independent types of polar-
ization for waves of the 4-potential.

Because the electromagnetic fields E and B can be deduced from derivatives of the
potentials, the latter have some degree of arbitrariness, which fact has come to be
discussed under the theme of gauge invariance.10 One consequence of gauge invariance
is that one can choose to enforce one relation among the derivatives of the potentials,
now called a gauge condition, or choice of gauge. When electromagnetic waves are
concerned, a particularly useful choice is the Lorenz condition,11

∂μφ
μ = 0 =

1

c

∂φ

∂t
−∇ · A (Lorenz), (9)

in Gaussian units. Applying the Lorenz-gauge condition (9) to the 4-potential wave
(8), we have that

kμφ
μ = 0, (10)

where

kμ = (ω,kc), (11)

is the wave 4-vector.

We can say that the Lorenz condition (9) has eliminated one of the four possible
polarization states, leaving three. In the rest of this note, we suppose that the wave

10For a historical review, see J.D. Jackson and L.B. Okun, Historical roots of gauge invariance, Rev. Mod.
Phys. 73, 663 (2001), http://kirkmcd.princeton.edu/examples/EM/jackson_rmp_73_663_01.pdf.

11L. Lorenz, On the Identity of the Vibrations of Light with Electrical Currents, Phil. Mag. 34, 287
(1867), http://kirkmcd.princeton.edu/examples/EM/lorenz_pm_34_287_67.pdf.
For a survey of several gauge conditions, see J.D. Jackson, From Lorenz to Coulomb and other explicit gauge
transformations, Am. J. Phys. 70, 917 (2002),
http://kirkmcd.princeton.edu/examples/EM/jackson_ajp_70_917_02.pdf.
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vector k is in the z-direction. Then we can write one basis for the three remaining
polarization states εμ of the 4-potential as

ε(1)
μ = (0, 1, 0, 0), (12)

ε(2)
μ = (0, 0, 1, 0), (13)

ε(3)
μ = (kc/ω, 0, 0, 1). (14)

We now show that for waves with ω = kc, as holds in vacuum, the longitudinal polar-
ization state ε(3)

μ can be eliminated by a gauge transformation (while staying within the
Lorenz gauge).12

The (gauge) transformation,

φμ → φμ + ∂μΩ, φ→ φ+
1

c

∂Ω

∂t
, A → A− ∇Ω, (15)

does not change the electromagnetic fields

E = −∇φ− 1

c

∂A

∂t
, B = ∇× A, (16)

and the revised potentials (15) still satisfy the Lorenz condition (9) provided that

∂μ∂
μΩ = 0 =

1

c2
∂2Ω

∂t2
−∇2Ω. (17)

For example, we can choose

Ω =
1

ik
eik(z−ct), ∂μΩ = −(1, 0, 0, 1) eik(z−ct). (18)

Then, for waves with ω = kc, the revised polarization state 3 vanishes,

ε(3)
μ = (1, 0, 0, 1) → ε(3)

μ + ∂μΩ = (0, 0, 0, 0). (19)

This confirms that familiar result that for electromagnetic waves which obey the free-
space relation that ω = kc there is no longitudinal polarization state. Loosely speaking,
we can gauge away the longitudinal polarization of waves in free space, but not for
way in matter. The transverse polarizations states (13)-(14) are altered by the gauge
transformation (15), but it is usual to redefine the transverse polarization states after
the gauge transformation to have their original forms again.

Gravitational Waves

In Einstein’s theory of gravitation one considers waves as weak perturbations of the
metric tensor,

gμν = ημν + φμν , (20)

12The choice of a gauge condition is not sufficient for the potentials to be unique. For an example of two
rather different sets of potentials in the Lorenz gauge for waves inside a rectangular metallic cavity, see sec.
2.2.3 of K.T. McDonald, Potentials for a Rectangular Electromagnetic Cavity (Mar. 4, 2011),
http://kirkmcd.princeton.edu/examples/cavity.pdf.
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where ημν is the (Euclidean) metric for empty space,

ημν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

For isotropic spacetime, we infer that the “potential” tensor φμν is symmetric, with
only 10 independent components. We can enforce a Lorenz-like gauge condition on the
derivatives of φμν that

∂μη
μλφλν = ∂μφμν0. (22)

The four conditions (22) reduce the number of independent components of φμν to six.

Show that further use of gauge transformations, within the Lorenz-like gauge, reduces
the number of independent components of φμν to two.

However, arguments based on consideration of waves φμν in otherwise empty space
miss a noteworthy issue: that weak gravitational waves inside low-density matter can
have five independent polarization states. This is clearer in a quantum view in which
gravitational waves are associated with spin-2 quanta, which have five independent
spin components, in general. Hence, we infer that there exists one more condition on
the φμν which holds even for waves inside low-density matter. Here, we simply state
this condition to be that φμν is traceless.

Consider gravitational waves in free space that propagate in the z-direction,

φμν = εμν e
ik(z−ct), (23)

where εμν is the (constant) polarization tensor....

4. Classical Aspects of the Aharonov-Bohm Effect

In 1926 Fock noted13 that Schrödinger’s equation for an electric charge e of mass m in
electromagnetic fields described by potentials Aμ = (φ,A) can be written

(−iD)2

2m
ψ = iD0ψ, using the “altered” derivative Dμ = ∂μ + ieAμ, (24)

which is gauge invariant only if the gauge transformation of the potentials, Aμ(xν) →
Aμ + ∂μΩ(xν), is accompanied by a phase change of the wavefunction, ψ(xν) →

13V. Fock, Über die invariante Form der Wellen- und der Bewegungsgleichungen für einen geladenen
Massenpunkt, Z. Phys. 39, 226 (1926),
http://kirkmcd.princeton.edu/examples/QM/fock_zp_39_226_26.pdf.
See also, F. London, Quantenmechanische Deutung der Theorie von Weyl, Z. Phys. 42, 375 (1927),
http://kirkmcd.princeton.edu/examples/QM/london_zp_42_375_27.pdf.
See also, p. 206 of W. Pauli, Relativistic Field Theories of Elementary Particles, Rev. Mod. Phys. 13, 203
(1941), http://kirkmcd.princeton.edu/examples/EP/pauli_rmp_13_203_41.pdf.
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e−ieΩ(xν )ψ. Yang and Mills (1954)14 may have been the first to point out that Fock’s
argument can be inverted such that a requirement of local phase invariance of the form
ψ(xν) → e−ieΩ(xν )ψ implies the existence of an interaction described by a potential Aμ

(and charge e) which satisfies gauge invariance and modifies Schrödinger’s equation
via the altered derivative Dμ. This led to a greater appreciation of the significance of
potential in the quantum realm.

Separately, consideration of possible interference effects in electron microscopy15 led
Aharonov and Bohm16 to consider an electron that moves only outside a long solenoid
magnet (where B = 0 to a good approximation), and which accumulates a different
phase, related to the vector potential A, in its wavefunction depending on which side
of the magnet it passes. The resulting interference pattern, which depends on the
(gauge-invariant) magnetic flux in the solenoid, has been observed in subsequent ex-
periments.17 This result is often misinterpreted as evidence that the vector potential A
is “observable” in the quantum realm. A better statement is that there exist quantum-
electrodynamic effects on the behavior of an electron which moves only in a region of
zero external electric and magnetic field, but where the vector potential (in any choice
of gauge) is nonzero. Note that the observed result relates directly to the magnetic
field B rather than to the vector potential A; the paradox is more that the observed
quantum effect seems to be action-at-a-distance (as bothered Einstein, Podolsky and
Rosen in another context) between the magnetic field and the electron.

The quantum interference effect in the Aharonov-Bohm experiment is impressive, but
there are already disconcerting issues in purely classical considerations thereof. It is
often remarked that there is no classical effect on an electron that passes outside a long
solenoid magnet, where Bsolenoid = 0. However, the current density that generates the
solenoid field is affected by the magnetic field of the moving electron (even assuming
that the electric charge density associated with the current density is zero).

Problem: Deduce the force on a solenoid of radius a about the z-axis that carries
azimuthal surface current density Kθ = I per unit length, when an electron of velocity
v = v ŷ is at position (x, y, z) = (b, vt, 0), where v 	 c and |b| 
 a.18

That is, Newton’s third law is not obeyed by this configuration!

Issues like this were noted by Ampère in the 1820’s and led him to doubt the existence
of isolated, moving electric charges, which view put particle physics on hold for 60

14C.N. Yang and R.L. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Phys. Rev. 96,
191 (1954), http://kirkmcd.princeton.edu/examples/EP/yang_pr_96_191_54.pdf.

15See. p. 21 of W. Ehrenberg and R.E. Siday, The Refractive Index in Electron Optics and the Principles
of Dynamics, Proc. Phys. Soc. London B 62, 8 (1949),
http://kirkmcd.princeton.edu/examples/EM/ehrenberg_ppsl_b62_8_49.pdf.

16Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in Quantum Theory, Phys. Rev.
115, 485 (1959), http://kirkmcd.princeton.edu/examples/QM/aharonov_pr_115_485_59.pdf.

17R.G. Chambers, Shift of an Electron Interference Pattern by an Enclosed Magnetic Flux, Phys. Rev.
Lett. 5, 3 (1960), http://kirkmcd.princeton.edu/examples/QM/chambers_prl_5_3_60.pdf.

18Assume that the magnetic field of the electron is not “shielded” by the solenoid, which shielding would
imply additional currents that create additional magnetic field external to the solenoid that lead to a force
on the moving electron.
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years. Only after Poynting (1884)19 developed the notion that electromagnetic fields
can support a flux of energy (and hence also contain momentum), did physicists have
the confidence to reconsider the concept of elementary charged particles.

In retrospect we note that the issue of apparent violation of Newton’s third law could
have been resolved earlier, based on Faraday’s insight that what we now call the vector
potential A (called the “electrotonic state” by Faraday20) can be associated with “elec-
tromagnetic momentum,” as formulated mathematically by Maxwell.21 In Gaussian
units, the electromagnetic momentum associated with a charge distribution � that is
immersed in a vector potential A (in the Coulomb gauge, strictly speaking) is given
(for quasistatic motion) by22,23

PEM =
∫
�A

c
dVol. (25)

Problem: Use eq. (25) to deduce the electromagnetic momentum of the electron +
solenoid when the electron is at (x, y, z) = (b, vt, 0), and from this show that dPEM/dt
is equal and opposite to the force on the solenoid found previously.

This seems to be a satisfactory resolution to the issue of momentum conservation,
but a disconcerting result remains. Suppose the electric charge were at rest; then the
electromagnetic momentum (25) is nonzero, while the solenoid is at rest also and seems
to contain no net momentum. Hence, we have an example of a system at rest which
seems to contain nonzero total momentum!

19J.H. Poynting, On the Transfer of Energy in the Electromagnetic Field, Phil. Trains. Roy. Soc. London
175, 343 (1884), http://kirkmcd.princeton.edu/examples/EM/Poynting_ptrsl_175_343_84.pdf.

20See Arts. 60, 1661, 1729 and 1733 of M. Faraday, Experimental Researches in Electricity (London, 1839),
http://kirkmcd.princeton.edu/examples/EM/faraday_exp_res_v1.pdf.

21Secs. 22-24 and 57 of J.C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Phil. Trans.
Roy. Soc. London 155, 459 (1865), http://kirkmcd.princeton.edu/examples/EM/maxwell_ptrsl_155_459_65.pdf.

22The Faraday-Maxwell form (25) is a classical effect of the solenoid on the electron, but it does not imply
that the vector potential is observable in classical electrodynamics. Rather, we note that it is equivalent
to the Poynting-Poincaré form, PEM =

∫
E × B dVol/4πc, as shown, for example, in K.T. McDonald, Four

Expressions for Electromagnetic Field Momentum (April 10, 2006),
http://kirkmcd.princeton.edu/examples/pem_forms.pdf. While the Faraday-Maxwell form for the elec-
tromagnetic momentum suggests that this resides with the electron, the Poynting-Poincaré form suggests
that it resides in the solenoid. This classical ambiguity is a preview of the Aharonov-Bohm effect that an
electron can be affected by an electromagnetic field even if the latter is zero at the electron.

23The Coulomb-gauge vector potential A(C) is “rotational,” meaning that ∇ · A(C) = 0. In a general
gauge, the vector potential can be written (using Helmholtz’ theorem) as A = Airr+Arot where ∇×Airr = 0
and ∇ ·Arot = 0. Then, a gauge transformation A → A−∇Ω, φ → φ + ∂Ω/∂ct implies that Airr +Arot →
(Airr − ∇Ω) + Arot, such that Arot is actually a gauge-invariant quantity. Note that Arot = A(C), i.e., the
rotational part of the vector potential in any gauge is the Coulomb-gauge vector potential.

It is sometimes said that gauge-invariant quantities are “observable.” However, the Coulomb-gauge vector
potential A(C) = Arot in general involves instanteous effects of distant currents, so claims that the Coulomb-
gauge vector potential is “observable” are associated with claims that instantaneous action at a distance is
also “observable.” This author takes the view that instantaneous action at a distance is not “observable”
(even in the quantum realm) and that the Coulomb-gauge vector potential is not “observable.”

See also K.T. McDonald, Orbital and Spin Angular Momentum of Electromagnetic Fields (Mar. 12, 2009),
http://kirkmcd.princeton.edu/examples/spin.pdf.
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Peculiarities of this sort were first noticed by Shockley in 1967,24 and remain an arcane
aspect of classical physics, where some systems contain “hidden” momentum (such
that systems “at rest” indeed have zero total momentum). One can give a semiplau-
sible classical model of the so-called “hidden” momentum in the present example,25

whose main significance for the Aharonov-Bohm effect is to remind us that even in a
“classical” view, the electron is “entangled” with the magnetic field of the solenoid,
although that field happens to be zero at the location of the electron. While the field
of the solenoid has no “classical” effect on the electron, the electron does have a “clas-
sical” effect on the solenoid, so the two objects should not be regarded as independent
entities. In this context, it should be pleasing, rather than disturbing, that in the
quantum realm the solenoid has an effect on the electron.26

In the author’s view, the Aharonov-Bohm effect (and the related debate about the
“observability” of potentials27) misses the point that the role of the potentials (which
must obey gauge invariance) combined with the notion of local phase invariance is to
determine the form of the interactions of elementary particles. It is the nonobservability
of the potentials, because they are subject to gauge transformations, which leads the
potentials to be included in the altered derivatives Dμ, that makes them so important
in the development of the theory of elementary particles and fields.

24W. Shockley and R.P. James, “Try Simplest Cases” Discovery of “Hidden Momentum” Forces on “Mag-
netic Currents,” Phys. Rev. Lett. 18, 876 (1967),
http://kirkmcd.princeton.edu/examples/EM/shockley_prl_18_876_67.pdf.

25See, for example, K.T. McDonald, “Hidden” Momentum in a Current Loop (June 30, 2012),
http://kirkmcd.princeton.edu/examples/penfield.pdf.

26This theme was developed by Aharonov for the “dual” example in which a loop of current (magnetic
dipole) interacts with a line charge parallel to the axis of the loop: Y. Aharonov, P. Pearle and L. Vaidman,
Comment on “Proposed Aharonov-Casher effect: Another example of an Aharonov-Bohm effect arising from
a classical lag,” Phys. Rev. A 37, 4052 (1988),
http://kirkmcd.princeton.edu/examples/QM/aharonov_pra_37_4052_88.pdf.
See also L. Vaidman, Role of potentials in the Aharonov-Bohm effect, Phys. Rev. A 86, 040101 (2012),
http://kirkmcd.princeton.edu/examples/QM/vaidman_pra_86_040101_12.pdf.

27Y. Aharonov and D. Bohm, Further Discussion of the Role of Electromagnetic Potentials in the Quantum
Theory, Phys. Rev. 130, 1625 (1963), and references therein,
http://kirkmcd.princeton.edu/examples/QM/aharonov_pr_130_1625_63.pdf.
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Solutions

1. a) B0
d → B̄0

d mixing is described by the two box diagrams:

The Lagrangian (2) tells us the vertex involving the d quark in the initial state,
and that with the d̄ quark in the final state, have coupling factor Vtd of the VCKM

matrix, while the vertex with the b̄ quark in the initial state, and that with the b
quark in the final state have coupling factor V �

tb of the Hermitian conjugate matrix
V †

CKM. Hence, the matrix element is

〈B̄0|B0〉 ∝ (VtdV
∗

tb)
2 = V 2

tb |Vtd|2 e2iφtd. (26)

The diagrams for the conjugate process B̄0
d → B0

d are

Hence, the matrix element for the conjugate process is

〈B0|B̄0〉 ∝ (V ∗
tdVtb)

2 = V 2
tb |Vtd|2 e−2iφtd. (27)

If CP were conserved, the matrix elements for the conjugate processes should
have equal values, and hence φtd would be zero.

b) The tree diagrams for the decays B0(B̄0) → π+π− are

The matrix element for B0 → π+π− is read off of the first diagram as

〈π+π−|B0〉 ∝ VudV
∗

ub = Vud |Vub| e−iφub . (28)

while the matrix element for B̄0 → π+π− is read off of the second diagram as

〈π+π−|B̄0〉 ∝ V ∗
udVub = VudVub = Vud |Vub| eiφub . (29)
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Again, if CP were conserved, we expect that these two matrix elements would
have equal values (since CP |π+π−〉 = +|π+π−〉 for a spin-0 state), so that φub

would be zero.

The simplicity of the results (28)-(29) is marred by the existence of so-called
“penguin” (loop) diagrams for the decay B0 → π+π−, which diagrams have dif-
ferent weak phases, and whose amplitudes relative to that of the tree diagrams
are difficult to calculate. In principle, the relative amplitudes of the penguin and
tree diagrams can be resolved by a combined analysis of the decays B±

d → π±π0,
B0

d(B̄
0
d) → π0π0, and B0

d(B̄
0
d) → π+π−, although this will be quite difficult in

practice. See, for example, http://kirkmcd.princeton.edu/examples/cp_primer.pdf.

c) Using the results of part a), the time evolution (1) an initially pure B0 can now be
written

B0 → cos
Δmt

2
B0 + i sin

Δmt

2
e2iφtdB̄0. (30)

Using the result of part b) the amplitude for the decay of B0(t) to π+π− can now
be written

〈π+π−|B0(t)〉 ∝ cos
Δmt

2
e−iφubB0 + i sin

Δmt

2
e2iφtdeiφubB̄0

∝ cos
Δmt

2
B0 + i sin

Δmt

2
e2i(φtd+φub)B̄0, (31)

and the decay rate is

ΓB0
phys

(t)→π+π− ∝
∣∣∣∣cos Δmt

2
+ i sin

Δmt

2
e2i(φtd+φub)

∣∣∣∣
2

. (32)

The interference terms in the rate are

i sin
Δmt

2
cos

Δmt

2
e2i(φtd+φub) − i sin

Δmt

2
cos

Δmt

2
e−2i(φtd+φub)

∝ − sin 2(φtd + φub) sin Δmt, (33)

which causes a directly measurable change in the time-dependent decay rate due
to the CP violating phases φtd and φub.

If we had begun at t = 0 with a pure B̄0 state, the sign of the interference term
would be reversed. Hence, the CP -violating interference term (33) leads to a
nonzero asymmetry of time-dependent rate of decay of initially pure B0 and B̄0

states.

To observe the effect (33), we must know that at t = 0 the B was in fact a pure
B0. But in general, B mesons are produced in particle-antiparticle pairs, and
both the B and B̄ immediately begin to evolve into mixed states. Decays of the
second B to final states that are not self conjugate are often used to determine
whether it was a B or B̄ at the time of its decay. If the B-B̄ pair was produced
in a pure 2-particle quantum state, then we would know that the first B was the
anti of the second B, but only at the moment of the decay of the second particle
– even though the two particles are separated in space (EPR paradox, Prob. 6,
Set 9).
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d) There are 6 unitary constraints from the orthogonality of the rows and columns of
the matrix VCKM. Choosing columns 1 and 3,

0 = VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = VudV

∗
ub + VcdVcb + VtdVtb. (34)

The imaginary part of this relation is

− VudIm(Vub) + Im(Vtd)Vtb = 0. (35)

Hence,
Im(Vub)

Im(Vtd)
=
Vtb

Vud
=

1

cos θC
=

1

0.97
≈ 1.03. (36)

Here we have used the facts that u → d + X is a dominant transition with
Vud = cos θC , where θC ≈ 0.22 is the Cabibbo angle, and the process t → b +X
is dominant transition with Vtb ≈ 1.

2. The vertex factor for the photon radiated in the process μ→ eγ is the charge e, so the
decay rate will include an additional factor of e2 = α compared to that for μ → eνeνmu
(which is the dominant decay mode).

While the μ can convert into νμ with emission of a W boson, the νμ cannot convert
to an electron if the muon and electron have different lepton number. However, a νμ

oscillates into a νe over distance L with probability (given on p. 357, Lecture 19 of the
Notes)

Pνμ→νe(L,E) = sin2 2θ12 sin2 Δm2
12L

4E
. (37)

In the decay μ→ eγ the neutrino energy is of ordermμ, and the distance L is c times the
characteristic time scale for a weak interaction, τ ≈ 1/mW . Since this L is very small,
the decay rate for μ → eγ also includes an additional factor of sin2 2θ12(Δm

2
12/mμmW )2.

Altogether, we estimate the branching fraction to be

Bμ→eγ ≈ α sin2 2θ12

(
Δm2

12

mμmW

)2

. (38)

The present best value of sin2 2θ12 is 0.86, while Δm2
12 ≈ 8 × 10−5 eV2, so eq. (38)

predicts the branching fraction to be ≈ 10−32.

Detailed computation28 indicates that the above diagram leads to a branching fraction
of roughly α sin2 2θ12 (Δm2

12/M
2
W )2 ≈ 10−38. That is, the quick estimate present above

misses a factor m2
μ/m

2
w associated (I believe) with details of the loop diagram.

28S. Petcov, The processes μ → e + γ, μ → e + e + ē, ν′ → ν + γ in the Weinberg-Salam model with
neutrino mixing, Sov. J. Nucl. Phys. 25, 340 (1977),
http://kirkmcd.princeton.edu/examples/EP/petcov_sjnp_25_340_77.pdf.
B.W. Lee and R.E. Schrock, Natural suppression of symmetry violation in gauge theories: Muon- anti
electron-lepton-number nonconservation, Phys. Rev. D 16, 1444 (1977),
http://kirkmcd.princeton.edu/examples/EP/lee_prd_16_1444_77.pdf.
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In a two-neutrino model the neutrino flavor states νe, νμ are related to the mass
eigenstates ν1, ν2 by the unitary transformations⎛
⎜⎝ νe

νμ

⎞
⎟⎠ =

⎛
⎜⎝ cos θ sin θ

− sin θ cos θ

⎞
⎟⎠
⎛
⎜⎝ ν1

ν2

⎞
⎟⎠ ,

⎛
⎜⎝ ν1

ν2

⎞
⎟⎠ =

⎛
⎜⎝ cos θ − sin θ

sin θ cos θ

⎞
⎟⎠
⎛
⎜⎝ νe

νμ

⎞
⎟⎠ ,(39)

where the mixing angle θ is called θ12 in the three-neutrino scenario. In the mesonium-
antimesonium oscillation diagrams, a μ couples to νμ, and hence to ν1 with strength
− sin θ and to ν2 with strength cos θ, etc. The relative coupling strengths at the four
vertices of the diagrams are illustrated in the figure below.

Each of the two diagrams has four variants, and the sum of the relative amplitudes of
these four variants is

[(− sin θ) cos θ][cos θ(− sin θ)] + [(− sin θ) cos θ][sin θ cos θ)]

+[cos θ sin θ)][cosθ(− sin θ)] + [cos θ sin θ)][sin θ cos θ)] = 0. (40)

Thus, there is no amplitude for mesonium-antimesonium oscillations in the massive
two-neutrino scenario even though there are ν1 ↔ ν2 oscillations. This is an illustration
of the so-called GIM mechanism for the lepton sector.29

3. We consider gravitational waves in free space that propagate in the z-direction, char-
acterized by the tensor potential,

φμν = εμν e
ik(z−ct), (41)

where εμν is the (constant) polarization tensor.

The Lorenz-like condition (22) tells us that

kμεμν = 0, kμ = kc(1, 0, 0, 1), ⇒ ε0ν = ε3ν . (42)

The requirement of gauge invariance of the potentials φμν tells us that the transforma-
tion

φμν → φ′μν = φμν + ∂μΩν + ∂νΩμ (43)

29S.L. Glashow, J. Iliopoulos, and L. Miani, Weak Interactions with Lepton-Hadron Symmetry, Phys.
Rev. D 2, 1285 (1970), http://kirkmcd.princeton.edu/examples/EP/glashow_prd_2_1285_70.pdf.

13



does not change the physics provided the 4-vector Ωμ satisfies the free-space wave
equation,

∂ν∂
νΩμ = 0 =

1

c2
∂2Ωμ

∂t2
−∇2Ωμ. (44)

Hence, we can consider

Ωμ = χμ e
ik(z−ct), (45)

for any constant 4-vector χμ. Applying the gauge transformation (45) to the wave
potentials (44), the transformed polarization states are

ε′μν = εμν + kμχν + kνχμ. (46)

We choose the four constants χμ to eliminate the ε′0ν:

ε′00 = ε00 + 2k0χ0 = ε00 + 2kcχ0, ⇒ χ0 = −ε00/2kc, (47)

ε′01 = ε01 + k0χ1 + k1χ0 = ε01 + kcχ1, ⇒ χ1 = −ε01/kc, (48)

ε′02 = ε02 + k0χ2 + k2χ0 = ε02 + kcχ2, ⇒ χ2 = −ε02/kc, (49)

ε′03 = ε03 + k0χ3 + k3χ0 = ε03 + kcχ3 − ε00/2, ⇒ χ3 = (ε00/2 − ε03)/kc.(50)

So far,

ε′00 = ε′01 = ε′02 = ε′03 = 0. (51)

The Lorenz-like condition (42), applied to ε′μν, tells us that

ε′30 = ε′31 = ε′32 = ε′33 = 0. (52)

Since ε′μν is symmetric, we also have that

ε′10 = ε′20 = ε′13 = ε′23 = 0. (53)

The remaining nonzero components are ε′11, ε
′
22 and ε′12 = ε′21. Since ε′μν is traceless,

ε′22 = −ε′11, and the polarization tensor ε′μν has only two independent (transverse)
components, ε′11 and ε′12,

30

ε′μν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 ε′11 ε′12 0

0 ε′12 −ε′11 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (54)

30The fact that a massless particle with spin S can have only two spin (polarization) states Sz = ±S
when propagating in the z direction is discussed from the perspective of relativistic invariance in E. Wigner,
Relativistic Invariance and Quantum Phenomena, Rev. Mod. Phys. 29, 255 (1957),
http://kirkmcd.princeton.edu/examples/QED/wigner_rmp_29_255_57.pdf.
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Physical Significance of the Two Polarizations

The gravitational waves parameterized by ε11 and ε12 (dropping the ′s in eq. (54))
perturb the weak-field metric tensor according to eq. (20), and so affect the invariant
interval between two events,

ds2 = gμνdx
μdxν = ημνdx

μdxν + φμνdx
μdxν = ημνdx

μdxν + εμν e
ik(z−ct)dxμdxν . (55)

If a gravitational plane wave of polarization ε11 is incident on a massive sphere, the
x-separation between pairs of points increases, while the y-separation decreases. As a
result, the sphere is (slightly) deformed into an ellipsoid, as sketched on the left below.
Of course, half a wave period later, the x-separation has decreased and the y-separation
has increased.

In contrast, a wave of polarization ε12 increases the separation between points for which
dx = dy, and decreases the separation when dx = −dy, as shown on the right in the
sketch above.

These oscillatory deformations have a quadrupole character, with the two polarization
states rotated by 45◦ with respect to one another (compared to the 90◦ rotation between
x and y linear polarizations of electromagnetic waves). Likewise, the lowest multipole
of gravitational waves emitted by an oscillating mass is the quadrupole.

4. The magnetic field Be at position x of an electron of charge −e and velocity v at
position xe is (in Gaussian units, and for v 	 c)

Be(x,xe) =
v

c
× Ee(x,xe) = −ev ×R

cR3
, where R = x− xe. (56)

The force of this magnetic field from an electron at (x, y, z) = (b, vt, 0) on a solenoidal
(surface) current density Kθ(r = a, θ, z) = I per unit length is

F =
∫

K ×Be

c
dArea

= −Iev
c2

∫ ∞

−∞
dz
∫ 2π

0
a dθ

(− sin θ, cos θ, 0) × {ŷ × [(a cos θ, a sin θ, z)− (b, vt, 0)}
[(a cos θ − b)2 + (a sin θ − vt)2 + z2]3/2

= −aIev
c2

∫ ∞

−∞
dz
∫ 2π

0
dθ

(− sin θ, cos θ, 0) × (z, 0, b− a cos θ)

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2
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= −aIev
c2

∫ 2π

0
dθ
∫ ∞

−∞
dz

[cos θ(b− a cos θ), sin θ(b− a cos θ),−z cos θ]

(a2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + z2)3/2

= −2aIev

c2

∫ 2π

0
dθ

[cos θ(b− a cos θ), sin θ(b− a cos θ), 0]

b2 + v2t2 − 2ab cos θ − 2avt sin θ + a2

≈ − 2aIev

c2(b2 + v2t2)

∫ 2π

0
dθ [cos θ (b− a cos θ) , sin θ (b− a cos θ) , 0]

(
1 +

2ab

b2 + v2t2
cos θ +

2avt

b2 + v2t2
sin θ

)
(57)

= − 2πa2Iev

c2(b2 + v2t2)

[
−1 +

2b2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

]
= − 2πa2Iev

c2(b2 + v2t2)

[
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

]
.

This force is very small, being of order 1/c2, and clarification of its possible effect on
the system is more of “academic” than practical interest. Note that πa2I/c is the
magnetic moment per unit length along the solenoid

The uniform magnetic field Bsolenoid = B ẑ inside the solenoid has magnitude B =
4πI/c, as follows from Ampère’s law. This field can also be deduced from a vector
potential A whose only nonzero component in a cylindrical coordinate system (r, θ, z)
is Aθ(r), where B = ∇ × A implies for a loop of radius r that

∮
A · dl = 2πrAθ =

∫
∇ × A · dArea = B · dArea =

4π2I

c

⎧⎪⎨
⎪⎩
r2 (r < a),

a2 (r > a).
(58)

Outside the solenoid, the magnetic field is zero while the vector potential is

Aθ(r > a) =
2πa2I

cr
, A =

2πa2I

cr2
(−y, x, 0). (59)

According to eq. (25) of Faraday and Maxwell, the system of electron plus solenoid has
electromagnetic momentum

PEM = −eA(b, vt, 0)

c
= − 2πa2Ie

c2(b2 + v2t2)
(−vt, b, 0) . (60)

The time derivative of this is

dPEM

dt
= − 2πa2Iev

c2(b2 + v2t2)

[
−1 +

2v2t2

b2 + v2t2
,

−2bvt

b2 + v2t2
, 0

]

=
2πa2Iev

c2(b2 + v2t2)

[
b2 − v2t2

b2 + v2t2
,

2bvt

b2 + v2t2
, 0

]
= −F = −dPmech

dt
, (61)

on comparison with eq. (57). Thus,

PEM = −eA(b, vt, 0)

c
= − 2πa2Ie

c2(b2 + v2t2)
(−vt, b, 0) . (62)
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The time derivative of this is

dPtotal

dt
=
dPEM

dt
+
dPmech

dt
= 0, (63)

and the total momentum of the system is constant in time. The electrical current
in the solenoid carries momentum, but näıvely we expect that the total mechanical
momentum of a current loop would be zero; however, this is not the case if the current
loop is subject to an external electric field, as in the present example.

The unbalanced force of the moving electron on the solenoid serves to change its “hid-
den” internal mechanical momentum, while the bulk of the solenoid remains at rest as
the electron passes by.31,32

For completeness, we evaluate the electromagnetic momentum according to the Poynting-
Poincaré prescription (ignoring the self-field-momentum of the moving electron),

PEM =
∫ Ee ×Bsolenoid

4πc
dVol ≈ 1

4πc

∫ ∞

−∞
πa2 dz

−e(−b,−vt, z)
(b2 + v2t2 + z2)3/2

× 4πI(0, 0, 1)

c

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞
dz

(b2 + v2t2 + z2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
, (64)

as in eq. (60).

It turns out there is a third way that the electromagnetic momentum can be computed
(for quasistatic examples)33 based on the electric scalar potential φ and the current
density,

PEM =
∫
φJ

c2
dVol =

∫
φeK

c2
dArea

= −Ie
c2

∫ ∞

−∞
dz
∫ 2π

0
a dθ

(− sin θ, cos θ, 0)

[(a cos θ − b)2 + (a sin θ − vt)2 + z2]1/2

= −aIe
c2

∫ ∞

−∞
dz
∫ 2π

0
dθ

(− sin θ, cos θ, 0)

(z2 + b2 + v2t2 − 2ab cos θ − 2avt sin θ + a2)1/2

≈ −aIe
c2

∫ ∞

−∞
dz

(z2 + b2 + v2t2)1/2

∫ 2π

0
dθ (− sin θ, cos θ, 0)

(
1 +

ab cos θ + avt sin θ

z2 + b2 + v2t2

)

= −πa
2Ie(−vt, b, 0)

c2

∫ ∞

−∞
dz

(z2 + b2 + v2t2)3/2
= −2πa2Ie(−vt, b, 0)

c2(b2 + v2t2)
. (65)

31All this is rather subtle, and apparently not well known, as a paper based on this example was recently
published in Phys. Rev. Lett. claiming that the Lorentz force law must be wrong. For discussion by the
author of this dismal issue, see K.T. McDonald, Mansuripur’s Paradox (May 2, 2012),
http://kirkmcd.princeton.edu/examples/mansuripur.pdf.

32For a discussion of the character of the “hidden” mechanical momentum in a current loop, see footnote
15, and example 12.12 of D.J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, 1999),
http://kirkmcd.princeton.edu/examples/EM/griffiths_em3.pdf

33W.H. Furry, Examples of Momentum Distributions in the Electromagnetic Field and in Matter, Am. J.
Phys. 37, 621 (1969), http://kirkmcd.princeton.edu/examples/EM/furry_ajp_37_621_69.pdf.
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The fact that electromagnetic momentum can be computed several different ways re-
minds us that even in “classical” systems the components should be regarded as “en-
tangled” rather than “independent.”

18


