
Ph 406: Elementary Particle Physics

Problem Set 1
K.T. McDonald

kirkmcd@princeton.edu
Princeton University

Due Monday, September 22, 2014 (updated August 19, 2016)

The lecture notes for this course are more or less those at
http://kirkmcd.princeton.edu/examples/index.html#ph529

The problem sets will be posted at http://kirkmcd.princeton.edu/examples/index.html#ph406

Many papers related to this course are in my password-protected directories with links at
the top of http://kirkmcd.princeton.edu/examples/
Example: A lecture by Yang at Princeton in 1960 about particle physics just prior to the
quark model: http://kirkmcd.princeton.edu/examples/EP/yang_elementary_particles.pdf

1. In this course we will often use “natural” units in which h̄ = c = 1, where h̄ = h/2π
is Planck’s constant and c is the speed of light in vacuum. If we also define the unit
of mass/energy to be the mass of the proton, what are the units of length and time in
this system, expressed in SI units.

More commonly, we will take the unit of energy to be 1 GeV (or 1 MeV) in our
“natural” units. Since the mass of the proton is 0.94 GeV (in these units), the units of
length and time in the GeV-h̄-c system differ only by 6% from the values you computed
above. That is, a GeV is a rather “natural” unit of energy in a system that emphasizes
protons.

2. The cross section σ for the reaction π− + p → Λ0 + K0 is about 1 mb = 10−27 cm2.
Noting that mπ ≈ mp/6, estimate the dimensionless coupling constant αS for the
(strong) interaction of this process. Hint: σ ≈ α2

Sσgeometric in the lowest approximation,
which suffices for this problem.

The lifetimes τ of the Λ0 and K0 particles are both around 10−10 s. Noting the mΛ ≈
2mK ≈ mp, estimate the dimensionless coupling constant αW that is relevant to the
(weak) decay processes for these particles.

What is your estimate for the ratio αW/αS of the relative strengths of the weak and
strong interactions?

3. Use classical electrodynamics to deduce the Thomson scattering cross section σγe→γe

for the scattering of unpolarized light by an electron nominally at rest. Hint: Rather
than slogging through a derivation based on the differential cross section, as in the
text of Jackson, note that σ = Pscattered/Sincident, where S is the Poynting vector and
Pscattered = Pradiated where the latter can be gotten quickly from the so-called Larmor
formula. And, it’s simpler to use Gaussian units if you are familiar with these.
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4. The so-called quantum electrodynamic critical field strength Ecrit is that such if an
electron were accelerated in this (static, uniform) field for a distance equal to the
(reduced) Compton wavelength λC of an electron, it would gain energy equal to its
rest mass. Deduce an expression for Ecrit (in Gaussian units), but give a numerical
value for it in the hybrid units of volts/cm.

One also speaks of the critical magnetic field strength, Bcrit = Ecrit. Deduce the value
of Bcrit in gauss, which is the field strength at the magnetic poles of some neutron stars
(called magnetars).

If the QED critical field strength could be achieve, the “vacuum” would “spark,” in
that “virtual” electron-positron pairs of nominally zero mass would be given enough
energy by such a field, while still separated by the size λC of the quantum fluctuation
for the particles to become “real” with mass/energy mc2.

What is the electric field strength at the surface of a lead nucleus, in units of Ecrit?

Note that if a “virtual” electron-positron pair is created (with zero rest energy) out of
the vacuum near a nucleus, the electron could be captured into an atomic level with
binding energy U , and this energy given to rest energies of the electron and positron. If
U > 2mec

2, then the electron and positron become “real,” and we say that the vacuum
has “sparked;” otherwise the electron-positron pair must go back into the “vacuum.”
Use a nonrelativistic Bohr model of an atom with a nucleus of charge Ze to predict
the minimum value of Z such that this kind of “sparking the vacuum” could occur.
Relativistic corrections reduce this Zcrit significantly. Hint: express the parameter of
an atom in terms of λC, the electromagnetic coupling constant αEM = α = e2/h̄c, and
the electron rest energy mec

2.

Searches for “sparking the vacuum” in collisions of uranium nuclei, where briefly the
total Z is 184, have led to ambiguous results. In an experiment by the author, electron-
pairs were produced when a high-energy photon probed a very intense laser beam,
whose electric field strength was close Ecrit in the rest frame electron-positron pair; the
results can be interpreted in the complementary ways of “sparking the vacuum” or the
nonlinear reaction γ + nγlaser → e+e−. See sec. IVb of C. Bamber et al., Phys. Rev. D
60, 092004 (1999), http://kirkmcd.princeton.edu/examples/QED/bamber_prd_60_092004_99.pdf

Note that a strong laser beam (plane electromagnetic wave) cannot by itself “spark
the vacuum” in that an electron-positron pair has a rest frame, while there is no rest
frame for a collection of identical photons.
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5. Using the information given in the
diagram of the baryon octet and de-
cuplet, with masses in MeV, predict
the (constituent) masses of the u, d
and s quarks, and the mass of the
Ω− baryon.
The latter prediction was the only
one from the quark model that
was verified between its develop-
ment and its Nobel Prize.

6. What would the characteristic binding energy and radius of a possible neutron-electron
atom (bound state) as a result of the force between their magnetic moments?

You could recall certain general theorems of classical mechanics, and/or give a semi-
classical argument in the spirit of Bohr, supposing that the two magnetic moments are
(anti)parallel. The magnitudes of the magnetic moments can be written as

μe = ge
eh̄

2mec
=

g2

2
eλe , μn = gn

eh̄

2mnc
=

gn

2

me

mn
eλe , (1)

where ge ≈ 2, gn ≈ 2.8, e is the magnitude of the charge of the electron, me and mn

are the masses of the electron and neutron, c is the speed of light, and λe = h̄/mec ≈
3.9 × 10−11 cm.
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Solutions

1. The dimension of c are [c] = [l]/[t], and the dimensions of h̄ are those of action =
energy × time, [h̄] = [m][l]2/[t]. Thus,

[l] =
[h̄]

[c][m]
, and [t] =

[l]

[c]
. (2)

In SI units, c ≈ 3× 108 m/s, h̄ ≈ 1.05 × 10−34 m2 kg/s, and the mass of the proton is
mp = 1.67 × 10−27 kg.

If the also define the unit of mass to be mp, then the unit of length in this system is

h̄

cmp
≈ 1.05 × 10−34 m2 kg/s

3 × 108 m/s · 1.67 × 10−27 kg
≈ 2.1 × 10−16 m = 0.21 fermi, (3)

and the unit of time is

2.1 × 10−16 m

3 × 108 m/s
= 7 × 10−25 s. (4)

2. The geometric cross section for scattering of π− and p is σgeometric = π(rπ + rp)
2. From

prob. 1, we have that the radius of a proton is rp ≈ 0.2 fermi = 0.2 × 10−13 cm. Since
length is inversely proportional to mass, we estimate that

rπ ≈ rp
rp

mπ
≈ 6rp ≈ 1.2 fermi. (5)

Hence,

σgeometric ≈ π(1.2 + 0.2)2 fermi2 ≈ 6 × 10−26 cm2 ≈ 60σ, (6)

for σ ≈ 10−27 cm2. We then estimate the coupling constant as

αS ≈
√

σ

σgeometric
≈ 1

8
. (7)

In prob. 1 we saw that the characteristic time associated with mp is τ 0 ≈ 10−23 s, which
would be the lifetime of particles of this mass if the dimensionless decay constant were
1. So, we estimate the relevant coupling constant for Λ0 and K0, whose masses are
roughly mp, to be

τ ≈ τ0 α2
W , αW ≈

√
τ 0

τ
≈
√

10−23

10−10
≈ 3 × 10−7. (8)

Then, αW/αS ≈ 2.5 × 10−6, which is a reasonable estimate of the relative strengths of
the weak and strong interactions.
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3. It is easier to use Gaussian units to discuss classical electrodynamics of waves. Then,
the Poynting vector is given by

S =
c

4π
E× B, such that Sin =

cEinBin

4π
=

cE2
in

4π
. (9)

The scattered power is given by the (memorable) Larmor formula,

Prad =
2e2a2

3c3
, (10)

where the acceleration of an electron by the incident wave is a = eEin/me. Thus,
Pscat = Prad = 2e4E2

in/3m
2
ec

3, and the scattering cross section is

σThomson =
Pscat

Sin
=

8π/

3

(
e

mec2

)2

=
8πr2

e

3
≈ 7 × 10−25 cm2, (11)

where re = e2/mec
2 ≈ 3 fermi is the classical electron radius.

4. Recalling that the reduced Compton wavelength of an electron is λe = h̄/mec, the
work done on an electron that moves distance λe due to an external electric field E is
W = eEλe. Setting this equal to the rest mass/energy of an electron, we have that
eEcrith̄/mc = mc2, and hence,

Ecrit =
m2c3

eh̄
. (12)

Since

λe =
h̄

mec
=

e2/mec
2

e2/h̄c
=

re

α
≈ 3 × 10−13 cm

1/137
≈ 4 × 10−11 cm, (13)

where α = e2/h̄c = 1/137 is the so-called fine-structure constant, and mec
2 = 0.511

MeV, we have that

Ecrit =
mec

2

eλ
=

0.511 MeV

4 × 10−11e − cm
≈ 1.3 × 1010 MV/cm = 1.3 × 1016 V/cm. (14)

The QED critical magnetic field Bcrit has the same value as Ecrit in Gaussian units, but
volts is not a Gaussian unit. Recall that the Gaussian unit of voltage is the statvolt,
where 1 statvolt = 300 volts. Hence,

Bcrit ≈ 1.3 × 1016 V/cm =
1.3 × 1016

300
statvolt/cm ≈ 4.4 × 1013 gauss. (15)

The electric field strength at the surface of a lead nucleus is

Elead =
Zleade

r2
lead

=
Zleade

A
2/3
leadr

2
p

≈ 82e

2072/3 · (1 fermi)2
≈ 82 · 4.8 × 10−10

35 · 10−26

≈ 1.12 × 1017 statvolt/cm ≈ 3.37 × 1019 volt/cm ≈ 2000Ecrit, (16)
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noting that the charge of an electron/proton is 4.8 × 10−10 statcoulomb.

Or, computing is SI units,

Elead =
Zleade

4πε0r2
lead

=
Zleade

4πε0A
2/3
leadr

2
p

=
82e

4πε0 · 2072/3 · (1 fermi)2

≈ 9 × 109 · 82 · 1.6 × 10−19

35 · 10−30
≈ 3.37 × 1021 volt/m = 3.37 × 1019 volt/cm,(17)

noting that the charge of an electron/proton is 1.6×10−19 coulomb and that 1/4πε0 ≈
9 × 109 SI units.

In the semiclassical model of Bohr, we consider a (point) nucleus of charge Ze, such
that for an electron in a circular orbit of radius r Newton’s 2nd law gives

mev
2

r
=

Ze2

r2
. (18)

Bohr’s quantum condition was that for the lowest energy state, the angular momentum
would be

L = mvr = h̄. (19)

This constrains the radius r0 of the lowest energy state to be

r0 =
h̄2

Ze2me
=

1

Z

h̄c

e2

h̄

mec
=

λc

Zα
=

re

Zα2
, (20)

such that the energy is

U =
mev

2

2
− Ze2

r0
= −Ze2

2r0
= −Z2e2α

2λC
= −Z2e2αmec

2h̄
= −Z2α2mec

2

2
. (21)

To have |U | = 2mec
2 requires that

Zcrit =
2

α
= 274, (22)

in which case r0 < λC and E(r0) = Ze/r2
0 = Z3e5m2

e/h̄
4 = (Zα)3m2

ec
3/eh̄ = 8Ecrit.

The relativistic variant of the Bohr atom given by Sommerfeld predicted the energy of
a K-electron to be

U = −

⎛
⎜⎜⎝1 − 1√

1 + (Zα)2/
[
nr +

√
n2

φ − (Zα)2
]2
⎞
⎟⎟⎠mc2, (23)

with nr = 0 and nφ = 1, which expression approaches mc2 as Z approaches 1/α and
is complex for larger Z. An identical expression is obtained for a Dirac electron in the
Coulomb potential of a point nucleus of charge Ze, although the interpretation of the
quantum numbers nr and nφ is different (nφ = j + 1/2, nr = n − j − 1/2). These
models predict that Zcrit = 1/α ≈ 137 (for a point nucleus).
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5. Since the proton is a uud and the neutron is a udd 3-quark state, we infer that the
(constituent) masses of the u- and d-quarks are each about 310 MeV. The Σ, Ξ and
the Ω baryons has 1, 2 and 3 s-quarks in place of u- or d-quarks. From the masses in
the baryon decuplet, we infer that the s-quark weights about 150 MeV more than the
u- and d-quarks, and we predict that the Ω− baryon will have a mass of 1680 MeV.

Its mass is 1672 MeV.
http://kirkmcd.princeton.edu/examples/EP/barnes_prl_12_204_64.pdf

6. The classical potential energy U of a pair of magnetic moments μn and μe of fixed
magnitude is

U = −μe · Bn =
μe · μn − 3(μn · r̂)(μn · r̂)

r3
→ −μeμn(1 − 3 cos2 θ)

r3
, (24)

for antiparallel moments, where angle θ is measured with respect to the direction of
the moments. For motion in the plane perpendicular to that direction, this potential
corresponds to an attractive force, so a bound state of an electron and neutron might
exist.

However, such a state could not be spherically symmetric (S-wave), since in that case
the average potential energy is zero,

〈U〉 ∝ −μeμn

r3

∫ 1

−1
(1 − 3 cos2 θ) d cos θ = 0. (25)

Hence, possible bound states must carry orbital angular momentum, the smallest
nonzero value of which is

h̄ = L = pr =
mecr(v/c)√
1 − (v/c)2

,
c

v
=
√

1 + (r/λe)2 , (26)

where we approximate the neutron as being at rest with the electron in an orbit of
radius r with momentum p, and with the magnetic moments perpendicular to the plane
of the orbit, and λe = h̄/mec = 3.9 × 10−11 cm is the (reduced) Compton wavelength
of the electron.

Them, the magnetic force on the electron is

F = −∇U = ∇μeμn

r3
= −3μeμn

r4
r̂. (27)

At this point we could recall the so-called virial theorem of mechanics,1 which tells us
that bound states in central potentials U = −K/rn exist (at least for nonrelativistic
motion) only for n < 2. In particular, for n = 3, the virial theorem states that
〈T 〉 = −3 〈U〉 /2, 〈T + U〉 = −〈U〉 /2 > 0, where T is the kinetic energy. Hence, it
seems likely that no electron-neutron bound state exists. However, it might be that
the motion is relativistic, so we continue the discussion.

1R. Clausius, On a mechanical theorem applicable to heat, Phil. Mag. 40, 122 (1879),
http://kirkmcd.princeton.edu/examples/mechanics/clausius_pm_40_122_70.pdf.
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The force (27) equals the rate of change of the electron’s momentum p, which is possibly
relativistic,

F =
dp

dt
= ω × p = −pω r̂ = −pv

r
r̂, (28)

where v is the velocity of the electron. Equating (27) and (28) leads to Kepler’s law of
the electron-neutron system,

r3 =
3μeμn

pv
=

3gegne2h̄2

4memnc2pv
=

3gegn

4

e2

h̄c

(
h̄

mec

)2
me

mn

h̄c

pv
=

3αgegnλ2
e

4

me

mn

h̄c

pv
, (29)

where α = e2/h̄c = 1/137.

Using the quantum condition (26), we have that

r2

λ2
e

=
3αgegn

4

me

mn

√
1 + (r/λe)2 ≈ 3αgegn

4

me

mn
, (30)

r2

λ2
e

≈ 1.3 × 10−5, r ≈ 0.037λe = 1.4 × 10−14 cm. (31)

This is smaller than the charge radius of the neutron, ≈ 1×10−13 cm, so it is implausible
that a stable bound state of an electron and neutron exists.

We now see that the motion of the electron is indeed relativistic, with v ≈ c, such that
the total mechanical energy of the electron is

Ee ≈ pc ≈ 3μeμn

r3
, (32)

recalling the first form of eq. (30). The magnetic potential energy at this radius is

U = −μeμn

r3
≈ −E

3
, (33)

such that the total energy of the system is

Etotal = mnc2 + Ee + U ≈ mnc
2 +

2μeμn

r3
≈ mnc

2

(
1 +

1

3

√
2me

3αgegnmn

)
≈ 1.03mnc2

= 967 MeV > (mn + me)c
2. (34)

Such a state is not bound, as anticipated by Clausius’ nonrelativistic virial theorem,
but might appear as a 28-MeV resonance in e-n scattering.

Historically, a report of a possible electron-neutron bound state in 1969 was quickly
contradicted by other experiments. For commentary on this, see, for example, Schlitt2

and references therein.

For the related example of an electric charge together with an electric dipole, see
http://kirkmcd.princeton.edu/examples/dipole.pdf.

2D.W. Schlitt, Comment on “Does a Free Neutron-Electron Bound State Exist?” Am. J. Phys. 41, 1120
(1973), http://kirkmcd.princeton.edu/examples/QM/schlitt_ajp_41_1120_73.pdf.
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