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1 Problem

Consider the decay of the neutral π meson of (total) energy Eπ to two photons, π0 → γγ.

1. If the two photons are observed in the laboratory with energies E1 and E2 and angle
α between them, what is their invariant mass?

2. If the decay of the π0 is isotropic in its rest frame, what is the laboratory distribution
dN/dEγ of the energies of the decay photons?

3. What is the minimum opening angle, αmin, between the two photons in the lab frame?

4. What is the distribution dN/dα of the opening angle between the two photons in the
lab frame?

5. If the two photons are detected at positions x1 and x2 in a plane perpendicular to the
direction of the π0 at a distance D, what is the projected impact point x of the π0 had
it not decayed? You may assume that |x1 − x2| � D, which is true for most, but not
quite all, decays if Eπ/mπ � 1.

6. What is the maximum laboratory angle θmax between the direction of a photon from
π0 decay and the direction of the π0, supposing the photon is observed to have energy
Eγ � mπ?

7. Suppose π0’s are produced in some scattering process with distribution Nπ(Eπ, θπ),
where angle θπ is measured with respect to the beam direction. That is, Nπ(Eπ, θπ) dEπ dΩπ

is the number of π0’s in energy interval dEπ centered about energy Eπ that point to-
wards solid angle dΩπ centered about angles (θπ, φπ). A detector is placed at angle θ
to the beam and records the energy spectrum Nγ(Eγ, θ) of the photons that strike it.
Show that the π0 spectrum can be related to the photon spectrum by,

Nπ(Eπ, θ) = −Eπ

2

dNγ(Eγ = Eπ, θ)

dEγ
, (1)

if Eπ � mπ.

2 Solution

1. Since a (real) photon has no mass, its energy and momentum are the same: Eγ = Pγ .
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In this part we suppose that photon 1 propagates along the +z axis, so its energy-
momentum 4-vector can be written (in units where c = 1) as,

q1 = (E, Px, Py, Pz) = (E1, 0, 0, E1). (2)

We can define photon 2 to be moving in the x-z plane, so its 4-vector is ,

q2 = (E2, E1 sinα, , 0, E1 cosα). (3)

The invariant mass of the two photons is related by,

m2 = (q1 + q2)
2 = q2

1 + q2
2 + 2q1 · q2 = 0 + 0 + 2E1E2(1 − cosα)

= 4E1E2 sin2 α/2. (4)

If we had defined the π0 to propagate along the +z axis, we could still define the decay
plane to be the x-z plane and write,

q1 = (E1, E1 sin θ1, 0, E1 cos θ1), q2 = (E2,−E2 sin θ2, 0, E1 cos θ2), (5)

so that,
m2 = (q1 + q2)

2 = 2E1E2(1 − cos(θ1 + θ2)) = 4E1E2 sin2 α/2, (6)

where the opening angle is α = θ1 + θ2.

2. In this part we suppose the π0 propagates along the +z axis, and we define θ� as the
angle of photon 1 to the z axis in the rest frame of the π0.

The decay is isotropic in the rest frame, so the distribution is flat as a function of
cos θ�. We write,

dN

d cos θ� =
1

2
, (7)

normalized to unity over the interval −1 ≤ cos θ� ≤ 1. The desired distribution of
photon energies can be related to this via,

dN

dEγ
=

dN

d cos θ�

d cos θ�

dEγ
=

1

2

d cos θ�

dEγ
. (8)

To relate Eγ to cos θ�, we examine the transformation between the lab frame and the
rest frame of the π0, for which the boost is described by the Lorentz factors γ = Eπ/mπ

and β = vπ/c = Pπc/Eπ (although we use units where c = 1).

This procedure is useful for any two-body decay, a → b + c, of a spin-0 particle a.

We consider the rest frame of particle a, for which the boost is described by the Lorentz
factors γ = Ea/ma and β = va/c = Pac/Ea (although we use units where c = 1).

Energy-momentum conservation in the decay can be expressed as,

Ea,μ = Eb,μ + Ec,μ. (9)
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To emphasize the details of particle b, we isolate the energy-momentum 4-vector of
particle c, whose square is m2

c,

Ec,μ = Ea,μ − Eb,μ, (10)

m2
c = E2

c,μ = (Ea,μ − Eb,μ)2 = m2
a + m2

b − 2Ea,μE
μ
b (11)

In the rest frame of particle a, labeled by superscript �, E�
a,μ = (ma, 0) while E�

b,μ =
(E�

b ,P
�
b), so Ea,μE

μ
b = maE

�
b , and,

E�
b =

m2
a + m2

b − m2
c

2ma
, P �

b =
√

E�
b − m2

b (= P �
c ) . (12)

The lab-frame energy of particle b is given by,

Eb = γE�
b + γβP �

b,z = γ(E�
b + βP �

b cos θ�). (13)

Then,
dEb

d cos θ� = γβP �
b =

PaP
�
b

ma
, (14)

and the energy distribution follows from eq. (8) as,

dN

dEb

=
dN

d cos θ�

d cos θ�

dEb

=
1

2

d cos θ�

dEb

. =
1

2γβP �
b

=
ma

2PaP
�
b

. (15)

The distribution is flat, with limiting values of γ(E�
b ± P �

b )/2, according to eq. (13).

For the decay π0 → γγ, we have ma = mπ0, mb = mc = 0, E�
γ = P �

γ = mπ0/2, and
since particles b and c are both photons,

dN

dEγ
= 2

dN

dEb
=

mπ0

Pπ0P �
γ

=
2

Pπ0

, (16)

with decay photons of energies 0 ≤ Eγ ≤ Eπ0.1

3. Since the two decay products have equal mass (zero), the minimum decay angle in the
lab occurs at either cos θ� = 1 or 0. If cos θ� = 1, one of the photons goes forward, and
the other goes backwards. Since the mass of the photon is zero, its backwards velocity
is c, and the boost of the pion to the lab frame cannot overcome this. The opening
angle between the two photons is then π, a maximum rather than a minimum. (If
the decay products have mass, it is possible that the velocity of the backward going
particles is less than that of the parent, and both particles go forward in the lab, with
minimum opening angle of zero.)

We conclude that the minimum opening angle αmin occurs for the symmetric decay,
cos θ� = 0. In this case, the transverse momentum of the photons is mπ/2, both in lab

1For the decay π+ → μ+νμ with mπ+ = 139.6 MeV/c2, mμ = 105.7 MeV/c2 and mν ≈ 0, we have
E�

ν (≈ P �
ν = P �

μ) = 29.8 MeV ≈ 0.21mπ+ , E�
μ = 109.8 MeV ≈ 0.79mπ+ , so the laboratory distributions of

the neutrino and muons energies are flat with 0 < Eν < 0.42Eπ and 0.58Eπ < Eμ < Eπ .

3



frame and the π0 rest frame. In the lab frame, a photon” total momentum equals its
total energy, which is just Eπ/2 for the symmetric decay. Hence,

sin
αmin

2
=

mπ

Eπ
=

1

γ
. (17)

4. The distribution of decays in opening angle α can be written as,

dN

dα
=

dN

d cos θ�

d cos θ�

dα
=

1

2

d cos θ�

dα
, (18)

recalling eq. (7).

One way to relate α = θ1 + θ2 and cos θ� is to recall eq. (4) and that from eq. (13) the
two photon energies are E1,2 = γ(mπ/2)(1 ± β cos θ�),

sin2 α/2 =
m2

π

4E1E2
=

1

γ2(1 − β2 cos2 θ�)
, (19)

or,

cos θ� =
1

β

√
1 − 1

γ2 sin2 α/2
=

√
γ2 sin2 α/2 − 1

γβ sinα/2
. (20)

Taking the derivative, we use eq. (18) to find,

dN

dα
=

1

4γβ

cosα/2

sin2 α/2

1√
γ2 sin2 α/2 − 1

. (21)

This distribution is peaked at αmin where sinαmin/2 = 1/γ, and vanishes at αmax = π.

A subtle issue is revealed on integration of eq. (21), letting x = γ sin α/2, so that,

∫ π

αmin

dN

dα
dα =

1

2β

∫ γ

1

dx

x2
√

x2 − 1
=

1

2β

√
γ2 − 1

γ
=

1

2
, (22)

using Dwight 282.01. The integral is only 1/2, rather than 1, because, as the decay
angle θ� in the pion rest frame varies from 0 to π, the lab-frame opening angle varies
from αrm at θ� = 0 up to π (for θ� = π/2) and then back down to αmin at θ� = π.
That is, θ� is a double-valued function of α, so integration (once) over α includes only
half of the total decays.

If it is desired that the distribution dN/dα be normalized to unity, eq. (21) should be
multiplied by 2.

5. The transverse momenta of the two decay photons (with respect to the lab direction
of the π0) are equal and opposite. When the observed separation of the two photons
obeys |x1 − x2| � D, the angles of the photons with respect to the direction of the π0

are small, and the transverse momenta can be written as,

Pi
xi − x

D
= Ei

xi − x

D
, (23)
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Hence,
E1(x1 − x) = E2(x− x2), (24)

and the virtual impact point of the π0 is,

x =
x1E1 + x2E2

E1 + E2
=

x1E1 + x2E2

Eπ
. (25)

6. The transverse momentum of a decay photon with respect to the direction of the π0

is,
P⊥ = Pγ sin θ = Eγ sin θ, (26)

where θ is the angle between the direction of the photon and the π0. This quantity is
invariant with respect to the boost to the rest frame of the π0, so,

P⊥ = P �
⊥ = P �

γ sin θ� =
mπ

2
sin θ�. (27)

Comparing eqs. (26) and (27) we see that,

sin θ =
mπ

2Eγ
sin θ�. (28)

So long as θ ≤ π/2, we find that,

sin θmax =
mπ

2Eγ
, (29)

and for Eγ � mπ,

θmax ≈ mπ

2Eγ
. (30)

However, there are cases when θ > π/2, for which P‖ = Pγ cos θ < 0. Recalling the
boost formalism of item 2 above,

P‖ = γπ(P �
‖ + βπE�) =

γπmπ

2
(cos θ� + βπ), (31)

we see that P‖ = 0 and θ = π/2 when cos θ� = −βπ. In this case,

Eγ = P⊥ =
mπ

2

√
1 − β2

π =
mπ

2γπ

=
m2

π

2Eπ

<
mπ

2
, (32)

since Eπ ≥ mπ. Thus, the result (29) holds for Eγ > mπ/2.

7. We will use information about the photon spectrum for energies Eγ � mπ, so the
maximum angle between the photon and its parent π0 is negligibly small, according to
the result of part 6. Then, the probability that a photon hits a detector of a fixed solid
angle is the same as the probability that its parent π0 would have hit the detector,
had the π0 not decayed. That is, we can ignore any possible complication due to solid
angle transformation between the π0 and the photon.
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According to eq. (16), the number Nγ(Eγ) of photons that appear in energy interval
dEγ due to the decay of a single π0 is,

Nγ =
2

Pπ
≈ 2

Eπ
, (33)

where the factor of 2 occurs because two photon are produced in each decay, and the
approximation holds when Eπ � mπ so that it certainly applies when Eγ � mπ.

If π0’s are produced with an energy spectrum Nπ(Eπ, θπ), then the energy spectrum
of the decay photons observed in a detector centered on θπ is related by,

Nγ(Eγ, θγ = θπ) =

∫ ∞

Eγ

2

Eπ
Nπ(Eπ, θπ) dEπ. (34)

Taking the derivative, we find,

Nπ(Eπ, θπ) = −Eπ

2

dNγ(Eγ = Eπ, θγ = θπ)

dEγ
. (35)

A more detailed discussion of this problem has been given by R.M. Sternheimer, Energy
Distribution of γ Rays from π0 Decay, Phys. Rev. 99, 277 (1955),
http://kirkmcd.princeton.edu/examples/detectors/sternheimer_pr_99_277_55.pdf

For a discussion of the slightly more complicated case of π± decay, see
http://kirkmcd.princeton.edu/examples/offaxisbeam.pdf
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