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1. Positronium

The concept of positronium, an atom made of an electron and a positron, was invented
by Princetonian John Wheeler – who called it a polyelectron.1

What symmetry principles would be violated if the following 1-photon transitions be-
tween excited states n2s+1Lj of positronium were observed (via microwave pumping)?

(a) 13S1 → 23S1

(b) 13S1 → 21S0

(c) 13S1 → 21P1

(d) 13S1 → 23P1

Polarized 13S1 positronium can be formed when positrons from 22Na β-decay combine
with atomic electrons. This state decays to 3 photons (do you recall why 2-photon
decay is forbidden?). Let k̂1 and k̂2 be the directions of the two higher-energy decay
photons, and Ŝ be the direction of the positronium spin. What symmetries would be
violated by angular correlations of the following forms?

(e) Ŝ · k̂1 × k̂2

(f) Ŝ · k̂1

(g) (Ŝ · k̂1)(Ŝ · k̂1 × k̂2)

(h) Ŝ · ε̂1 × k̂2

where ε̂1 is along the direction of polarization of final-state photon 1.

2. Λ0 hyperons are produced by a pion beam in the reaction π−p → K0Λ0, and observed
by the decay Λ0 → pπ− (which is a weak interaction that does not conserve parity).
Let J denote the spin of the Λ (considered to be unknown in this problem, while the
spins of the π−, p and K0 are known), and θ be the angle of a decay product in the Λ
rest frame, relative to the direction of the Λ in the lab frame. In the case where the Λ
is produced exactly along the beam direction, what are the possible values of Jz?

1J.A. Wheeler, Polyelectrons, Ann. N.Y. Acad. 48, 219 (1946),
http://kirkmcd.princeton.edu/examples/QM/wheeler_anyas_48_219_46.pdf.
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Show that for unpolarized beam protons, and for Λ’s produced along the beam direc-
tion, the Λ-decay angular distribution depends on J according to

J = 1/2, isotropic,

J = 3/2, 3 cos2 θ + 1,

J = 5/2, 5 cos4 θ − 2 cos2 θ + 1.

(1)

Hints in Sakurai, Invariance Principles and Elementary Particles (1964), p. 17.

3. The lowest-mass strange baryons Λ, Σ, Ξ decay weakly, and isospin is not conserved in
these decays. For example, the isospin-0 particle Λ0 decays to pπ− which can only be in
isospin 1/2 and 3/2 states. However, strange-baryon “resonances” such as the Λ0(1520)
decay (quickly) via the strong interaction. Use isospin conservation to predict the
relative decay rates of this state to pK− and nK̄0, and the relative rates to Σ+π−, Σ0π0

and Σ−π+. Predict also the relative decay rates for Σ(1660) → pK̄0, nK̄0, pK−, nK̄−,
and for Σ(1660) → Σ+π0, Σ0π+, Σ+π−, Σ0π0, Σ−π+, Σ−π0, Σ0π+.

Ignore the effect of small mass differences among particles in an isospin multiplet.

Table of Clebsch-Gordan Coefficients: http://pdg.lbl.gov/2002/clebrpp.pdf

4. Meson Theory of Hyperdeuterons

Estimate the relative binding energies of the 64 possible pairs of baryons in the spin-1/2
octet: n, p, Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0.

For this, use a simplified one-pion-exchange model that the nuclear force is entirely
due to exchanges of a single π meson, and that the operator g2τ 1 · τ 2 characterizes
the charge independence of this interaction.2 Here g is a coupling constant, and τ
is the isospin-1 operator (because pions form an I = 1 multiplet). That is, ignore
electromagnetic effects and spin-dependent effects.

(A harder version of the problem would be to deduce that g2τ 1 · τ 2 is the appropriate
operator.)

A hint is that the Hamiltonian relevant to binding of the dibaryons is H ∝ g2τ 1 · τ 2.
Hence, we should consider the matrix elements 〈B1B2|τ 1 · τ 2|B1B2〉, where B is any
member of the baryon octet. As for electricity, we infer that a negative matrix element
implies an attractive force, and bound states, while a positive matrix element implies
repulsion.

Note that

τ 1 · τ 2 =
1

2

(
τ 2 − τ 2

1 − τ 2
2

)
.

Also, charge independence means you don’t have to look at each of the 64 pairs sep-
arately, but you can more simply consider pairs of isospin multiplets, each of which
leads to one or more multiplets of total isospin exactly as for combinations of ordinary

2If this interaction is represented by a Feynman diagram with single pion exchange, then each of the
BBπ vertices has strength gτ .
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spin. For this, note that the nucleons, N , and the cascade particles, Ξ, each form an
isodoublet, the Λ is an isosinglet, and the Σ’s form an isotriplet.

Give the isospin wavefunctions of the candidate bound states.

I found that 11 of the 64 pairs should have bounds states, and that none of these would
be more weakly bound than the deuteron.

Considerations somewhat similar to those of this problem are given in D.B. Lichtenberg
and M.H. Ross, Pion Contribution to Hyperon-Nucleon Forces, Phys. Rev. 107, 1714
(1957), http://kirkmcd.princeton.edu/examples/EP/lichtenberg_pr_107_1714_57.pdf .
No dibaryon bound state other than the deuteron has ever been observed, although
searches continue.3 The lightest known hypernucleus is 3

ΛH,4 and even its antiparticle
has been observed.5 A Σ-hypernucleus is 4

ΣHe.6 A handful of examples of hyper-He
nuclei containing two Λ’s have been reported.7

5. The J/ψ meson is an (electrically neutral) cc̄ state with mass = 3.1 GeV, JPC =
1−− and IG = 0−. Which of the following possible decay modes are allowed, and if
forbidden, what symmetry would be violated if such decay were observed: NN̄ , π+π−,
π0π0, γγ, π0γ, π0γγ, π+π−γ, π+π−π0, 3π0, 4π0, π+π−π+π−?

3See, for example, B.H. Kim et al., Search for an H-Dibaryon with a Mass near 2mΛ in Υ(1S) and Υ(2S)
Decays, Phys. Rev. Lett. 110, 222002 (2013),
http://kirkmcd.princeton.edu/examples/EP/kim_prl_110_222002_13.pdf.
For a review of ongoing modeling of such possible states, see S.R. Beane et al., Light nuclei and hypernuclei
from quantum chromodynamics in the limit of SU(3) flavor symmetry, Phys. Rev. D 87, 034506 (2013),
http://kirkmcd.princeton.edu/examples/EP/beane_prd_87_034506_13.pdf.

4R.J. Prem and P.H. Steinberg, Lifetimes of Hypernuclei, ΛH3, ΛH4, ΛHe4, Phys. Rev. 136, B1803
(1964), http://kirkmcd.princeton.edu/examples/EP/prem_pr_136_B1803_64.pdf.

5STAR Collaboration, Observation of an Antimatter Hypernucleus, Science 328, 58 (2010),
http://kirkmcd.princeton.edu/examples/EP/star_science_328_58_10.pdf.

6T. Nagae et al., Observation of a 4
ΣHe Bound State in the 4He(K−, π−) Reaction at 600 MeV/c, Phys.

Rev. Lett. 80, 1605 (1998),
http://kirkmcd.princeton.edu/examples/EP/nagae_prl_80_1605_98.pdf.

7See, for example, K. Nakazawa et al., Double-Λ Hypernuclei via the Ξ− Hyperon Capture at Rest
Reaction in a Hybrid Emulsion, Nucl. Phys. A 835, 207 (2010),
http://kirkmcd.princeton.edu/examples/EP/nakazawa_npa_835_207_10.pdf.
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Solutions

1. Positronium

(a) 13S1 → 23S1

These two states both have odd parity, Pe+e− = (−1)L+1 with L = 0, and total an-
gular momentum J = 1. Hence, the photon must have even parity (assuming that
the electromagnetic interaction conserves parity, and noting that Pγ = (−1)Lγ+1),
which implies that its orbital angular momentum Lγ must be odd. In principle, a
J = 1 → J = 1 atomic transition with single-photon absorption(emission) could
occur for Jγ = 0, 1, 2, but Jγ = 0 (monopole radiation) does not occur.

Lγ = 1, Jγ = 1 corresponds to a magnetic dipole transition, for which the parity
Pγ,M = (−1)Jγ+1 is even. Hence, this is an allowed transition, considering only
conservation of angular momentum and parity.

Lγ = 1, Jγ = 2 corresponds to an electric quadrupole transition, with even parity
Pγ,E = (−1)Jγ , so this also is allowed, considering only conservation of angular
momentum and parity.

However, we should also consider charge conjugation.

A single photon has Cγ = −1.

An e+e− state has C = (−1)L+S , so the 13S1 state has C = (−1)0+1 = −1, as
does also the state 23S1. To conserve charge conjugation, the photon would have
to have even charge conjugation.

Hence, observation of this transition would be a violation of charge conjugation
symmetry in the electromagnetic interaction.

(b) 13S1 → 21S0

The 21S0 state has charge conjugation C = (−1)0+0 = 1, so this transition is
allowed by charge conjugation symmetry.

These two states also both have odd parity, so again Lγ must be odd.

The initial atom has J = 1 and the final atom has J = 0, so the photon must
have Jγ = 1 (assuming that angular momentum is conserved).

Lγ = 1, Jγ = 1 corresponds to a magnetic dipole transition, for which the parity
Pγ is even. Hence, this is also an allowed transition.

Altogether, this transition is allowed by conservation angular momentum, parity,
and charge conjugation.

(c) 13S1 → 21P1

The 21P1 state has charge conjugation C = (−1)1+0 = −1, so this transition is
forbidden via single-photon absorption by charge conjugation symmetry.

For what it’s worth, it is allowed by conservation of angular momentum and parity.

The initial state has odd parity, while the final state has even parity, so the photon
should have odd parity and hence even Lγ.

The J = 1 → J = 1 atomic transition can take place with Jγ = 1, 2.

Lγ = 0, 2, Jγ = 1 is an E1 transition, with odd parity, so this is allowed.
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Lγ = 2, Jγ = 2 is an M2 transition, with odd parity, so this also is allowed (but
would be very weak compared to the E1 transition).

(d) 13S1 → 23P1

The 23P1 state has charge conjugation C = (−1)1+1 = 1, so this transition is
allowed via single-photon absorption by charge conjugation symmetry.

It is also allowed by conservation of angular momentum and parity, with the
argument being the same as for the case 13S1 → 21P1 (since these arguments
depend on J and L but not on S).

(e) Ŝ · k̂1 × k̂2

As discussed in part (a), the 13S1 state has odd parity. The 3-photon final state
also has odd intrinsic parity. Hence, only even-parity correlations are permitted
in the final state, if parity is conserved.

Recall that P (Ŝ) = Ŝ for a spin vector Ŝ, while P (k̂) = −k̂ for a momentum
vector k̂.

thus, P (Ŝ · k̂1 × k̂2) = Ŝ · k̂1 × k̂2, and this correlation is consistent with parity
conservation.

(f) Ŝ · k̂1

P (Ŝ ·k̂1) = −Ŝ·k̂1, so observation of this correlation would imply parity violation.

(g) (Ŝ · k̂1)(Ŝ · k̂1 × k̂2)

This case combines the correlations of (e) and (f), and would violate parity since
(f) violates parity.

(h) Ŝ · ε̂1 × k̂2

The photon polarization vector ε̂ is along its electric field, so P (ε̂) = −ε̂. Thus,
P (Ŝ · ε̂1× k̂2) = Ŝ · ε̂1× k̂2, so this correlation is permitted by parity conservation.

2. This problem is based on R.K. Adair, Angular Distribution of Λ0 and θ0 Decays, Phys.
Rev. 100, 1540 (1955), http://kirkmcd.princeton.edu/examples/EP/adair_pr_100_1540_55.pdf.

A two-particle state can only have orbital-angular-momentum component Lz = 0 along
a z-axis.

If the Λ0 moves along the beam axis, taken to be the z-axis, then so also does the
K0, and no matter what is their orbital angular momentum L, Lz = 0. Of course, the
initial π−p state has Lz = 0, and Jz = ±1/2, since the pion is spinless and the proton
has spin-1/2. Conservation of angular momentum then implies that Jz = ±1/2 for the
final state; these two states are distinguishable, so it suffices to consider only one, say
Jz = 1/2.

Similarly, since the initial state can only have J = n/2 for odd n this also holds for
the final state, which in turn implies that the spin of the Λ0 is m/2 for odd m, since
the K0 is spinless.
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(a) JΛ = 1/2.

In general, the decay final state π−p could have L = 0 or 1 such that J = 1/2. If
the Λ has Jz = ±1/2 in its rest frame, then this couples to the L = 0 π−p state
according to

|1/2, 1/2〉 = |0, 0〉|1/2,±1/2〉, (2)

and couples to the π−p states with orbital angular momentum L = 1 and (proton)
spin S = ±1/2 according to

|1/2, 1/2〉 =

√
2

3
|1, 1〉|1/2,−1/2〉 −

√
1

3
|1, 0〉|1/2, 1/2〉, (3)

|1/2,−1/2〉 = −
√

2

3
|1,−1〉|1/2, 1/2〉 +

√
1

3
|1, 0〉|1/2,−1/2〉, (4)

using the Clebsch-Gordon coefficients from
http://pdg.lbl.gov/2013/reviews/rpp2012-rev-clebsch-gordan-coefs.pdf.

The initial Jz = ±1/2 states, and the decay final states are all distinguishable by
the proton spin component, so we have four amplitudes to consider,

α|0, 0〉|1/2, 1/2〉 − β

√
1

3
|1, 0〉|1/2, 1/2〉, (5)

β

√
2

3
|1, 1〉|1/2,−1/2〉, (6)

α|0, 0〉|1/2,−1/2〉 + β

√
1

3
|1, 0〉|1/2,−1/2〉, (7)

−β
√

2

3
|1,−1〉|1/2, 1/2〉, (8)

where α is the strength of the interaction with the L = 0 state, and β is the
strength of the interaction with the L = 1 state. We square amplitudes (5)-(8) and
add to find the angular distribution, noting that the orbital angular momentum
states |L,Lz〉 correspond to spherical harmonics Y Lz

L (θ, φ), where θ is the angle
of, say, the decay pion with respect to the z-axis in the Λ rest frame.

Y 0
0 =

√
1

4π
, Y ±1

1 = ∓
√

3

8π
sin θ e±iφ, Y 0

1 =

√
3

4π
cos θ. (9)

The four amplitudes (5)-(8) are then (after multiplying by
√

4π),

α − β

√
1

3
cos θ, −β

√
1

3
sin θ eiφ, α + β

√
1

3
cos θ, −β

√
1

3
sin θ e−iφ. (10)

Squaring, and adding, leads to the angular distribution

2 |α|2 +
2 |β|2

3
(sin2 θ + cos2 θ) = 2 |α|2 +

2 |β|2
3

= isotropic. (11)
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We note that the target protons needed to be unpolarized so that the cases of
Jz = ±1/2 for the initial state are equally likely, and the cross terms between
different L in the final π−p state cancel out. We assume this holds for the cases of
higher possible Λ spin, and consider than contributions to the angular distribution
from different L separately.

(b) JΛ = 3/2.

In this case the orbital angular momentum of the π−p final state can be L = 1 or
2 such that J = 3/2. If the Λ has Jz = 1/2 in its rest frame, then this couples
to the π−p final states with orbital angular momentum L = 1 and (proton) spin
S = 1/2 according to

|3/2, 1/2〉 =

√
1

3
|1, 1〉|1/2,−1/2〉 +

√
2

3
|1, 0〉|1/2, 1/2〉, (12)

which implies an angular distribution proportional to

∣∣∣Y 1
1

∣∣∣2 + 2
∣∣∣Y 0

1

∣∣∣2 ∝ sin2 θ

2
+ 2 cos2 θ ∝ 3 cos2 θ + 1. (13)

Similarly, the coupling to the π−p final states with orbital angular momentum
L = 2 is

|3/2, 1/2〉 =

√
3

5
|2, 1〉|1/2,−1/2〉 −

√
2

5
|2, 0〉|1/2, 1/2〉, (14)

which implies an angular distribution of

3
∣∣∣Y 1

2

∣∣∣2 + 2
∣∣∣Y 0

2

∣∣∣2 ∝ 3
15

2
sin2 θ cos2 θ + 2

5

4
(3 cos2 θ − 1)2 ∝ 3 cos2 θ + 1, (15)

noting that

Y 1
2 = −

√
15

8π
sin θ cos θ eiφ, Y 0

2 =

√
5

16π
(3 cos2 θ − 1). (16)

Thus, either value of L for the π−p final states leads to the same angular distri-
bution, namely 3 cos2 θ + 1.

(c) JΛ = 5/2.

In this case the possible orbital angular momenta of the final π−p states are L = 2
and 3.

We content ourselves with calculating only L = 2.

|5/2, 1/2〉 =

√
2

5
|2, 1〉|1/2,−1/2〉 +

√
3

5
|2, 0〉|1/2, 1/2〉, (17)

which implies an angular distribution of

2
∣∣∣Y 1

2

∣∣∣2 + 3
∣∣∣Y 0

2

∣∣∣2 ∝ 2
15

2
sin2 θ cos2 θ + 3

5

4
(3 cos2 θ − 1)2 ∝ 5 cos4 θ − 2 cos2 θ + 1.(18)
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The principle of this problem was used to determine that the Λ0 has spin-1/2 by
F. Eisler et al., Experimental Determinations of the Λ0 and Σ− Spins, Nuovo Cim. 7
222 (1958), http://kirkmcd.princeton.edu/examples/EP/eisler_nc_7_222_58.pdf.

3. (a) Λ0(1520) → pK−, nK̄0.

In terms of isospin states, this is

|0, 0〉 =

√
1

2
|1/2, 1/2〉|1/2,−1/2〉 −

√
1

2
|1/2,−1/2〉|1/2, 1/2〉, (19)

so isospin conservation implies that the two decay amplitudes have equal but
opposite strengths, and hence the two decay rates are equal,

Γ[Λ(1520) → pK−] = Γ[Λ(1520) → pK̄0]. (20)

(b) Λ0(1520) → Σ+π−, Σ0π0 and Σ−π+.

In terms of isospin states, this is

|0, 0〉 =

√
1

3
|1, 1〉|1,−1〉 −

√
1

3
|1, 0〉|1, 0〉 +

√
1

3
|1,−1〉|1, 1〉, (21)

so isospin conservation implies that the three decay amplitudes have equal mag-
nitudes, and hence these three decay rates are equal,

Γ[Λ(1520) → Σ+π−] = Γ[Λ(1520) → Σ0π0] = Γ[Λ(1520) → Σ−π+] (22)

Isospin invariance does not relate the NK̄ decay rates to the Σπ ones, but SU(3)
invariance does, with the prediction that the NK̄ decay rates are 3/2 times the
Σπ ones, such that the total decay rates Γ[Λ(1520) → NK̄] and Γ[Λ(1520) → σπ]
are equal (as holds reasonably well in the data).

(c) Σ(1660) → pK̄0, nK̄0, pK−, nK̄−.

These decays of the Σ(1660) have the isospin relations

|1, 1〉 = |1/2, 1/2〉|1/2, 1/2〉, (23)

|1, 0〉 =

√
1

2
|1/2, 1/2〉|1/2,−1/2〉 −

√
1

2
|1/2,−1/2〉|1/2, 1/2〉, (24)

|1,−1〉 = |1/2,−1/2〉|1/2,−1/2〉, (25)

so isospin conservation implies that

Γ[Σ+(1660) → pK̄0] = 2Γ[Σ0(1660) → pK−] (26)

= 2Γ[Σ0(1660) → nK̄0] = Γ[Σ−(1660) → nK−]. (27)
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(d) Σ(1660) → Σ+π0, Σ0π+, Σ+π−, Σ0π0, Σ−π+, Σ−π0, Σ0π+.

These decays of the Σ(1660) have the isospin relations

|1, 1〉 =

√
1

2
|1, 1〉|1, 0〉 −

√
1

2
|1, 0〉|1, 1〉, (28)

|1, 0〉 =

√
1

2
|1, 1〉|1,−1〉 −

√
1

2
|1,−1〉|1, 1〉, (29)

|1,−1〉 =

√
1

2
|1,−1〉|1, 0〉 −

√
1

2
|1, 0〉|1,−1〉, , (30)

so isospin conservation implies that

Γ[Σ+(1660) → Σ+π0] = Γ[Σ+(1660) → Σ0π+] (31)

= Γ[Σ0(1660) → Σ+π−] = Γ[Σ0(1660) → Σ−π+] (32)

= Γ[Σ−(1660) → Σ0π−] = Γ[Σ−(1660) → Σ−π0], (33)

while Γ[Σ0(1660) → Σ0π0] = 0.

SU(3) invariance implies that Γ[Σ+(1660) → pK̄0] = Γ[Σ+(1660) → Σ+π0], and
hence that the total decay rates obey Γ[Σ(1660) → NK̄] = Γ[Σ(1660) → Σπ].

4. To deal with all 64 pairs of dibaryons from the basic spin-1/2 octet, n, p, Λ, Σ−, Σ0, Σ+,
Ξ−, Ξ0, we need a compact analysis. For this, we note that for τ = τ 1 + τ 1,

(τ 1 + τ 2)
2 = τ 2 = τ 2

1 + τ 2
2 + 2τ 1 · τ 2, (34)

τ 1 · τ 2 =
1

2

(
τ 2 − τ 2

1 − τ 2
2

)
=

1

2
[(τ(τ + 1) − (τ 1(τ 1 + 1) − (τ2(τ 2 + 1)], (35)

noting that the expectation value of the (iso)spin operator τ 2 is τ (τ + 1). Thus, the
strength of the τ 1 · τ 2 interaction is the same for all members of a multiplet of total
isospin τ , and in the simplest model is the same for any dibaryon isospin multiplet of
the same τ .

So, we consider the possible dibaryon isospin multiplets.

(a) The 1/2 × 1/2 multiplets are NN , ΞΞ and NΞ, which lead to τ = 0 and τ = 1
multiplets with τ 1 = τ2 = 1/2.

τ = 0 : τ 1 · τ 2 =
1

2

[
0(0 + 1) −

(
1

2

) (
1

2
+ 1

)
−

(
1

2

) (
1

2
+ 1

)]
= −3

4
,(36)

τ = 1 : τ 1 · τ 2 =
1

2

[
1(1 + 1) −

(
1

2

) (
1

2
+ 1

)
−

(
1

2

) (
1

2
+ 1

)]
=

1

4
. (37)

This model suggests that there would be bound isosinglet states (pn − np)/
√

2
(deuteron), (Ξ0Ξ− − Ξ−Ξ0)/

√
2 and (pΞ− − nΞ0)/

√
2.

(b) The 1/2 × 0 multiplets are the NΛ and ΞΛ states, with τ = 1/2, τ 1 = 1/2 and
τ 2 = 0.

τ =
1

2
: τ 1 · τ 2 =

1

2

[(
1

2

) (
1

2
+ 1

)
−

(
1

2

) (
1

2
+ 1

)
− (0) (0 + 1)

]
= 0. (38)

These states are not bound in this model.

9



(c) The 0 × 0 multiplet is the state ΛΛ, with τ = 0 = τ 1 = τ 2 = 0.

τ = 0 : τ 1 · τ 2 =
1

2
[(0) (0 + 1) − (0) (0 + 1) − (0) (0 + 1)] = 0. (39)

This state is not bound in this model.

(d) The 1 × 0 multiplet is the states ΣΛ, with τ = 1 = τ 1 and τ 2 = 0.

τ = 1 : τ 1 · τ 2 =
1

2
[(1) (0 + 1) − (1) (1 + 1) − (0) (0 + 1)] = 0. (40)

These states are not bound in this model.

(e) The 1/2 × 1 multiplets are the NΣ and ΞΣ states, with τ = 1/2 or 3/2, τ1 = 1/2
and τ 2 = 1.

τ =
1

2
: τ 1 · τ 2 =

1

2

[(
1

2

) (
1

2
+ 1

)
−

(
1

2

) (
1

2
+ 1

)
− 1 (1 + 1)

]
= −1,(41)

τ =
3

2
: τ 1 · τ 2 =

1

2

[(
3

2

) (
3

2
+ 1

)
−

(
1

2

) (
1

2
+ 1

)
− 1 (1 + 1)

]
=

1

2
. (42)

This model suggests that there would be bound isodoublet states (
√

2nΣ+ −
pΣ0)/

√
3, (nΣ0−√

2pΣ−)/
√

3 and (
√

2Ξ−Σ+−Ξ0Σ0)/
√

3 and (Ξ−Σ0−√
2Ξ0Σ−)/

√
3.

(f) The 1 × 1 multiplets are the ΣΣ states, with τ = 0, 1 and τ 1 = τ 2 = 1.

τ = 0 : τ 1 · τ 2 =
1

2
[0 (0 + 1) − 1 (1 + 1) − 1 (1 + 1)] = −2, (43)

τ = 1 : τ 1 · τ 2 =
1

2
[1 (1 + 1) − 1 (1 + 1) − 1 (1 + 1)] = −1, (44)

τ = 2 : τ 1 · τ 2 =
1

2
[2 (2 + 1) − 1 (1 + 1) − 1 (1 + 1)] = 1. (45)

This model suggests that the most tightly bound state would be isosinglet
(Σ+Σ−−Σ0Σ0+Σ−Σ+)/

√
3, and the isotriplet Σ+Σ0, Σ+Σ−, Σ0Σ− is also bound.8

Taking Coulomb effects into account (which don’t conserve isospin), the Σ+Σ− part of
the isosinglet would be the most tightly bound dibaryon in this model.

Unfortunately, the data do not support this model.

5. This problem is a variant on considerations in D.B. Lichtenberg and G.C. Summerfield,
G Parity and the Interactions of Heavy Mesons, Phys. Rev. 127, 1806 (1962),
http://kirkmcd.princeton.edu/examples/EP/lichtenberg_pr_127_1806_62.pdf.

The J/ψ(3100) meson has JPC = 1−− and IG = 0−.

(a) NN̄ is an allowed decay mode. A 3S1 state has J = 1, L = 0, S = 1, P =
−(−1)L = −, C = (−1)L+S = −, and can be in an I = 0 state for which
G = (−1)L+S+I = −.

8Note that the state Σ0Σ0 does not contribute to the ΣΣ isotriplet. (Similarly, the isovector meson ρ0

does not decay to π0π0.)
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(b) π+π− has even G-parity, so is forbidden. A delicacy is that most decays of the
J/ψ are electromagnetic, which interaction does not respect isospin, in general.
However, it appears that in decays via a single intermediate photon (by far the
most probable), that photon behaves as if it has isospin 0 and negative G-parity
as does the J/ψ. This is an aspect of the so-called vector dominance model in
which virtual photons have some properties of hadrons. However, if the final
state includes a (real) photon, that photon does not have a definite isospin or
G-parity, contrary to a tacit assumption in the paper of Lichtenberg.

(c) π0π0 is forbidden by G-parity, and also by charge conservation since C(π0π0) = +.

(d) γγ is forbidden by rules of angular momentum, which tells us that a spin-1 particle
cannot decay to γγ.

(e) π0γ is allowed; the branching fraction is 3.5 ± 0.3 × 10−5. See,
http://pdg.lbl.gov/2013/listings/rpp2013-list-J-psi-1S.pdf.
The paper by Lichtenberg incorrectly says this is forbidden by G-parity, but the
(real, final-state) γ does not have definite isospin or G-parity.

(f) π0γγ is forbidden by charge conjugation since C(π0) = +.

(g) π+π−γ is allowed, I think (although Lichtenberg says not). A few decays of this
type have been reported.

(h) π+π−π0 is allowed (since π+π− with L = 1 have C = −).

(i) 3π0 is forbidden by charge conjugation.

(j) 4π0 is allowed I think (although Lichtenberg says not). This decay has not been
observed, but it is not easy to spot, since the actual signature is 8 photons from
the 4 π0 → γγ decays.

(k) π+π−π+π− is allowed (although Lichtenberg says not); branching fraction is 3.6±
0.3 × 10−3.
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