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1. A linearly polarized, plane electromagnetic wave of angular frequency ω is incident
on a free electron, leading to motion of the latter transverse to the direction of the
wave. Where does the transverse momentum of the electron come from (such that
total momentum is conserved)?

It must be that there is electromagnetic-field momentum equal and opposite to the
mechanical momentum of the electron, but the momentum of the electromagnetic
wave is in the direction of the wave.

Show that the electromagnetic momentum associated with the interaction of the wave
with the time-average static field of the electron is equal and opposite to the transverse
momentum of the electron, in the frame where the electron is at rest on average.1

You may suppose the incident wave is weak enough that the velocity of the electron
(in its average rest frame) is always small compared to the speed of light.

1If the plane wave overtakes an electron initially at rest, the electron takes on a drift velocity in the
direction of the wave, as first noted in
http://kirkmcd.princeton.edu/examples/accel/mcmillan_pr_79_498_50.pdf
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2. A circularly polarized electromagnetic wave of angular frequency ω is incident on a
free electron of charge e and rest mass m. Find the resulting motion, in the average
rest frame of the electron, even for strong fields, in which v → c.

(a) Show that the total radiated intensity, measured at the electron, is,

dU

dt
=

2γ2e4E2

3m2c3
=

2e4E2

3m2c3
(1 + η2), where η =

eE

mωc
. (1)

(b) Consider also a multipole expansion2 of the radiated intensity according to a fixed,
distant observer to show that (for η2 � 1),

dU

dt
=

2e4E2

3m2c3

(
1 +

7

5
η2 + · · ·

)
. (2)

Note that the 2nd term in the expansion corresponds to radiation at frequency 2ω
(and higher-order terms correspond to radiation at higher multiples of ω).3

2Recall Prob. 7, Set 8, http://kirkmcd.princeton.edu/examples/ph501set8.pdf
3From the quantum viewpoint, this corresponds to the absorption of two photons by the electron, with

emission of one photon of double the energy of those in the incident wave.
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3. Calculate the cross section for the scattering of an elliptically polarized plane electro-
magnetic wave in vacuum that is incident on a free electron of charge e and mass m.
The electric field of the plane wave can be taken to be the real part of,

E = (a + b) ei(kz−ωt), (3)

where a is perpendicular to b, and both are perpendicular to ẑ, while a �= b in general.

Show that,

dσ

dΩ
= r2

e

(a × n̂)2 + (b × n̂)2 − 2Re[(a · n̂)(b · n̂)]

a2 + b2
(4)

where re = e2/mc2 is the classical electron radius, with c as the speed of light in
vacuum.

Note that for circularly polarized light, σleft = σright = σThomson, consistent with Prob. 2
above.
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4. Calculate the cross section σ for the scattering of a linearly polarized plane electro-
magnetic wave in vacuum that is incident on a polar molecular of fixed electric-dipole
moment b, supposing that the size of the molecule is small compared to the wave-
length, i.e., λ � p/e, and assuming that all directions of p are equally likely (as in a
gas).

Show that,

σ ≈ 16πp4

9c4I2
, (5)

where I is the moment of inertia of the molecule about an axis perpendicular to p that
contains the center of mass of the molecule, and we ignore terms that are second order
in the velocity of the rotation of the dipole.
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5. Spectral Line Broadening

A spectral “line” of central wavelength λ is always observed to have a finite width Δλ.

a) Consider the yellow sodium line with λ = 5893
◦
A.

What is the contribution to Δλ/λ from the damping due to the radiation reaction?

b) Doppler Broadening

Suppose we observe the glowing sodium vapor at 600K.

Then, some of the glowing sodium atoms move towards us and some move away, and
the observed radiation is Doppler shifted accordingly. How big is Δλ/λ due to this
effect? There is no need to go into details of the Maxwell distribution.

c) Collision Broadening

At atom starts glowing (becomes excited) due to a collision with another atom, which
sets its “spring” oscillation. A second collision at time Δt later, which destroys the co-
herence of the oscillation. This limits the width of the pulse of radiation, and according
to the “uncertainty” relation Δω Δt ≈ 1, the spectrum of the pulse is broadened.

Let ν be the mean frequency of collisions [#/sec]. Then,

ν = [collison cross section] · [# atoms/volume] · [mean relative velocity]. (6)

The probability of a collision during time dt is ν dt, so the probability that no collision
occurred between t = 0 and t is e−νt. Averaging over many collisions, this means that
the intensity of the radiation at time t after the beginning of emission is I0 e−νt. This
is similar to the effect of other damping mechanisms, for which E = E0 e−Γothert and
I ∝ E2 = I0 e−2Γothert. Hence, the effective damping constant Γ in the presence of
collisions is,

Γ =
ν

2
+ Γother. (7)

At what pressure does,

Δλ

λ

∣∣∣∣∣
collisions

=
Δλ

λ

∣∣∣∣∣
Doppler

? (8)

For discussion of “sharpening the line”, see A.L. Schawlow, Phys. Today 35(12), 46
(1982), http://kirkmcd.princeton.edu/examples/optics/schawlow_pt_35-12_46_82.pdf
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6. Optical Theorem

On p. 208 of Lecture 17 on diffraction,4 we noted that if we write the differential cross
section for scattering of a plane electromagnetic wave as dσscat/dΩ = |f(θ)|2, then,

σtotal =
4π

k
|Imf(0)| (Optical Theorem), (9)

where k is the wave number of the incident wave (of angular frequency ω = kc).

Give a suitable form of f(θ) for scattering off an electrons bound in an atom with
natural frequency ω0 and damping constant Γ0 to show that the optical theorem indeed
holds for the total cross section,

σtotal = 4πrec
ω2Γ0

(ω2 − ω2
0)

2 + ω2Γ2
0

, (10)

as found on p. 281 of Lecture 23.5

What physical effect saves the optical theorem for free electrons?

4http://kirkmcd.princeton.edu/examples/ph501/ph501lecture17.pdf
5http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
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7. Levinger-Bethe Sum Rule

In a series of experiments, the scattering of gamma rays off copper nuclei was mea-
sured,6 and the integrated cross section was determined to be,

∫
σtotal dE =

∫
σtotal d(h̄ω) ≈ 1.5 × 10−24 MeV · cm2. (11)

Calculate this integral, starting from p. 282 of Lecture 23 of the Notes,7 assuming all
the scattered radiation is due to oscillations of a dipole moment where:

(a) The entire nucleus moves as a whole.

(b) The neutrons in the nucleus remain fixed while only the protons move about.

(c) The protons move as a group, and the neutrons move as a separate group, which
was claimed by Bethe8 to lead to,

∫
σtotal dE = 2π2NZ

A
αλ2

MMc2, (12)

where Z = no. of protons = 29 for copper, N = no. of neutrons, A = N +Z = 63
for copper, α = e2/h̄c = 1/137, M = Mp ≈ Mn, λM = h̄/Mc.

Does the experimental result distinguished between cases (a)-(c)?

6G.C. Baldwin and G.S. Klaiber, X-Ray Yield Curves for γ-n Reactions, Phys. Rev. 73, 1156 (1948),
http://kirkmcd.princeton.edu/examples/EP/baldwin_pr_73_1156_48.pdf. The total cross section is
dominated by the reaction γ + Cu63 → Cu62 + n, which exhibits a “resonance” for incident gamma-ray
energy around 25 MeV.

7http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
8J.S. Levinger and H.A. Bethe, Dipole Transitions in the Nuclear Photo-Effect, Phys. Rev. 78, 115

(1950), http://kirkmcd.princeton.edu/examples/EP/levinger_pr_78_115_50.pdf
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8. What is the minium angular frequency of an electromagnetic what that could propagate
in “free” space without attenuation, according to the model of the index of refraction
reviewed on p. 282 of Lecture 23 of the Notes,9 supposing there is one (free) electron
per cubic centimeter?

For frequencies higher that the critical frequency considered above, is there actually “no
attenuation”? For example, at optical frequencies the wavelength λ is small compared
to average distance between the scattering centers postulated above. Then, it is not
plausible that the scattered radiation adds coherently to produce “no attenuation”.
Rather, the scattered radiation is effectively lost to an observer looking at, say, a
distant star. What is the attenuation length for light from a star that is “lost” in this
manner?

The concept of a scattering cross section is reviewed at
https://en.wikipedia.org/wiki/Cross_section_(physics)

The weak scattering of light by intergalactic electrons has been hard to measure ac-
curately on Earth due to “foreground” scattering by “dust” in the Solar system. A
satellite sent beyond Pluto to observe the scattered light has recently been reported to
have seen about twice as much scattered light as can be attributed to stars in distant
galaxies.10

9http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
10T.R. Lauer et al., Anomalous Flux in the Cosmic Optical Background Detected with New Horizons

Observations, Ap. J. Lett. 927, L8 (2022),
http://kirkmcd.princeton.edu/examples/cosmology/lauer_apjl_927_L8_22.pdf
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9. Gravitational Redshift

In 1911, Einstein gave a simple, approximate, non-quantum derivation of the gravita-
tional redshift of light as it propagates away from a massive body. As in Lecture 24 of
the Notes,11 there are two key ingredients:

• The principle of equivalence, to related physics in a uniform gravitational field
to that in a uniformly accelerated frame (without gravity).

• The use of instantaneous inertial frames, to relate physics in an accelerated
frame to that in an inertial frame – for a short time.

As in the Notes, consider an accelerated frame A that coincides with inertial frame I′

at time t = 0 = t′ and has acceleration g (with respect to frame I′) along the z′ axis.12

At time t = 0 light is emitted with frequency ν0 from a source at rest at the origin in
frame A. This light is detected by an observer at rest at (0, 0, z1) in frame A where it
is found to have frequency ν1.

Consider a second frame I′′, which is the instantaneous inertial frame that coincides
with frame A at the moment when the light is observed. Use a special-relativity analysis
of the Doppler effect to show that,

ν1 =
ν0

1 + gz1/c2
+ O

(
g2z2

1

c4

)
, ⇒ ν1 =

ν0

1 + Φ(z1)/c2
, (13)

in a uniform gravitational field with gravitational potential Φ(0) = 0.

11http://kirkmcd.princeton.edu/examples/ph501/ph501set12.pdf
12You can ignore the distinction between (discussed on p. 268 of Lecture 22,

http://kirkmcd.princeton.edu/examples/ph501/ph501lecture22.pdf) between uniform acceleration
with repect to frame A and that with respect to frame I′, whic distinction was not yet well understood
in 1911.
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Solutions

1. This solution is abstracted from http://kirkmcd.princeton.edu/examples/transmom2.pdf

The general sense of the answer has been given by Poynting,13 who noted that an
electromagnetic field can be said to contain a flux of energy (energy per unit area per
unit time) given by,

S =
c

4π
E× B, (14)

in Gaussian units, where E is the electric field, B is the magnetic field (taken to be in
vacuum throughout this paper) and c is the speed of light in vacuum.

Thomson14,15,16 and Poincaré17 noted that this flow of energy can also be associated
with a momentum density given by,

pfield =
S

c2
=

E ×B

4πc
=

(Ewave + Echarge) × (Bwave + Bcharge)

4πc
. (15)

Hence, in the problem of a free electron in a plane electromagnetic wave we are led to
seek an electromagnetic field momentum that is equal and opposite to the mechanical
momentum of the electron. However, this field momentum should not include either of
the self-momenta (Ewave × Bwave)/4πc or (Echarge × Bcharge)/4πc. The former is inde-
pendent of the electron, while the latter can be considered as a part of the mechanical
momentum of the electron according to the concept of “renormalization”.

We desire to show that the interaction field momentum,

Pint =
∫

pint dVol =
∫

dVol
Ewave ×Bcharge + Echarge × Bwave

4πc
, (16)

is equal and opposite to the mechanical momentum of the electron.

We consider a plane electromagnetic wave that propagates in the +z direction of a
rectangular coordinate system. For linear polarization along x,

Ewave = E0 cos(kz − ωt) x̂, Bwave = E0 cos(kz − ωt) ŷ, (17)

where ω = kc is the angular frequency of the wave, k = 2π/λ is the wave number and
x̂ is a unit vector in the x direction, etc.

13J.H. Poynting, On the Transfer of Energy in the Electromagnetic Field, Phil. Trans. Roy. Soc. London
175, 343 (1884), http://kirkmcd.princeton.edu/examples/EM/poynting_ptrsl_175_343_84.pdf

14J.J. Thomson, On the Illustration of the Properties of the Electric Field by Means of Tubes of Electro-
static Induction, Phil. Mag. 31, 149 (1891),
http://kirkmcd.princeton.edu/examples/EM/thomson_pm_31_149_91.pdf

15J.J. Thomson, Recent Researches in Electricity and Magnetism (Clarendon Press, 1893),
http://kirkmcd.princeton.edu/examples/EM/thomson_recent_researches_sec_1-16.pdf

16K.T. McDonald, J.J. Thomson and “Hidden” Momentum (Apr. 30, 2014),
http://kirkmcd.princeton.edu/examples/thomson.pdf

17H. Poincaré, Théorie de Lorentz et le Principe de la Réaction, Arch. Neérl. 5, 252 (1900), http:
//kirkmcd.princeton.edu/examples/EM/poincare_an_5_252_00.pdf
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Transverse Momentum of the Electron in a Weak Wave

A free electron of mass m oscillates in this field such that its average position is at
the origin. This simple statement hides the subtlety that our frame of reference is the
average rest frame of the electron when inside the wave, and is not the lab frame of an
electron that is initially at rest, but which is overtaken by a wave. If the velocity of the
oscillating electron is small, we can ignore the v/c × B force, and take the motion to
be entirely in the plane z = 0. Then, (also ignoring radiation damping) the equation
of motion of the electron is,

mẍ = eEwave(0, t) = ex̂E0 cos ωt. (18)

Using eq. (17) we find the position of the electron to be,

x = − e

mω2
x̂E0 cos ωt. (19)

and the mechanical transverse momentum of the electron is,

Pmech,⊥ = mẋ =
e

ω
x̂E0 sinωt. (20)

It is important to note that Pmech,⊥ is proportional to the first power of the wave field
strength.

Longitudinal Motion of the Electron

The root-mean-square (rms) transverse velocity of the electron is,

vrms =
√
〈ẋ2〉 =

eErms

mωc
c. (21)

The condition that v/c ×B small is then,

η ≡ eErms

mωc
� 1, (22)

where the dimensionless measure of field strength, η, is a Lorentz invariant. Similarly,
the rms departure of the electron from the origin is,

xrms =
eErms

mω2
=

ηλ

2π
. (23)

Thus, condition (22) also insures that the extent of the motion of the electron is
small compared to a wavelength, and so we may use the dipole approximation when
considering the fields of the oscillating electron.

In the weak-field approximation, we can now use eq. (20) for the velocity to evaluate
the second term of the Lorentz force,

e
v

c
×B =

e2E2
x

2mωc
ẑ sin 2ωt. (24)
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This term vanishes for circular polarization, in which case the motion is wholly in the
transverse plane. However, for linear polarization the v/c×B force leads to oscillations
along the z axis at frequency 2ω, as first analyzed in general by Landau.18

For polarization along the x-axis, the x-z motion has the form of a “figure 8”, which
for weak fields (η � 1) is described by,

x = −eEx

mω
cos ωt, z = − e2E2

x

8m2ω3c
sin 2ωt. (25)

If the electron had been at rest before the arrival of the plane wave, then inside the
wave it would move with an average drift velocity given by,

vz =
η2/2

1 + η2/2
c, (26)

along the direction of the wave vector, as first deduced by McMillan.19 In the present
paper, we work in the frame in which he electron has no average velocity along the
z axis. Therefore, prior to its encounter with the plane wave the electron had been
moving in the negative z direction with speed given by eq. (26).

The Interference Term Pwave,static

The oscillating charge has oscillating fields, and the strength of those oscillating fields
is proportional to the strength of the incident wave field. Hence, if we insert the
oscillating fields of the charge into eq. (16), the interaction momentum will be quadratic
in the wave field strength. This momentum cannot possibly balance the mechanical
transverse momentum (20).

For the interaction momentum (16) to yield a result proportional to the wave field
strength, we need to insert a field associated with the charge that is independent of
the wave field. Thus, we are led to consider the static field of the charge.

Indeed, the fields associated with the electron can be regarded as the superposition of
those of an electron at rest at the origin plus those of a dipole consisting of the actual
oscillating electron and a positron at rest at the origin. Thus, we can write the electric
field of the electron as Estatic + Eosc, and the magnetic field as Bosc.

The interaction field momentum density can now be written,

pint = pwave,static + pwave,osc, (27)

where,

pwave,static =
Estatic × Bwave

4πc
. (28)

18L. Landau and E.M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon Press, 1975), Prob. 2,
§ 47 and Prob. 2, § 49, http://kirkmcd.princeton.edu/examples/EM/landau_ctf_75.pdf
p. 112 of the 1941 Russian edition, http://kirkmcd.princeton.edu/examples/EM/landau_teoria_polya_41.pdf

19E.M. McMillan, The Origin of Cosmic Rays, Phys. Rev. 79, 498 (1950),
http://kirkmcd.princeton.edu/examples/accel/mcmillan_pr_79_498_50.pdf
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and,

pwave,osc =
Ewave × Bosc + Eosc × Bwave

4πc
. (29)

We recall from eqs. (20) and (25) that the transverse mechanical momentum of the
oscillating electron has pure frequency ω. Since the wave and the oscillating part of the
electron’s field each have frequency ω, the term pwave,osc contains harmonic functions
of ω2, which can be resolved into a static term plus ones in frequency 2ω. Hence, we
have a second reason why we should not expect this term to cancel the mechanical
momentum. Rather, we look to the term pwave,static, since this has pure frequency ω.
The term pwave,osc cancels the longitudinal momentum associated with the “figure-8”
motion, and also includes a “hidden momentum” related to the fact that the average
rest frame of an electron inside the wave is not the rest frame of the electron in the
absence of the wave, as sketched in secs. 3-4.20

The static field of the electron at the origin is, in rectangular coordinates,

Estatic =
e

r3
(xx̂ + yŷ + zẑ), (30)

where r is the distance from the origin to the point of observation. Combing this with
eq. (17) we have,

pwave,static =
e

4πcr3
{−zx̂ + xẑ}E0 cos(kz − ωt). (31)

When we integrate this over all space to find the total field momentum, the term in ẑ
vanishes as it is odd in x. Likewise, after expanding cos(kz−ωt), the terms proportional
to z cos kz vanish on integration. The remaining term is thus,

Pwave,static =
∫

dVol pwave,static (32)

= − e

4πc
x̂E0 sinωt

∫
V

z sin kz

r3

= − e

ω
x̂E0 sinωt = −Pmech,⊥,

after an elementary volume integration (that involves integration by parts twice).21

20K.T. McDonald and K. Shmakov, The Classical “Dressing” of a Free Electron in a Plane Electromagnetic
Wave; http://kirkmcd.princeton.edu/accel/dressing.pdf

21 ∫
V

z sin kz

r3
= 2π

∫ ∞

0

dr

∫ 1

−1

du u sin(kru) = 2π

∫ ∞

0

dr

[
−u cos(kru)

kr

∣∣∣∣
1

−1

+
∫ 1

−1

du
cos(kru)

kr

]
(33)

= −4π

∫ ∞

0

dr
cos(kr)

kr
+ 4π

∫ ∞

0

dr
sin(kr)
k2r2

= −4π

∫ ∞

0

dr
cos(kr)

kr
− 4π

sin(kr)
k2r

∣∣∣∣
∞

0

+ 4π

∫ ∞

0

dr
cos(kr)

kr
=

4π

k
.

sin(kr)/k2r2 − cos(kr)/kr



Princeton University 2001 Ph501 Set 12, Solution 1 14

It is noteworthy that the integration is independent of any hypothesis as to the
size of a classical electron. Indeed, the integrand of eq. (32) can be expressed as
cos θ sin(kr cos θ)/r2 via the substitution z = r cos θ. Hence, the integral over a spheri-
cal shell varies as sin(kr)/k2r2−cos(kr)/kr (see footnote 10), and significant contribu-
tions to the integral occur for radii up to one wavelength of the electromagnetic wave.
This contrasts with the self-momentum density of the electron which is formally diver-
gent; if the integration is cut off at a minimum radius (the classical electron radius),
the dominant contribution occurs within twice that radius.

The Momentum Pwave,osc

We could continue the analysis to consider the interaction field momentum Pwave,osc,
but this leads to various subtleties. For discussion, see the link at the beginning of this
solution.
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2. A circularly polarized electromagnetic wave of angular frequency ω is incident on a
free electron of charge e and rest mass m.

Taking the origin to be at the time-average position of the electron, its steady motion
in the circularly polarized wave is uniform circular motion at angular frequency ω in a
circle of radius r in the plane perpendicular to the direction of the wave. Further, the
radius vector to the electron is in line with E, and hence perpendicular to B, such that
the electron’s velocity is parallel to the magnetic field, Then, the equation of motion
is,

F = eE = γma = γmω2r = γmωv = γmωβc, (34)

eE

mωc
≡ η = γβ, η2 =

β2

1 − β2 , β2 =
η2

1 + η2
, γ2 = 1 + η2, r =

eE

γmω2
.(35)

We also note that the acceleration of the electron in this uniform circular motion is,

a =
eE

γm

(
= ωβc =

ωηc√
1 + η2

=
ωηc

γ

)
. (36)

(a) The radiated intensity in the instantaneous rest frame of the electron is given by
the Larmor formula,

dU�

dt�
=

2e2a�2

3c3
=

dU

dt
, (37)

and this intensity is a Lorentz invariant, as discussed on p. 237, Lecture 20 of the
Notes,22 and so equals dU/dt, as measured at the charge in the lab frame. In the
present case, the lab-frame acceleration a is perpendicular to the velocity v, for
which a� = γ2a, as discussed on p. 243, Lecture 20 of the Notes. Hence,

dU

dt
=

2e2γ4a2

3c3
=

2e4γ2E2

3m2c3
=

2e4E2

3m2c3
(1 + η2). (38)

(b) The leading terms in a multipole expansion of the radiated intensity according to
a fixed, distant observer are those associated the electric dipole moment p, the
magnetic dipole moment m, and the electric quadrupole (3-tensor) moment Qij.
These were considered for the present example in Prob. 7, Set 8,
http://kirkmcd.princeton.edu/examples/ph501set8.pdf, where it was noted that there
is no magnetic dipole radiation, while eq. (25) of Set 8 says,

dUE1

dt
=

2e2r2ω4

3c3
=

2e4E2

3γ2m2c3
, (39)

and eqs. (26) and (162) of Set 8 imply that,

dUE2

dt
=

8e2r4ω6

5c3
=

dUE1

dt

12r2ω2

5c2
=

dUE1

dt

12η2

5γ2
. (40)

22http://kirkmcd.princeton.edu/examples/ph501/ph501lecture20.pdf
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The multipole expansion for the radiated power can now be written as,

dU

dt
=

dUE1

dt
+

dUE2

dt
+ · · · =

2e4E2

3γ2m2c3

(
1 +

12η2

5γ2
+ · · ·

)
≈ 2e4E2

3m2c3

(
1 +

7η2

5
+ · · ·

)
,(41)

where the approximation holds for η2 � 1, which is the realm for which it suffices
to consider only the leading terms in the multipole expansion.23

As in Prob. 7, Set 8, we note that in this example the electric-dipole radiation
varies with angular frequency ω, but the electric-quadrupole radiation varies with
frequency 2ω.

23Comparison of eqs. (38) and (41) suggests that we should also consider magnetic-quadrupole radiation.
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3. We consider an elliptically polarized plane electromagnetic wave in vacuum,

Ein = (a + b) ei(kz−ωt), Bin = ẑ × Ein, (42)

where a �= b in general, while a · b = 0 = a · ẑ = b · ẑ and ω = kc.

If this wave is incident on a free electron of charge e and mass m, leading to motion
with speed v � c, where c is the speed of light in vacuum, the steady-state motion
x = x0 ei(kz−ωt) of the charge is approximately given by

mẍ = F = e
(
Ein +

v

c
× Bin

)
≈ e (a + b) ei(kz−ωt), (43)

neglecting the very small term v/c ×Bin when v � c. Then, noting that the electric-
dipole moment is p = ex, the time-average radiated intensity has the angular distri-
bution, in the electric-dipole approximation (which is valid for v � c),

〈
d2U

dt dΩ

〉
=

1

2

|p̈× n̂|2
4πc3

=
e4

8πc3m2
|(a + b) × n̂|2

=
e4

8πc3m2

(
|a× n̂|2 + |b× n̂|2 + 2 |(a× n̂) · (b× n̂)|

)

=
e4

8πc3m2

(
|a× n̂|2 + |b × n̂|2 − 2Re[(a · n̂)(b · n̂)]

)
. (44)

recalling p. 186 of Lecture 16,24 and using the vector identity that (a× c) · (b× d) =
(a · b)(c · d) − (a · d)(b · c).

The time-average incident flux of electromagnetic energy is given by the time-average
Poynting vector,

〈Sin〉 =
1

2

c

4π
Re(E ×B�) =

c

8π
Re {[(a + b) × [ẑ× (a� + b�)]}

=
c

8π
Re {(a + b) · (a� + b�) ẑ − [(a + b) · ẑ](a� + b�)}

=
c

8π

(
|a|2 + |b|2

)
. (45)

Then, the scattering cross section is, recalling p. 275 of Lecture 23,25

dσ

dΩ
=

〈d2U/dt dΩ〉
〈Sin〉 =

e4

m2c4

|a × n̂|2 + |b× n̂|2 − 2Re[(a · n̂)(b · n̂)]

|a|2 + |b|2

= r2
e

|a × n̂|2 + |b× n̂|2 − 2Re[(a · n̂)(b · n̂)]

|a|2 + |b|2 , (46)

where re = e2/mc2 is the classical electron radius.

24http://kirkmcd.princeton.edu/examples/ph501/ph501lecture16.pdf
25http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
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If the incident electromagnetic wave is linearly polarized, with b = 0, then the scat-
tering cross section is,

dσ

dΩ
= r2

e sin2 α, σ =
∫

dσ

dΩ
dΩ =

8πr2
e

3
, (47)

where α is the angle between a and n̂. This is the Thomson cross section found on
p. 276 of Lecture 23.26

If the incident electromagnetic wave is circularly polarized, then b = ±ia, and the
scattering cross section is again given by eq. (47), i.e., the Thomson cross section.

From eq. (41) above, for v � c we have η � 1 and,

dU

dt
≈ 2e4E2

3m2c3
. (48)

Then, the total cross section (for a circularly polarized incident wave) is,

σ =
dU/dt

Sin
≈ 2e4E2/3m2c3

cE2/4π
=

8πe4

3m2c4
=

8πr2
e

3
, (49)

as in eq. (47).

26http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
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4. We consider a linearly polarized plane electromagnetic wave in vacuum that is incident
on an axially symmetric polar molecular of fixed electric-dipole moment p, supposing
that the size of the molecule is small compared to the wavelength, i.e., λ � p/e, and
assuming that all directions of p are equally likely (as in a gas).

The electromagnetic fields of the incident wave can be written as,

E = E0 cos(kx− ωt) ẑ, B = −E0 cos(kx − ωt) ŷ, (50)

where ω = kc and c is the speed of light in vacuum. This wave exerts torque,

τ = p× E = p× E0 cosωt ẑ, (51)

on the molecule, taking it to be at the origin, and supposing that the molecule is small
compared to the wavelength of the incident wave. Hence, molecule rotates about the
constant vector,

â =
p × ẑ

|p × ẑ| . (52)

That is, azimuthal angle φ remains constant while polar angle θ varies, and since |p|
is constant,

dp

dt
= ṗ = θ̇ â × p, p̈ = θ̈ â× p + θ̇ â× ṗ = θ̈ â× p− θ̇

2
p ≈ θ̈ â× p, (53)

where we neglect the term in θ̇
2

as second order in the velocity of the rotating dipole.

The radiated intensity is, recalling p. 186 of Lecture 16 of the Notes,27

dU

dt
=

2 |p̈|2
3c3

≈ 2p2 θ̈
2

3c3
. (54)

Taking I to be the moment of inertia of the (axially symmetric) molecule about any
axis (such as â) perpendicular to p, and supposing that the molecule is not rotating
in the absence of the incident wave, its angular momentum is L = I θ̇ â. Then, the
torque equation of motion is, for a molecule centered on the origin,

dL

dt
= I θ̈ â = τ = p× E, θ̈ =

|p× E|
I

=
pE0 cosωt sin θ

I
. (55)

27http://kirkmcd.princeton.edu/examples/ph501/ph501lecture16.pdf
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Hence,

dU

dt
≈ 2p4E2

0 cos2 ωt sin2 θ

3c3I2
. (56)

For a collection of molecules with random orientation of p, as in a gas, the average
radiated intensity is,

〈
dU

dt

〉
≈ 2p4E2

0 cos2 ωt
〈
sin2 θ

〉
3c3I2

=
4p4E2

0 cos2 ωt

9c3I2
. (57)

The incident flux of energy is, at the origin,

S =
c

4π
E × B =

cE2

4π
x̂ =

cE2
0 cos2 ωt

4π
x̂, (58)

so the (average) scattering cross section is,

σ =
〈dU/dt〉

S
≈ 16πp4

9c4I2
. (59)

This problem was first considered by Lord Rayleigh, Phil. Mag. 35, 373 (1918),
http://kirkmcd.princeton.edu/examples/EM/rayleigh_pm_35_373_18.pdf

See also Prob. 3, p. 220 of http://kirkmcd.princeton.edu/examples/EM/landau_ctf_75.pdf
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5. Spectral Line Broadening

This is Prob. 16.12, p. 772 of http://kirkmcd.princeton.edu/examples/EM/jackson_ce3_99.pdf

A spectral “line” of central wavelength λ is always observed to have a finite width Δλ.

a) As discussed on pp. 272-275 of Lecture 23 of the Notes,28 an electron oscillating
with natural angular frequency ω is subject to damping due to the radiation reaction,
which leads to a spread of frequencies of full width at half maximum in the frequency
spectrum of Δω = Γr/2 = ω2re/3c, where Γr = 2ω2re/3c is the radiation-damping
constant, re = e2/mc2 is the classical electron radius, e and m are the charge and mass
of the electron, and c is the speed of light in vacuum.29

Then,

ω =
2πc

λ
, Δω =

2πcΔλ

λ2 , (60)

Δλ

λ
=

λΔω

2πc
=

Δω

ω
=

ωre

3c
=

2πre

3λ
≈ 2re

λ
≈ 2 · 2.8 × 10−13 cm

6 × 10−5 cm
≈ 10−8, (61)

for the sodium line with λ = 5893
◦
A, and ω ≈ 3 × 1015 s−1.

b) Doppler Broadening

If glowing sodium vapor has temperature 600K the typical velocity v̄ of the sodium
atoms is related by Mv̄2/2 = 3kT/2, where M = 23 · 1.7 × 10−24 gm is the mass of a
sodium atom (of atom mass 23) and k = 1.4 × 10−16 erg/K is Boltzmann’s constant.

From p. 215 of Lecture 18 of the Notes,30 the relativistic Doppler shift is
ω′ = γω(1 + n̂ · v/c). Hence, the distribution of frequencies ω′ emitted by the (slow)
moving sodium atoms with random directions is flat between ω(1−v/c) and ω(1+v/c),
with ΔωDoppler ≈ 2ωv/c. Then,

ΔλDoppler

λ
=

ΔωDoppler

ω
≈ 2v̄

c
≈ 2

c

√
3kT

M
≈ 2

3 × 1010

√
3 · 1.4 × 10−16 · 600

23 · 1.7 × 10−24
≈ 6 × 10−6,(62)

about 600 times that due to radiation damping.

We note that the typical velocity of the sodium atoms is v̄ ≈ 8 × 104 cm/ s (so

γ = 1/
√

1 − v̄2/c2 ≈ 1), and that the damping constant for Doppler broadening at
600K is related by,

ΓDoppler = 2Δω = 2
Δω

ω
ω ≈ 2 · ·6 × 10−63 × 1015 ≈ 4 × 1010 s−1. (63)

28http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
29On p. 273 of Lecture 15, the symbol Δω is used to denote the (very small) shift in the central frequency

of the oscillation due to radiation damping. Here, Δω is the width of the frequency spectrum.
30http://kirkmcd.princeton.edu/examples/ph501/ph501lecture18.pdf



Princeton University 2001 Ph501 Set 12, Solution 5 22

c) Collision Broadening

At atom starts glowing (becomes excited) due to a collision with another atom, which
sets its “spring” oscillation. A second collision at time Δt later, which destroys the co-
herence of the oscillation. This limits the width of the pulse of radiation, and according
to the “uncertainty” relation Δω Δt ≈ 1, the spectrum of the pulse is broadened.

Let ν be the mean frequency of collisions [#/sec]. Then,

ν = [collison cross section] · [# atoms/volume] · [mean relative velocity]. (64)

The collision cross section in sodium vapor is around 1014 cm2, and the mean relative
velocity of colliding atoms is approximately their rms velocity v̄ found is part b) above.
The no. of atoms per unit volume follow from the ideal gas law,

N

V
=

P

kT
= P [atm]

106[dyne/cm2/atm]

1.4 × 10−16 · 600 ≈ 1.1 × 1020 · P [atm], (65)

where P is the gas pressure. Then,

ν ≈ 10−14 · 1.1 × 1020 · P [atm] · 8 × 104 ≈ 1011 · P [atm]. (66)

The probability of a collision during time dt is ν dt, so the probability that no collision
occurred between t = 0 and t is e−νt. Averaging over many collisions, this means
that the intensity of the radiation at time t after the beginning of emission is I0 e−νt.
This is similar to the effect of other damping mechanisms, for which E = E0 e−Γothert

and I ∝ E2 = I0 e−2Γothert. Hence, the effective damping constant in the presence of
collisions is,

Γ =
ν

2
+ Γother. (67)

The contributions to the width of the frequency spectrum from collision broadening
and Doppler broadening are equal when,

ν

2
≈ 5 × 1010 · P [atm] = ΓDoppler ≈ 4 × 1010, P ≈ 0.8 atm. (68)

At this pressure,

Δλ

λ

∣∣∣∣∣
collisions

=
Δλ

λ

∣∣∣∣∣
Doppler

. (69)
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6. Optical Theorem

This is Prob. 9, p. 424 of kirkmcd.princeton.edu/examples/EM/panofsky-phillips.pdf

The equation of motion of an electron of charge e and mass m that is bound to atom
and subject to a weak, linearly polarized, incident plane electromagnetic wave can be
taken as,

m(ẍ + Γ0ẋ + ω2
0x) = eE = eE0Re ei(kz−ωt) x̂, (70)

where ω0 is the natural frequency of oscillation of the electron, Γ0 is the damping
constant of that oscillation, ω = kc is the angular frequency of the incident wave, and
we neglect the v × B force for a weak incident wave. Then,

x =
eE

m(ω2
0 − ω2 − iωΓ0)

, ẍ =
ω2eE

m(ω2 − ω2
0 + iωΓ0)

. (71)

The differential scattering cross section is, in the electric-dipole approximation,

dσscat

dΩ
=

d2U/dt dΩ

|S| =
|eẍ× n̂|2 /4πc3

c |E|2 /4π
=

∣∣∣∣∣ e2ω2 x̂× n̂

mc2(ω2 − ω2
0 + iωΓ0)

∣∣∣∣∣
2

≡ |f(θ)|2 , (72)

where θ is the angle between n̂ and the z-axis.

There is damping in the present model, which implies that the atom can absorb energy
as well as scatter it. On p. 281 of Lecture 23 of the Notes,31 we found that,

σtotal = 4πrec
ω2Γ0

(ω2 − ω2
0)

2 + ω2Γ2
0

. (73)

According to the optical theorem, and using eq. (72),

σtotal =
4π

k
|Imf(0)| =

4πc

ω

re ω3Γ0

(ω2 − ω2
0)

2 + ω2Γ2
0

, (74)

in agreement with eq. (73), noting that in the forward scattering direction, θ = 0 and
n̂ = ẑ.

For a free electron, ω0 = 0, but there still exists damping due to the radiation reaction,
Γ0 → Γr = 2ω3re/3c, the radiation-damping constant at angular frequency ω. The
total cross section is the same as the total scattering cross section, which follows from
eq. (72) as,32

σtotal =
∫ dσscat

dΩ
dΩ =

8πr2
e

3

ω4

ω4 + ω2Γ2
r

= 8πcre
ω2Γr

ω4 + ω2Γ2
r

, (75)

in agreement with eq. (72) for ω0 = 0 and Γ0 → Γr.

31http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
32In a spherical coordinate system with x̂ as the polar axis, and α as the polar angle of n̂, the differential

cross section varies as sin2 α and quickly integrates to give eq. (75).
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7. Levinger-Bethe Sum Rule

This is Prob. 7, p. 424 of kirkmcd.princeton.edu/examples/EM/panofsky-phillips.pdf

On p. 282 of Lecture 23,33 we found that for a charge e of mass m bound to an “atom”
by an “oscillator” with a natural angular frequency ω0 and associated damping constant
Γ0, the total cross section obeys a “sum rule”,

∫
σtotal dω =

∫ ∞

0

8πr2
e

3

Γ0

Γr

ω2ω2
0

(ω2 − ω2
0)

2 + ω2Γ2
0

dω =
2π2e2

mc
. (76)

Expressing this in terms of the energy E = h̄ω of quanta of the incident electromagnetic
radiation,

∫
σtotal dE =

∫
σtotal d(h̄ω) =

2π2e2h̄

mc
= 2π2 e2

h̄c

(
h̄

mc

)2

mc2 = 2π2αλ2
mmc2, (77)

where α = e2/h̄c = 1/137 for e as the charge of the electron or proton, and λm = h̄/mc
is the reduced Compton wavelength for a particle of mass m.

We now consider three models for the response of a nucleus with Z protons and N
neutrons, each of mass M ≈ 940 MeV/c2. In all of these, e → Ze and the α in eq. (77)
goes to Z2α. The reduced Compton wavelength of the proton is λp ≈ 2 × 10−14 cm.

(a) The entire nucleus moves as a whole.34

Then, m → AM where A = N + Z, and,

∫
σtotal dE = 2π2Z2α

λ2
M

A2
AMc2 =

Z2

A
2π2αλ2

MMc2 =
Z2

A
5.4 × 10−26 MeV · cm2.(78)

For copper, with Z = 29 and A = 63, Z2/A = 13.3 and,

∫
σtotal dE = 0.78 ××10−24 MeV · cm2. (79)

(b) The neutrons in the nucleus remain fixed while only the protons move about.35

Then, m → ZM , and,

∫
σtotal dE = 2π2Z2α

λ2
M

Z2
ZMc2 = Z · 2π2αλ2

MMc2 = 1.6 ××10−24 MeV · cm2.(80)

33http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
34Between eqs. (4) and (5) of the paper of Levinger and Bethe, it was claimed that if the nucleus moves

as a whole, photons cannot be absorbed. This seems wrong, as the reaction γ + Cu63 → Cu62 + n involves
absorption of a photon, and could proceed with Cu63 and Cu62 as entities without substructure.

35In the “liquid drop” model of nuclei advocated by Bohr,
http://kirkmcd.princeton.edu/examples/nuclear/bohr_pr_55_418_39.pdf
http://kirkmcd.princeton.edu/examples/nuclear/bohr_pr_56_426_39.pdf, the nucleons have strong
interactions, but can move freely with respect to one another, as in a liquid. This model seems consistent
with scenario (b).
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(c) The protons move as a group, and the neutrons move as a separate group, which
was claimed by Bethe36 to lead to,

∫
σtotal dE = 2π2 NZ

A
αλ2

MMc2 = 0.85 ××10−24 MeV · cm2, (81)

with NZ/A = 15.7 for copper.

The experimental data37 indicate that,

∫
σtotal dE ≈ 1.5 × 10−24 MeV · cm2. (82)

which seems to favor model (b), that the protons move under the influence of the
incident electromagnetic wave while the neutrons are unaffected.

36J.S. Levinger and H.A. Bethe, Dipole Transitions in the Nuclear Photo-Effect, Phys. Rev. 78, 115
(1950), http://kirkmcd.princeton.edu/examples/EP/levinger_pr_78_115_50.pdf

37G.C. Baldwin and G.S. Klaiber, X-Ray Yield Curves for γ-n Reactions, Phys. Rev. 73, 1156 (1948),
http://kirkmcd.princeton.edu/examples/EP/baldwin_pr_73_1156_48.pdf. The total cross section is
dominated by the reaction γ + Cu63 → Cu62 + n, which exhibits a “resonance” for incident gamma-ray
energy around 25 MeV.
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8. This is Prob. 2, p. 423 of kirkmcd.princeton.edu/examples/EM/panofsky-phillips.pdf

According to the model of the index of refraction reviewed on p. 282 of Lecture 23 of
the Notes,38 in a dilute gas of free electrons with number density N ,

n2 = 1 − 4πNe2

mω2
= 1 − ω2

p

ω2
, (83)

where the plasma frequency of the electron gas is,

ωp =

√
4πNe2

m
, h̄ωp = mc2

√
4πNe2h̄2

m3c4
= mc2

√√√√4πN
e2

h̄c

(
h̄

mc

)3

= mc2
√

4πNαλ3
C ,(84)

with α = e2/h̄c = 1/137 and λC = h̄/mc = 3.87 × 10−11 cm is the reduced Compton
wavelength of an electron.

For N = 1/cm2, the plasma frequency is,

ωp =

√
(4.8 × 1010)2

9.1 × 10−28
= 1.6 × 1024 s−1, (85)

and the corresponding photon energy is,

h̄ωp = 5.11 × 105 eV

√
4π

137
(3.87 × 10−11)3 = 3.7 × 10−12 eV. (86)

In this model, the index of refraction is real for ω > ωp, in which case these electro-
magnetic waves propagate with “no attenuation”.

However, the electromagnetic waves scatter off the free electrons, and the scattered
photons are effectively lost to an observer of, say, a distant star.

For photon energy small compared to the mass of an electron, the scattering cross
section is σThomson = 8πr2

e/3, where re = e2/mc2 is the classical electron radius. We
recall that the concept of the scattering cross section is related to the probability that
a scattering occurs along a path of length l through the scattering centers of number
density N according to,39

Pscattering = Nσl. (87)

Hence, the probability that no scatters occured over this distance is,

Pno scattering = e−Nσl, (88)

and the attenuation length L due to scattering is therefore,

L =
1

Nσ
. (89)

For N = 1/cm3 and σThomson = 8πr2
e/3 = 6.6 × 10−25 cm2, the attenuation length is

L = 1.5 × 1024 cm ≈ 1.5 × 106 lightyears, about half the distance from Earth to the
Andromeda galaxy.

38http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
39See, for example, p. 12 of http://kirkmcd.princeton.edu/examples/ph529/ph529l1.pdf
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9. Gravitational Redshift

This problem follows A. Einstein, Ann. d. Phys. 35, 898 (1911),
http://kirkmcd.princeton.edu/examples/GR/einstein_ap_35_898_11.pdf

http://kirkmcd.princeton.edu/examples/GR/einstein_ap_35_898_11_english2.pdf

We consider an accelerated frame A (in zero gravity) that coincides with inertial frame
I′ at time t = 0 = t′ and has acceleration g along the z′ axis.40

At time t = 0 = t′ light is emitted with frequency ν0 from a source at rest at the origin
in frame A (and so is also considered to have frequency ν ′ = ν0 in frame I′). This
light is detected by an observer at rest at time (0, 0, z1) at time t1in frame A where it
is found to have frequency ν1. To a first approximation, t1 = z1/c ≈ t′1, where t′1 is
the time of observation of the light according to frame I′, when frame A has velocity
v′

1 = gt′1 ≈ gz1/c with respect to frame I′.41

We now consider a second frame I′′ which is the instantaneous inertial frame that
coincides with frame A at time t′1. Then, frame I′′ has velocity v′

1 with respect to frame
I′.

Recalling the discussion of the Doppler effect on p. 215 of Lecture 18 of the Notes,42

an observer in frame I′′ finds the light to have frequency,

ν ′′
1 = ν ′ 1 + n̂ · v′

1/c√
1 − v′2

1 /c2
≈ ν0(1 − v′

1/c) ≈
ν0

1 + v′
1/c

≈ ν0

1 + gz1/c2
. (91)

We argue that ν ′′
1 in the is the same as the frequency ν1 observed in the accelerated

frame A, as frame I′′ is the instantaneous inertial frame of the observer in frame A.

Finally, we invoke the equivalence principle to identify

ν ′′
1 = ν1 ≈ ν0

1 + gz1/c2
≈ ν0

1 + Φ(z1)/c2
, (92)

as the (redshifted) frequency observed in a uniform gravitational field at height z1

above the point where the light was emitted with frequency ν0.

40We ignore the distinction between (discussed on p. 268 of Lecture 22,
http://kirkmcd.princeton.edu/examples/ph501/ph501lecture22.pdf) between uniform acceleration
with repect to frame A and that with respect to frame I′, whic distinction was not yet well understood
in 1911.

41We could also note that (with respect to frame I′) the origin of frame A moved distance gt′21 /2 during
time t′1, while the light traveled distance ct′1. The distance between these two is,

Δz′ = ct′1 −
gt′21
2

, t′1 =
c

g
±
√

c2

g2
− 2Δz′

g
≈ Δz′

c
. (90)

Then, to a first approximation, Δz′ = z1 and v′1 = gt′1 = gz1/c.
42http://kirkmcd.princeton.edu/examples/ph501/ph501lecture18.pdf


