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Please do all work in the exam booklets provided.

You may use either Gaussian or MKSA units on this exam.

1. (10 pts.) Show that the charge induced in a small area A on a grounded conducting
plane by a point charge not in that plane is proportional to the solid angle subtended
at the point charge by area A.

2. (20 pts.) A hollow dielectric sphere of dielectric constant ε = 3 has inner radius one
half its outer radius. When this sphere is placed in an initially uniform electric field
E0, what is the resulting electric field strength at the center of the sphere?

3. (30 pts.) Two circular wires of radii a and b have a common center, and are free to
turn on an insulating axis which is a diameter of both. Find the torque about this
diameter required to hold the two wire loops at rest when their planes are at right
angles and they are carrying currents I and I ′, supposing that b ¿ a. Give both the
leading term, and the first correction in a power of the small ratio b/a.

Hint: This requires evaluating the first correction to both the axial and transverse
magnetic field components near the center of the larger loop. Recall that the torque
about a point is ~τ = r× F where force F is applied at distance r.
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Solutions

1. Let charge q be at perpendicular distance a from the grounded conducting plane. The
small area A has its center at distance r from the foot of the perpendicular to charge
q. The charge q′ induced in the area A is related by

q′ = σA =
EA

4π
, (1)

where E is the electric field strength at the surface of the conducting plane.

We calculate E using the image method, supposing that charge−q is located at distance
a on the other side of the conducting plane from charge q. Then,

E = − 2q

R2

a

R
= −2q

cos θ

R2
, (2)

where R =
√

a2 + r2 is the distance from charge q to area A, and θ is the angle between
vector R and the perpendicular from q to the plane.

Combining eqs. (1) and (2), we have

q′ = −2qA cos θ

4πR2
= −qΩ

2π
, (3)

where Ω = A cos θ/R2 is the solid angle subtended by area A at charge q. For the
whole plane, Ω = 2π and q′ = −q.

2. This problem is closely related to that of a dielectric sphere in an otherwise uniform
electric field. We choose the z axis antiparallel to the initial field E0, with the origin
at the center of the dielectric sphere, where the potential is taken to be zero.

The potential of the initial field is then

φ0 = E0z = E0r cos θ = E0rP1(θ), (4)

where θ is the polar angle with respect to the z axis and P1 is the Legendre polynomial
of order 1.

We recall from the case of a uniform dielectric sphere that the potential contains terms
only in P1, and we expect the same here.

Writing the inner radius of the sphere as a and the outer radius as b, we expect that
the potential will have the form

φ1 = E0rP1 + A
r

a
P1, (0 < r < a) (5)

φ2 = E0rP1 + B
r

a
P1 + C

b2

r2
P1, (a < r < b) (6)

φ3 = E0rP1 + D
b2

r2
P1, (a < r < b) (7)

since the perturbation to field E0 must be finite at r = 0 and ∞.
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The potential is continuous at r = a and b, so that

A = B + C
b2

a2
, (8)

B
b

a
+ C = D. (9)

Also, the normal component of the electric displacement D = εE is continuous at the
boundaries, since ∇ ·D = 0. Hence,

∂φ1(a)

∂r
= ε

∂φ2(a)

∂r
, (10)

and

ε
∂φ2(b)

∂r
=

∂φ3(b)

∂r
, (11)

which yields

E0 +
A

a
= εE0 + ε

B

a
− 2ε

Cb2

a3
, (12)

and

εE0 + ε
B

a
− 2ε

C

b
= E0 − 2

D

b
. (13)

Inserting eq. (8) in (12), we get

ε− 1

a
B − (2ε + 1)

b2

a3
C = (1− ε)E0, (14)

while using eq. (9) in (13) gives

ε + 2

a
B − 2(ε− 1)

b
C = (1− ε)E0. (15)

These could be solved in general for A, B and C, but here we consider the particular
case that a = 1, b = 2 and ε = 3, for which eqs. (14) and (15) become

B − 14C = −E0, (16)

and
5B − 2C = −2E0. (17)

We quickly find that

B = −13

34
E0, C =

3

68
E0, (18)

and from eq. (11),

A = B + 4C = − 7

34
E0. (19)

The electric field strength at the center of the dielectric sphere is

E(0) = E0 + A =
27

34
E0. (20)

A dielectric sphere is not as effective as a conducting sphere in shielding its interior
from an external electric field.
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3. (Problem 12, p. 448 of The Mathematical Theory of Electricity and Magnetism by
J. Jeans.)

The leading term of the torque is given by ~µ×B(0), where

µ =
πI ′b2

c
(21)

is the magnetic moment of the small loop of radius b that carries current I ′, and

B(0) =
1

c

∫ I× dl

r2
=

2πaI

ca2
=

2πI

ca
(22)

is the magnetic field at the center of the loops due to the current I in the loop of radius
a. When the two loops are at right angles, the vectors ~µ and B(0) are also at right
angles, so the magnitude of the leading term of the torque is

τ =
2πII ′b2

c2a
(23)

To evaluate the torque in greater detail, we consider the variation of the magnetic field
over the small loop, and use the basic torque equation

~τ =
∫

r× dF =
1

c

∫
r× [I ′dl′ ×B(due to I)]. (24)

We use a coordinate system in which the centers of the loops are at the origin, with
the axis of loop a is along the z axis. We take the sign of current I to be such that
the resulting magnetic field at the origin is in the +z direction. The axis of loop b is
defined to be the y axis, and the sign of current I ′ is such that the magnetic moment
~µ is along the +y axis. Then, we desire the x component of the torque ~τ about the
origin:

τx =
1

c

∫
br̂× [I ′bφ̂dφ× (Bzẑ + Bρρ̂)]

∣∣∣∣
x

=
b2I ′

c

∫ 2π

0
dφ cos φ(cos φBz + sin φBρ), (25)

where angle φ is measured in the x-z plane with respect to the z axis, such that for a
point on loop b, ρ = b sin φ and z = b cos φ.

If we don’t recall the results of problem 7, set 4, the magnitude of Bρ can be estimated
quickly using the Maxwell equation ∇ ·B = 0 and a “pillbox” surface of radius ρ and
thickness dz whose axis is along the z axis:

0 =
∫
∇ ·BdVol =

∫
B · dS

≈ πρ2(Bz(0, z + dz)−Bz(0, z)) + 2πρdzBρ(ρ, z).

≈ πρ2dz
∂Bz(0, z)

∂z
+ 2πρdzBρ(ρ, z). (26)
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Hence,

Bρ(ρ, z) ≈ −ρ

2

∂Bz(0, z)

∂z
. (27)

Then, near the center of loop a its magnetic field obeys ∇×B = 0, and in particular

∂Bz(ρ, z)

∂ρ
=

∂Br(ρ, z)

∂z
≈ −ρ

2

∂2Bz(0, z)

∂z2
, (28)

using eq. (27). We can integrate this to find

Bz(ρ, z) ≈ Bz(0, z)− ρ2

4

∂2Bz(0, z)

∂z2
, (29)

in agreement with the results of Problem 7, Set 4.

For points along the z axis the magnetic field due to loop a is

Bz(0, z) =
1

c

∫ I× dl

r2

∣∣∣∣∣
z

=
2πa2I

c(a2 + z2)3/2
≈ 2πI

ca

(
1− 3z2

2a2

)
, (30)

where the approximation can be used when we evaluate the field on loop b for which
|z| ≤ b ¿ a. Thus,

∂Bz(0, z)

∂z
= − 6πa2zI

c(a2 + z2)5/2
≈ −6πzI

ca3
, (31)

and
∂2Bz(0, z)

∂z2
= −6πa2I(a2 − 4z2)

c(a2 + z2)7/2
≈ −6πI

ca3
, (32)

Using eqs. (27) and (31), the transverse magnetic field at a point on loop b is

Bρ(ρ, z) ≈ 3πIρz

ca3
=

3πb2I cos φ sin φ

ca3
, (33)

and eqs. (29), (30) and (32) give the axial field as

Bz(ρ, z) ≈ 2πI

ca

(
1− 3z2

2a2

)
+

3πIρ2

2ca3
=

2πI

ca

(
1− 3b2 cos2 φ

2a2

)
+

3πb2I sin2 φ

2ca3
. (34)

Combining eqs. (25), (33) and (34) we find

τx ≈ πb2II ′

c2a

∫ 2π

0
dφ

(
2 cos2 φ− 3b2 cos4 φ

a2
+

3b2 cos2 φ sin2 φ

2a2
+

3b2 cos2 φ sin2 φ

a2

)

=
πb2II ′

c2a

∫ 2π

0
dφ

(
2 cos2 φ− 3b2 cos2 φ

a2
+

15b2 sin2 2φ

8a2

)

=
2π2b2II ′

c2a

(
1− 9b2

16a2

)
. (35)

[The answer in MKSA units is obtained on setting c = 1 in the magnetic force equation,
and replacing 1/c by µ0/4π in the Biot-Savart law, so 2π2/c2 → πµ0/2.]


