
Wire Polarizers
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(September 21, 2011; updated August 24, 2012)

1 Problem

In 1861 Fizeau studied transmission of polarized light through a screen with subwavelength
scratches [1], and in 1888 Hertz performed similar experiments with radio waves and a grid of
wires,1 which transmitted polarized electromagnetic waves, of wavelength λ large compared
to the wire spacing d, only if the electric field of the wave was perpendicular to the direction
of the wires. Explain these observations.

Discuss also the case of plane conducting sheets with slits, and the applications to this
of Babinet’s principle.

2 Solution

This solution follows methods perhaps first given by Lord Rayleigh [3, 4] for “wires” being
formed by cutting slits in a plane conducting sheet. The case of circular wires was first
considered by J.J. Thomson in secs. 359-360 of [5]. A unified discussion of both kinds of
“wire” polarizers was given by H. Lamb [6]. A more general theory of the interaction of
electromagnetic waves with gratings was given by Rayleigh [9].

Because the effect of the wire polarizer on waves with polarization perpendicular to the
wires is small, it has become common so suppose that there is no effect at all in this case
based on the approximation (perhaps first made following eq. (1) of [7]) that the incident
wave cannot excite currents perpendicular to small wires (see also p. 327 of [8]). We do
not make that approximation here, but rather consider this example as a boundary-value
problem, following [3, 5, 6].

We restrict our discussion to the case of wire spacing d < λ/2 and waves of normal
incidence, such that the reflected and transmitted waves can only be along the direction
of incidence.2 We will consider only perfectly conducting “wires”, either circular or planar
strips of radius/half width a (and hence aperture b = d − a between adjacent wires). The
centers of the wires lie in the plane x = 0 with their axes parallel to the z-axis at positions
y = nd for any integer n.3

The incident wave propagates in the +x-direction with electric and magnetic fields (in
Gaussian units),

E = (E0y ŷ + E0z ẑ) ei(kx−ωt), B = (−E0z ŷ + E0y ẑ) ei(kx−ωt), (1)

1The waves in Hertz’ experiment [2] had λ ≈ 50 cm, the wire spacing was d = 3 cm and the wire diameter
was 2a = 1 mm.

2We later make the further restriction that d � λ.
3This choice of axes anticipates later use of complex functions of the variable x + iy.
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where ω = kc supposing that the medium outside the wires is vacuum, in which c is the
speed of light. The total fields cannot depend on z, so each scalar component ψ thereof
obeys that scalar Helmholtz equation,

∂2ψ

∂x2
+
∂2ψ

∂y2
+ k2ψ = 0. (2)

The solutions are sums of terms of the form ψ(x, y, t) = X(x)Y (z) e−iωt where the periodicity
of the wires and their symmetry about the plane y = 0 indicates that the Y functions have
the form cos 2nπy/d for integer n ≥ 0. Then, the X functions are exponential, eiknx, where to
satisfy the Helmholtz equation (2), k0 = ±k and k2

n = k2−(2nπ/d)2 < 0 since d < λ/2 = π/k.
Writing kn = ±iln for n > 0, we have that,

l2n =
4n2π2

d2
− k2 (n > 0). (3)

That is, the functions ψn correspond to evanescent waves for n > 0, which die out at large
|x|.

For x < 0 the (incident plus reflected) wave has the form,

ψ(x < 0) =

[
ψ0 e

ikx + A0 e
−ikx +

∞∑
n=1

An e
lnx cos

2nπy

d

]
e−iωt, (4)

and for x > 0 the (transmitted) wave has the form,

ψ(x > 0) =

[
B0 e

ikz +
∞∑

n=1

Bn e
−lnx cos

2nπy

d

]
e−iωt. (5)

The Fourier coefficients are to be determined by the requirements that ψ and ∂ψ/∂x be
continuous at x = 0, and by conditions at the surface of the wires, namely that the tangential
component of the electric field and the normal component of the magnetic field vanish at
the surface of a perfect conductor.

We now make the further restriction that the wire separation d is small compared to the
wavelength λ. In this case,

ln ≈ 2nπ

d
(n > 0, d� λ). (6)

Even when d = λ/2 the approximation (6) is not bad. The surface of the wires has |x| � λ,
so the component ψ near the wires has the approximate form,

ψ(x < 0) eiωt ≈ ψ0 + A0 + ik(ψ0 − A0)x+
∞∑

n=1

An e
2nπx/d cos

2nπy

d
, (7)

ψ(x > 0) eiωt ≈ B0(1 + ikx) +

∞∑
n=1

Bn e
−2nπx/d cos

2nπy

d
. (8)
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Close to the wire plane we see that(
∂2

∂x2
+

∂2

∂y2

)
ψ eiωt ≈ 0, (9)

so that ψ(|x| � λ) eiωt can be a solution to a two-dimensional electrostatics problem, as
noted by J.J. Thomson [5].

2.1 Circular Wires

Following sec. 103 of [10], we consider the 2-dimensional function u(x, y) to be the real part
of a function w(z) of the complex variable z = x+ iy,

w = u+ iv = ln
(
eπz/d − e−πz/d

)
= ln

[
eπz/d

(
1 − e−2πz/d

)]
=
πz

d
+ ln

(
1 − e−2πz/d

)
=

πz

d
−

∞∑
n=1

e−2nπz/d

n
, (10)

where the series expansion holds for 0 ≤ x < 1. The real part of w is

u(0 ≤ x < 1) =
πx

d
−

∞∑
n=1

e−2nπx/d

n
cos

2nπy

d
, (11)

which has the form of eq. (8). To verify that u of eq. (11) is (approximately) constant on
small circles about (x, y) = (0, nd) it is helpful to write,

w = ln
(
r eiθ

)
= ln r + iθ =

1

2
ln r2 + iθ =

1

2
ln[(eπz/d − e−πz/d)(eπz�/d − e−πz�/d)] + iθ

=
1

2
ln(eπ(z+z�)/d + e−π(z+z�)/d − eπ(z−z�)/d − e−π(z−z�)/d) + iθ

=
1

2
ln

[
2

(
cosh

2πx

d
− cos

2πy

d

)]
+ iθ (12)

such that,

u =
1

2
ln

[
2

(
cosh

2πx

d
− cos

2πy

d

)]
≈ 1

2
ln

[
4π2

d2

(
x2 + (y − nd)2

)]
, (13)

where the approximation holds for small x and y − nd. As the thickness of the wires in y
approaches d the contours of constant u become elongated in x, so the solution applies to
appropriately shaped noncircular wires.

Equation (13) shows that u is an even function of x (and y), and hence for negative x
eq. (11) becomes,

u(−1 < x ≤ 0) = −πx
d

−
∞∑

n=1

e2nπx/d

n
cos

2nπy

d
, (14)

which has the form of eq. (7).
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2.1.1 Electric Field Polarized Parallel to the Wires

In this case we take ψ‖ = Ez, and the condition is that ψ‖ = 0 on the surface of each
(circular) wire of radius a.

The forms (11) and (14) suggest that we set An = Bn = A1/n to write eqs. (7)-(8) as,

ψ‖(x < 0) eiωt ≈ ψ0 + A0 + ik(ψ0 − A0)x− A1

(
u+

πx

d

)
, (15)

ψ‖(x > 0) eiωt ≈ B0(1 + ikx) −A1

(
u− πx

d

)
. (16)

The function ψ‖ is of the form shown in plate XII of [10].

Two condition on the remaining unknowns A0, A1 and B0 are that ψ‖ and ∂ψ‖/∂x be
continuous at x = 0, which tells us that,

B0 = ψ0 + A0, A1 = − ikd
π
A0. (17)

Finally, we require that ψ‖ = Ez vanish at the surface of the wires, and in particular at
(x, y) = (0, a), which implies that, recalling eq. (13),

A0

ψ0

= − 1

1 + ikd
2π

ln
[
2
(
1 − cos 2πa

d

)] ≡ − 1

1 + iC‖kd
,

B0

ψ0

=
iC‖kd

1 + iC‖kd
(18)

where,

C‖ =
1

2π
ln

[
2

(
1 − cos

2πa

d

)]
≈ 1

π
ln

2πa

d
, (19)
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and the approximation holds for wire radius a small compared to the spacing d.
The coefficients of reflected and transmitted wave intensities are,

R‖ =

∣∣∣∣A0

ψ0

∣∣∣∣
2

=
1

1 + C2
‖k

2d2
, T‖ =

∣∣∣∣B0

ψ0

∣∣∣∣
2

=
C2

‖k
2d2

1 + C2
‖k

2d2
. (20)

For reasonable values of the ratio a/d the quantity C‖kd is very small when d� λ, and the
wave with electric field polarized parallel to the wires is almost completely reflected.

However, there are some oddities in the result (20). First, if a/d is extremely small,
∣∣C‖

∣∣
becomes large and the wave is almost completely transmitted. To be in this regime we need
ln d/2πa >∼ d/λ, i.e., a <∼ e−d/λd/2π. For d = λ/15 = 3 cm as in the original experiments

of Hertz [2] this implies a <∼ 10−8d ≈ 10
◦
A. If Hertz had used carbon nanotube rather than

copper wires his experiment would not have worked well.
Also, if a = d/6 then C‖ is infinite and the transmission coefficient is 1. This corresponds

to the case of the wire surfaces following the curves in the figure on the previous page that
extend to x = ∞, where the (infinitely elongated) “wires” touch. All the wave energy
propagates beyond the plane x = 0, although we cannot say that the energy is transmitted
beyond the “wires”.

For use in sec. 2.1.2, we note that the surfaces of the infinitely elongated wires have
ψ‖ = ∞ and minimum x < 0 such that cosh(2πx/d) = 2, i.e., xmin = −0.21d.

The case of circular wires with radius a <∼ d/2 is not well treated by the methods used
here.

2.1.2 Electric Field Polarized Perpendicular to the Wires

In this case the incident electric field is in the y direction (and the incident magnetic field
is in the z direction). The electric field Ey in the plane x = 0 can be nonzero, so if we took
ψ⊥ = Ey the analysis of sec. 2.1.1 would fail at eq. (18). Instead, we take ψ⊥ = Bz.

The condition that the tangential component of the electric field vanish at (and just
outside) the surface of the wire also means that according to the fourth Maxwell equation,
the tangential component of ∇×B also vanishes just outside the surface. Thus for the wire
centered on y = 0, the condition at the surface of the wire (x, y) = (0, a) is that,

∂Bz(0, a)

∂y
=

1

c

∂Ex(0, a)

∂t
= 0. (21)

However, this condition is trivially satisfied by the forms (15)-(16). Instead, we consider the
point (x, y) = (−a, 0) on the surface of the wire (if the wire is elongated in x we take −a to
be its minimum x coordinate), where Ey = 0 and the condition becomes,

0 =
1

c

∂Ey(−a, 0)
∂t

=
∂Bz(−a, 0)

∂x
. (22)

If we follow the procedure of sec. 2.1.1 then eq. (15), together with eqs. (13) and (17), only
satisfy the condition (22) for ψ0 = 0. To work around this difficulty, Lamb [6] noted that
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the derivatives of eqs. (11) and (14) with respect to x are,

∂u(0 ≤ x < 1)

∂x
=

π

d
+

2π

d

∞∑
n=1

e−2nπx/d cos
2nπy

d
, (23)

∂u(−1 < x ≤ 0)

∂x
= −π

d
− 2π

d

∞∑
n=1

e2nπx/d cos
2nπy

d
. (24)

A second trick of Lamb is to take An = A1 = −Bn, such that eqs. (7)-(8) can be cast in the
forms,

ψ⊥(x < 0) eiωt ≈ ψ0 + A0 + ik(ψ0 − A0)x−A1

(
d

2π

∂u

∂x
+

1

2

)
, (25)

ψ⊥(x > 0) eiωt ≈ B0(1 + ikx) − A1

(
d

2π

∂u

∂x
− 1

2

)
. (26)

Continuity of ψ⊥ and ∂⊥ψ/∂x at x = 0 tell us that,

B0 = ψ0 + A0 −A1 = ψ0 −A0, and so A1 = 2A0. (27)

Finally, noting that,

∂2ψ⊥(−a, 0)
∂x2

= − 2π2

d2(cosh 2πa
d

− 1)
≡ − 1

D2
, (28)

the condition (22) yields,

A0

ψ0

=
iC⊥kd

1 + iC⊥kd
,

B0

ψ0

=
1

1 + iC⊥kd
, (29)

where,

C⊥ =
πD2

d2
=

cosh 2πa
d

− 1

2π
≈ πa2

d2
, (30)

and the approximation holds when a� d.
The coefficients of reflected and transmitted wave intensities are,

R⊥ =

∣∣∣∣A0

ψ0

∣∣∣∣
2

=
C2

⊥k
2d2

1 + C2
⊥k2d2

, T⊥ =

∣∣∣∣B0

ψ0

∣∣∣∣
2

=
1

1 + C2
⊥k2d2

. (31)

When the wire radius a is small compared to the spacing d, the reflected wave is very small
and essentially all wave is transmitted, for the case of electric field polarized perpendicular
to the wires.

The maximum value of a is 0.21d, corresponding to infinitely elongated “wires”, as con-
sidered at the end of sec. 2.1.1. In this case cosh(2πa/d) = 2 and C⊥ = 1/2π. Even here the
reflected intensity is very small.
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2.1.3 Surface Charges and Currents

The analysis above involved matching fields at boundaries, with no mention of the charges
or currents on the surface of the wires. It has become popular to suppose it is obvious what
these distributions are, and that the reflected and transmitted waves can readily be deduced
therefrom. However, it seems to this author that only after the fields are known can the
charge and current distributions be deduced, as done below when a � d such that the above
forms hold for circular wires.

We use cylindrical coordinates (r, θ, z). The surface charge and current densities σ and
K on the wires of radius a are given by,

σ(θ) =
Er(a, θ)

4π
=

i

4πak

∂Bz(a, θ)

∂θ
, K(θ) =

c

4π
r̂×B(a, θ) = − ic

4πk
r̂×(∇×E(a, θ)). (32)

When the electric field is polarized parallel to the wires, E = Ez ẑ and,

σ‖ = 0, K‖,z =
ic

4πk

∂Ez(a, θ)

∂r
, (33)

where Ez near the wires follows from eqs. (13)-(19),

Ez

E0z
eiωt ≈ 1 + ikr cos θ − 1

1 + iC‖kd

(
1 +

ikd

π
ln

2πr

d

)
, (34)

for a � d� λ, with C‖ ≈ (1/π) ln 2πa/d. Hence, the surface current is,

K‖,z ≈ c

4π
E0z

(
d

πa

1

1 + iC‖kd
− cos θ

)
e−iωt. (35)

So long as a/d is not extraordinarily small, the factor
∣∣C‖kd

∣∣ is small and,

K‖,z ≈ c

4π
E0z

d

πa
e−iωt. (36)

This current exists only on the wires, of circumference 2πa, and which occupy the fraction
2a/d of the plane x = 0. Hence, the current (36) is equivalent to a uniform sheet of current
2cE0z/4π over that entire plane, which is exactly the current that would exist on a conducting
mirror at x = 0.

When the electric field is polarized perpendicular to the wires, the magnetic field is
parallel to them, and,

σ⊥ =
i

4πak

∂Bz(a, θ)

∂θ
, K⊥,θ = − c

4π
Bz(a, θ), (37)

where Bz at r = a follows from eqs. (25)-(30),

Bz

E0y
eiωt ≈ 1 + ika cos θ − iC⊥kd

1 + iC⊥kd

(
d2

π2a2
+ ika cos θ

)

≈ 1 − kd

π
+ ika cos θ, (38)
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for a � d� λ, with C⊥ ≈ πa2/d2. Hence, the surface charge and current densities are,

σ⊥ ≈ 1

4π
E0y sin θ e−iωt, K⊥,θ ≈ − c

4π
E0y

(
1 − kd

π
+ ika cos θ

)
e−iωt, (39)

which obey the continuity equation,

∇ · K⊥ =
1

a

∂K⊥,θ

∂θ
= −∂σ⊥

∂t
= ikc σ⊥. (40)

In sum, when the electric field is polarized perpendicular to the wires the currents are
roughly those expected on a mirror (2cE/4π), and the reflection is small because these
currents occupy only fraction 2a/d of the plane x = 0. In contrast, when the electric field is
polarized parallel to the wires the currents are enhanced by a factor d/2πa over that on a
mirror, such that the average current density on the plane x = 0 is the same as that for a
mirror and the reflection is essentially total.

The case of polarization perpendicular to the wires obeys the approximation of optical
diffraction in that the wires, in effect, remove from the transmitted wave the (small) portion
of the incident wave that hits them. But for polarization parallel to the wires the latter are
“super-reflectors” with enhanced electrical width of d rather than their physical width 2a,
and the near-zero transmission is unexpected from the viewpoint of optical diffraction.

This behavior is somewhat contrary to popular claims [7, 8], which imply that the case
of polarization parallel to the wires is easy to understand, while the currents are unusually
small when the polarization if perpendicular to the wires.

2.2 Conducting Plane with Slits

Lamb [6] realized that the function ψ(x, y) of eqs. (7)-(8) appropriate for “wire” strips made
by cutting slits in a conducting sheet is related to the real part of the complex function
w(z = x+ iy) = u+ iv defined by,4

coshw = μ cosh
πz

d
, (41)

for (real) μ > 1. Then,

cosh u cos v = μ cosh
πx

d
cos

πy

d
, sinhu sin v = μ sinh

πx

d
sin

πy

d
. (42)

The surfaces with u = 0 lie only the plane x = 0, and have y-values consistent with |cos v| =
μ |cos πy/d| ≤ 1. These are strips centered on y = (n + 1/2)d for any integer n.5 Denoting

4Lamb indicated that he came to eq. (41) via considerations of the Schwarz transformation, but note
also that a strip is the limit of an elliptical cylinder with major axis of length equal to the separation of the
foci, and that the relations x = cosh u cos v and y = sinh u sin v correspond to a transformation to elliptic
cylindrical coordinates (u, v). For use of these coordinates in the problem of scattering by small elliptical
cylinders and strips, see, for example, sec. 3 of [11].

5The (conducting) strips are the geometric complements of the slits.
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the “radius” (half width) of a strip by a, one edge of the strip centered on (x, y) = (0, d/2)
is at (0, d/2 − a) where,

1

μ
= cos

[
π

d

(
d

2
− a

)]
= sin

πa

d
, a =

d

π
sin−1 1

μ
. (43)

The functions u and v have contours as sketched in the figure [6] on the next page for μ = 1.2,
which implies that a/d = 0.62. The origin is where three contours meet at a point near the
bottom of the figure. Away from the strips, lines of constant u are nearly parallel to the
vertical (y) axis.

The function u is even in x and in y (such that ∂u(0, y)/∂x = 0).
For large x, v = πy/d for |y| < d/2, and u = πx/d + lnμ = πx/d − ln 1/μ, as inferred

from eq. (42).
We do not have a closed-form expression for u, but it satisfies Laplace’s equation in two

dimensions, eq. (9), and has period d in y, which permits a Fourier expansion of the form,

u(x > 0) =
πx

d
− ln

1

μ
+

∞∑
n=1

Cn e
−2nπx/d cos

2nπy

d
, (44)

u(x < 0) = −πx
d

− ln
1

μ
+

∞∑
n=1

Cn e
2nπx/d cos

2nπy

d
, (45)

since u is even in both x and y. The Fourier coefficients Cn are displayed in [6], but will not
be needed here.
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2.2.1 Electric Field Polarized Parallel to the Slits

As in sec. 2.1.1 we take ψ‖ = Ez, and require that ψ‖ = 0 on the strips.
The forms of eqs. (7)-(8) and (44)-(45) suggest that we set An = Bn = A1Cn to write,

ψ‖(x < 0) eiωt ≈ ψ0 + A0 + ik(ψ0 − A0)x+ A1

(
u+

πx

d
+ ln

1

μ

)
, (46)

ψ‖(x > 0) eiωt ≈ B0(1 + ikx) + A1

(
u− πx

d
+ ln

1

μ

)
. (47)

Continuity of ψ‖ and ∂ψ‖/∂x across the apertures in the plane x = 0 implies that,

B0 = ψ0 + A0, A1 =
ikd

π
A0. (48)

Finally, ψ‖ must vanish on the strips (where u = 0), which implies that,

A0

ψ0

= − 1

1 + iC‖kd
,

B0

ψ0

=
iC‖kd

1 + iC‖kd
(49)

where,

C‖ =
1

π
ln

1

μ
=

1

π
ln sin

πa

d
≈ 1

π
ln
πa

d
, (50)

and the approximation holds for strip “radius” a small compared to the spacing d.
The function ψ is of the form shown below [6].
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The coefficients of reflected and transmitted wave intensities are,

R‖ =

∣∣∣∣A0

ψ0

∣∣∣∣
2

=
1

1 + k2d2 ln2[sin(πa/d)]/π2
, T‖ =

∣∣∣∣B0

ψ0

∣∣∣∣
2

=
k2d2 ln2[sin(πa/d)]/π2

1 + k2d2 ln2[sin(πa/d)]/π2
.

(51)
When the strips touch, a = d/2, C‖ = 0, and the wave is totally reflected. This limit is
better treated by the present techniques for the case of wire strips than for circular wires.

When a/d is extraordinarily small,
∣∣C‖

∣∣ becomes very large and the wave is totally trans-
mitted.

For a/d small such that
∣∣C‖

∣∣ is small compared to kd, the wave is largely reflected.
As is to be expected, the behavior for an array of conducting strips is qualitatively similar

to that for circular wires.

2.2.2 Electric Field Polarized Perpendicular to the Strips

For perpendicular electric polarization we again associate the scalar function ψ⊥ with the
magnetic field Bz. The condition that Ex vanish as the surface of the strips tells us that,

∂Bz(0, ystrip)

∂y
=

1

c

∂Ex(0, a)

∂t
= 0. (52)

We can again relate ψ⊥ to u of eqs. (42) and (44)-(45), but here the strips are taken to be
located where the apertures were for the case of parallel polarization, centered on y = nd.
This choice is possible because ∂u/∂x = 0 everywhere on the plane x = 0. Now the “radius”
(half width) a of the strips is given by,

1

μ
= cos

πa

d
, a =

d

π
cos−1 1

μ
. (53)

The forms of eqs. (7)-(8) and (44)-(45) permit us to set An = −Bn = A1Cn, leading to

ψ⊥(x < 0) eiωt ≈ ψ0 + A0 + ik(ψ0 − A0)x+ A1

(
u+

πx

d
+ ln

1

μ

)
, (54)

ψ⊥(x > 0) eiωt ≈ B0(1 + ikx) − A1

(
u− πx

d
+ ln

1

μ

)
. (55)

Continuity of ψ⊥ and ∂ψ⊥/∂x across the apertures in the plane x = 0 is possible for the
choice An = −Bn in that both u and ∂u/∂x are zero there, having identified the strips in
this case with the apertures of the previous one. Hence,

B0 = ψ0 − A0, A1 = − A0

ln 1
μ

. (56)

Finally, ∂ψ⊥/∂x must vanish on the strips (where ∂u/∂x = 0), which implies that,

A0

ψ0

=
iC⊥kd

1 + iC⊥kd
,

B0

ψ0

=
1

1 + iC⊥kd
, (57)
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where,

C⊥ =
1

π
ln

1

μ
=

1

π
ln cos

πa

d
≈ −πa

2

2d2
, (58)

and the approximation holds for strip “radius” a small compared to the spacing d.
The coefficients of reflected and transmitted wave intensities are,

R⊥ =

∣∣∣∣A0

ψ0

∣∣∣∣
2

=
k2d2 ln2[cos(πa/d)]/π2

1 + k2d2 ln2[cos(πa/d)]/π2
, T⊥ =

∣∣∣∣B0

ψ0

∣∣∣∣
2

=
1

1 + k2d2 ln2[cos(πa/d)]/π2
.

(59)
When the strips touch, a = d/2, C⊥ → −∞, and the wave is totally reflected. Again, this
limit is better treated by the present techniques for the case of wire strips than for circular
wires.

For small a/d, C⊥ is very small and the wave is largely transmitted.

2.2.3 Babinet’s Principle

In optics, Babinet’s principle [12] is that the sum of the wave transmitted through a screen
and that through its “complement” is just the incident wave (as if no screen were present).

For the case of a conducting plane with (nonconducting) strips of “radius”/half width a
and spacing d, the complementary screen has strips of “radius” d/2 − a. The transmission
coefficients for electric polarization parallel and perpendicular to strips of “radius” a are
given by eqs. (50)-(51) and (58)-(59),

T‖(a) =
C2

‖ (a)k
2d2

1 + C2
‖(a)k

2d2
, C‖(a) =

1

π
ln sin

πa

d
, C‖(d/2 − a) =

1

π
ln cos

πa

d
, (60)

T⊥(a) =
1

1 + C2
⊥(a)k2d2

, C⊥(a) =
1

π
ln cos

πa

d
, C⊥(d/2 − a) =

1

π
ln sin

πa

d
. (61)

We see that T‖(a) + T‖(d/2 − a) 
= 1 
= T⊥(a) + T⊥(d/2 − a), contrary to the suggestion of
Babinet. However,

T‖(a) + T⊥(d/2 − a) = 1 = T⊥(a) + T‖(d/2 − a). (62)

Thus, we obtain the electromagnetic version of Babinet’s principle, that the sum of the trans-
mission coefficients of waves of orthogonal polarizations through complementary screens is
unity. This was first stated by Booker [13],6 who went on to develop a theory of comple-
mentary planar antennas in which the source voltage is applied parallel to a thin strip or
perpendicular to a thin slit.7

From eqs. (47)-(49) and (55)-(57) we see that,

[ψ‖(x > 0, a) + ψ⊥(x > 0, d/2 − a)] eiωt ≈ ψ0(1 + ikx), (63)

6In Russia, the electromagnetic version of Babinet’s principle is attributed to Leontovich [14].
7Towards the end of [3] Rayleigh considered the relation between transmission and reflection of comple-

mentary screens, but in a scalar theory corresponding only to the electric field polarized perpendicular to
the directions of the slits/strips.
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so that,

ψ‖(x > 0, a) + ψ⊥(x > 0, d/2 − a) = ψ0 e
i(kx−ωt), (64)

and hence Babinet’s principle also implies that the sum of the transmitted wave for parallel
polarization of a screen and for perpendicular polarization of the complementary screen
equals the incident wave.

The methods used in sec. 2.1 do not apply well to circular wires as a approaches d/2,
and the results (19)-(20) and (30)-(31) do not illustrate Babinet’s principle.

2.2.4 Screens with Slits of Half Width a and Spacing d

For completeness, I record the reflection and transmission coefficients for conducting screens
with slits of half width a and spacing d. These are, of course, the coefficients of eqs. (51)
and (59) with a→ d/2 − a,

Rscreen
‖ =

1

1 + k2d2 ln2[cos(πa/d)]/π2
, T screen

‖ =
k2d2 ln2[cos(πa/d)]/π2

1 + k2d2 ln2[cos(πa/d)]/π2
, (65)

Rscreen
⊥ =

k2d2 ln2[sin(πa/d)]/π2

1 + k2d2 ln2[sin(πa/d)]/π2
, T screen

⊥ =
1

1 + k2d2 ln2[sin(πa/d)]/π2
. (66)

For a � d, T screen
‖ ≈ k2a2/(4 + k2a2), which is near unity for ka � 1 even though the

slits are very narrow, while T screen
‖ is very small for ka � 1. For a � d, T screen

⊥ ≈ 1/[1 +

k2d2 ln2(d/πa)/π2]), which is small for kd � 1, but is large for kd � 1 and a/d not too
small; while for a/d extremely small the transmission again becomes large.
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