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1 Problem

Deduce the velocity distribution of steady flow of an incompressible fluid of density ρ and
viscosity η between two parallel, coaxial annular plates of inner radii r1, outer radii r2 and
separation h when pressure difference ΔP is applied between the inner and outer radii.

As an exact solution of the Navier-Stokes equation appears to be difficult, it suffices to
give an approximate solution assuming that the velocity is purely radial, v = v(r, z)r̂, in
a cylindrical coordinate system (r, φ, z) whose z axis coincides with that of the two annuli.
Deduce a condition for validity of the approximation.

This problem arises, for example, in considerations of a rotary joint between two sections
of a pipe. Here, we ignore the extra complication of the effect of the rotation of one of the
annuli on the fluid flow.

2 Solution

For an incompressible fluid, the velocity distribution obeys the continuity equation,

∇ · v = 0, (1)

in which case the Navier-Stokes equation for steady, viscous flow is,

ρ(v · ∇)v = −∇P + η∇2v. (2)

There are only three examples in which analytic solutions to this equation have been obtained
when the nonlinear term (v · ∇)v is nonvanishing [1].

We first review the simpler case of two-dimensional flow between parallel plates in sec. 2.1,
and then take up the case of radial flow in sec. 2.2. We will find an analytic solution to the
nonlinear Navier-Stokes equation (2) for radial flow, but this solution cannot satisfy the the
boundary conditions,

v(z = 0) = 0 = v(z = h), (3)

that the flow velocity vanish next to the plates. However, in the linear approximation to
eq. (2) we obtain an analytic form for the radial flow between two annular plates.

2.1 Two-Dimensional Flow between Parallel Plates

For guidance, we recall that an analytic solution is readily obtained for the related problem
of two-dimensional viscous flow between two parallel plates. For example, suppose that the
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plates are at the planes z = 0 and z = h, and that the flow is in the x direction, i.e.,
v = v(x, z)x̂. The equation of continuity (1) then tells us that ∂v/∂x = 0, so that the
velocity is a function of z only,

v = v(z) x̂. (4)

The z component of the Navier-Stokes equation (2) reduces to ∂P/∂z = 0, so that the
pressure is a function of x only. The x component of eq. (2) is,

∂P (x)

∂x
= η

∂2v(z)

∂z2
. (5)

Since the lefthand side is a function of x, and the righthand side is a function of z, equation
(5) can be satisfied only if both sides are constant. Supposing that the pressure decreases
with increasing x, we write,

− ∂P

∂x
= constant =

ΔP

Δx
> 0. (6)

Using the boundary conditions (3), we quickly find that,

v(z) =
ΔP

Δx

z(h − z)

2η
= 6v̄

z

h

(
1 − z

h

)
, (7)

where the average velocity v̄ is given by,

v̄ =
1

h

∫ h

0

v(z)dz =
ΔP

Δx

h2

12η
. (8)

2.2 Radial Flow between Parallel Annular Plates

Returning to the problem of radial flow between two annular plates, we seek a solution
in which the velocity is purely radial, v = v(r, z) r̂. The continuity equation (1) for this
hypothesis tells us that,

1

r

∂(rv)

∂r
= 0, (9)

so that,

v =
f(z)

r
r̂. (10)

Following the example of two-dimensional flow between parallel plates, we expect a parabolic
profile in z as in eq. (7),

f(z) ∝ z(h − z), (11)

which satisfies the boundary conditions (3).
Using the trial solution (10), the z component of the Navier-Stokes equation (2) again

tells us that the pressure must be independent of z: P = P (r). The radial component of
eq. (2) yields the nonlinear form,

ηr2 d2f

dz2
+ ρf2 = r3 dP

dr
. (12)
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The hoped-for separation of this equation can only be achieved if f(z) = F is constant,
which requires the pressure profile to be P (r) = A− ρF 2/2r2. The boundary conditions (3)
cannot be satisfied by this solution. Further, this solution exists only for the case that the
pressure is increasing with increasing radius. The fluid flow must be then be inward, so the
constant F must be negative.1

While we have obtained an analytic solution to the nonlinear Navier-Stokes equation (2),
it is not a solution to the problem of radial flow between two annuli. It is hard to imagine a
physical problem involving steady, radially inward flow of a long tube of fluid, to which the
solution could apply.

Instead of an exact solution, we are led to seek an approximate solution in which the
nonlinear term f2 of eq. (12) can be ignored. In this case, the differential equation takes the
separable form,

d2f

dz2
=

r

η

dP

dr
= constant. (13)

Following eq. (7) we write the solution for f that satisfies the boundary conditions (3) as,

f(z) = 6f̄
z

h

(
1 − z

h

)
, (14)

where f̄ is the average of f(z) over the interval 0 ≤ z ≤ h. The part of eq. (13) that describes
the pressure leads to the solution

P (r) =
P1 ln r2/r + P2 ln r/r1

ln r2/r1
, (15)

where Pi = P (ri). Plugging the solutions (14) and (15) back into eq. (13), we find that,

f̄ =
h2ΔP

12η ln r2/r1
, (16)

where ΔP = P1 − P2. Hence, the flow velocity is,

v(r, z) =
z(h − z)ΔP

2ηr ln r2/r1
r̂, (17)

whose average with respect to z is v̄(r) = f̄/r. As with all solutions to the linearized Navier-
Stokes equation, the velocity is independent of the density. Note also that the direction of
the flow is from the high pressure region to the low.

For the approximate solution (17) to be valid, the term f2 ≈ f̄2 must be small in eq. (12),
which requires,

ρh4ΔP

144η2r2
1 ln r2/r1

� 1. (18)

When this condition is not satisfied, the solution must include velocity components in the
z direction that are significant near the inner and outer radii, while the flow pattern at
intermediate radii could be reasonably well described by eq. (17).

1The Navier-Stokes equation is not time-reversal invariant due to the dissipation of energy associated
with the viscosity, and so reversing the velocity of a solution does not, in general, lead to another solution.
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Note added July 30, 2008: In the case of low viscosity η we make an approximate analysis
of eq. (12) by taking the factor f to be the constant f̄2 of eq. (14). Then,

dP

dr
≈ −12ηf̄

h2r
+

ρf̄2

r3
, (19)

which integrates to,

P (r) ≈ P1 − 12ηf̄

h2
ln

r

r1
+

ρf̄2

2

(
1

r2
1

− 1

r2

)
, (20)

where P1 is the pressure at radius r1. Evaluating this at radius r2 where the pressure is P2,
we can write,

ΔP = P1 − P2 ≈ 12η f̄

h2
ln

r2

r1
+

ρf̄2

2

(
1

r2
2

− 1

r2
1

)
= ΔPη + ΔPρ, (21)

where the term,

ΔPρ =
ρv̄2

2

2
− ρv̄2

1

2
(22)

is the familiar change in pressure associated with the change in velocity described by Bernoulli’s
law for fluids with zero viscosity. The constant f̄ = rv̄r is determined by eq. (22) to be,

f̄ = −12η r2
1r

2
2 ln(r2/r1)

ρh2(r2
2 − r2

1)
±

√[
12η r2

1r
2
2 ln(r2/r1)

ρh2(r2
2 − r2

1)

]2

+
2r2

1r
2
2ΔP

ρ(r2
2 − r2

1)
. (23)

The direction of the flow can be either from high pressure to low or vice versa, but with
different velocities in these two cases.

An experimental study of a case well approximated by eq. (20) is reported in [2].
If one of the annuli is rotating at angular velocity ω, the radial flow velocity should still

be given approximately by eq. (17) so long as ωr2
<∼ v̄(r2) = f̄/r2.
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