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1 Problem

Use Poynting’s theorem for complex, time-harmonic fields to deduce general expressions for
the reactance of an antenna that is operated at angular frequency ω. Discuss whether this
reactance can be separated into capacitive and inductive reactances. Consider also possible
meanings of the concept of “reactive field energy”.

2 Solution

This problem is based on the overoptimistic claim in [1] that the reactance of an antenna can
be decomposed into capacitive and inductive reactances. Deduction of antenna reactance via
so-called complex Poynting theorem (sec. 13.14 of [2], sec. 2.20 of [3]) goes back at least to
sec. 5 of [4].1 See also chap. 8 of [6]. We consider only media with unit relative permittivity
and permeability.

For any system in which the charges and currents have time dependence ejωt it is con-
venient to consider fields as complex vectors, of which only their real parts have physical
meaning. For example, the real part of the complex Poynting vector,

S̃ =
E ×B�

2μ0

, (1)

is the time-average flow of energy in the electromagnetic fields.
Poynting’s theorem [7] can be expressed in terms of complex fields as follows,

∇ · S̃ = ∇ · E × B�

2μ0

=
B�

2μ0

· ∇× E − E · ∇× B�

2μ0

= −jω
|B|2
2μ0

+ jω
ε0 |E|2

2
− E · J�

2
= −2jω(〈uB〉 − 〈uE〉) − E · J�

2
, (2)

where the time-average densities of energy in the electromagnetic fields are,

〈uB〉 =
|B|2
4μ0

, and 〈uE〉 =
ε0 |E|2

4
. (3)

When we integrate eq. (2) over some volume we obtain,∫
∇ · S̃ dVol =

∮
S̃ · dArea = −2jω

∫
(〈uB〉 − 〈uE〉) dVol −

∫
E · J�

2
dVol

= −2jω(〈UB〉 − 〈UE〉) −
∫

E · J�

2
dVol, (4)

1Much of this note is discussed in chap. 5 of [5], which omits any assignment of physical significance to
the imaginary part of the complex Poynting vector.
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where 〈UB〉 =
∫ 〈uB〉 dVol and 〈UE〉 =

∫ 〈uE〉 dVol are the total, time-average energies of
the magnetic and electric fields in that volume.

In the case of an antenna, we take the volume to be all the space outside the antenna
and outside its power source, where we suppose that the power source for the antenna fits
in the (small) space between its two terminals. Then, J = 0 everywhere in this volume, so∫

E · J� dVol = 0.
The surface of this volume has three regions: a sphere at “infinity,” the surface of the

conductors of the antenna (excluding the small surfaces of the terminals that face the power
supply), and the (small) surface of the power supply that does not face the terminals. Then,∮

S̃ · dArea =

∮
∞

S̃ · dArea +

∮
antenna

S̃ · dArea +

∮
power supply

S̃ · dArea

= 〈Prad〉 + 〈POhmic〉 − 〈Ppower supply〉 . (5)

The integral of the Poynting vector over a sphere at “infinity” is the (to,e-average) power
〈Prad〉 that is “radiated to infinity”. The integral of the Poynting vector into the surface of
the antenna is 〈POhmic〉, taking note of the fact that the flow of energy across the surface of
the antenna is zero in the limit of a perfect conductor (since then Etangential = 0 and therefore
S⊥ = 0), and that energy must flow into a resistive conductor to replace the Ohmic losses.
Similarly, the power supply does not deliver energy into the antenna, but rather energy flows
directly from the power supply into the volume outside it (and the antenna).2

Defining I to be the (complex) current at the terminals of the antenna, we write the
(time-average) power as Z |I |2 /2, where for the surface at “infinity” we define Z = Rrad =
2 〈Prad〉 / |I |2 = radiation resistance, for the antenna conductors we define Z = ROhmic =
2 〈POhmic〉 / |I |2 = terminal resistance,3 and for the power supply we define Z = Zantenna =
total terminal impedance of the antenna as seen by the power supply.

Combining eqs. (4) and (5) we have,

Zantenna =
2 〈Ppower supply〉

|I |2 = Rrad + ROhmic +
4jω(〈UB〉 − 〈UE〉)

|I |2 ≡ Rantenna + jXantenna , (6)

where,

Rantenna = Rrad + ROhmic , and Xantenna =
4ω(〈UB〉 − 〈UE〉)

|I |2 ≡ ωL − 1

ωC
, (7)

introducing the antenna reactance Xantenna, inductance L and capacitance C . The total
energies 〈UB〉 and 〈UE〉 are infinite, so we cannot immediately identify L = 4ω 〈UB〉 / |I2|
and C = |I |2 /4ω2 〈UE〉.

2The conductors of the antenna guide the energy from the power supply into the space around the
antenna, but they do not generate this power. The antenna can be thought of as a waveguide, or an
inside-out resonant cavity, which suggests that the concepts of capacitance and inductance may be relevant
here.

3The terminal resistance depends on details of the current distribution in the antenna, and is not directly
measurable by an “Ohm-meter”.
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We note that the electric and magnetic fields can be related to the charge and current
densities ρ and J in the antenna and the power supply according to [8],

E(x, t) =
1

4πε0

∫
ρR̂

R2
ej(ωt−kR) d3x′ +

μ0c

4π

∫
(J · R̂)R̂ + (J × R̂) × R̂

R2
ej(ωt−kR) d3x′

+
jμ0ω

4π

∫
(J × R̂) × R̂

R
ej(ωt−kR) d3x′, (8)

B(x, t) =
μ0

4π

∫
J × R̂

R2
ej(ωt−kR) d3x′ +

jμ0ω

4πc

∫
J × R̂

R
ej(ωt−kR) d3x′, (9)

where R = x − x′ and k = ω/c, and c is the speed of light in vacuum. At large distances
from the sources, the magnitudes of the electric and magnetic fields are related by E = cB.
Hence, the difference UB − UE in the field energies is finite, and the reactance Xantenna is
meaningfully calculated according to eq. (7).

It is common to identify the “radiation fields” as the terms in eqs. (8)-(9) whose integrand
varies as 1/R,

Erad =
jμ0ω

4π

∫
(J × R̂) × R̂

R
ej(ωt−kR) d3x′, Brad =

jμ0ω

4πc

∫
J × R̂

R
ej(ωt−kR) d3x′. (10)

We note that while the total fields are asymptotically equal to the “radiation fields”, no
measurement can distinguish between them at any finite distance from the sources. This
warns us that results based on use of the “radiation fields” at finite distances from the source
may not be physically meaningful.

The energy densities 〈uB,rad〉 and 〈uE,rad〉 are asymptotically equal, so the difference
〈UB,rad〉 − 〈UE,rad〉 between the total energies in the “radiation fields” is finite (but nonzero
in general4). If we define the “nonradiative” field energies as,

〈UBnonrad
〉 = 〈UB〉 − 〈UBrad

〉 , and 〈UEnonrad
〉 = 〈UE〉 − 〈UErad

〉 , (11)

then,
〈UBnonrad

〉 − 〈UEnonrad
〉 = 〈UB〉 − 〈UE〉 − 〈UBrad

〉 + 〈UErad
〉 . (12)

In [1] it is proposed that the antenna inductance and capacitance be identified as,

L =
4 〈UB,nonrad〉

|I2| , and C =
|I |2

4ω2 〈UE,nonrad〉 (as proposed in [1]). (13)

However, because 〈UBrad
〉 �= 〈UErad

〉,

ωL − 1

ωC
=

4ω

|I |2 (〈UBnonrad
〉 − 〈UEnonrad

〉) =
4ω

|I |2 (〈UB〉 − 〈UE〉 − 〈UBrad
〉 + 〈UErad

〉) �= Xantenna ,(14)

for the inductance and capacitance given in eq. (13).

4Only for an idealized point antenna, such as a Hertzian dipole, does 〈UB,rad〉 = 〈UE,rad〉. See also the
Appendices.
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While the concept of antenna impedance is well defined, the relation of that impedance
to an inductance and a capacitance is ambiguous.5 The latter are well defined only for
antennas that are small compared to a wavelength, such that |E| ≈ c |B| everywhere, and
hence 〈UBrad

〉 − 〈UErad
〉 ≈ 0. In this case the capacitance and inductance of the antenna can

be evaluated by quasistatic methods [11].

3 Can We Identify Reactive Field Energy?

The form of the antenna reactance found in eq. (7) suggests that we identify 〈UB〉 − 〈UE〉
as the time average of the reactive field energy [4, 6], in which case 〈uB〉 − 〈uE〉 is the (time-
average) density of reactive field energy.6 Can we also identify,

ureactive = uB − uE =
(ReB)2

2μ0

− ε0(ReE)2

2
(15)

as the instantaneous density of reactive field energy?7 Because the energy densities uB,rad

and uE,rad of the radiation fields are asymptotically equal the density of reactive field energy
falls off faster than 1/r2 from source charges and currents, and we infer that any flow of
reactive field energy does not extend to “infinity”.8

Writing the electric and magnetic fields as,

E(x, t) = Ẽ(x) ejωt = ReẼ cos ωt − ImẼ sinωt + j(ImẼ cosωt + ReẼ sin ωt), (16)

B(x, t) = B̃(x) ejωt = ReB̃ cos ωt − ImB̃ sinωt + j(ImB̃ cos ωt + ReB̃ sinωt), (17)

eq. (15) becomes,

ureactive = uB − uE =
(ReB̃)2 cos2 ωt + (ImB̃)2 sin2 ωt − ReB̃ · ImB̃ sin 2ωt

2μ0

−ε0
(ReẼ)2 cos2 ωt + (ImẼ)2 sin2 ωt − ReẼ · ImẼ sin 2ωt

2
, (18)

5The relation Xantenna = ωL − 1/ωC could be satisfied by defining L |I|2 /4 = 〈UBnonrad〉 + α(〈UBrad 〉 −
〈UErad 〉) and |I|2 /4ω2C = 〈UEnonrad〉 + (α − 1)(〈UBrad 〉 − 〈UErad 〉) for any α. One possible prescription is
to take α = 1 if 〈UBrad 〉 − 〈UErad 〉 ≥ 0, and α = 0 if 〈UBrad 〉 − 〈UErad 〉 < 0. An alternative [9] is to define
L = (dX/dω + X/ω)/2 and C = 2/ω2(dX/dω − X/ω). However, the utility of any such choice is limited
in that the capacitance and inductance could only be calculated via integrals of the fields, which requires
knowledge of the charges and currents in the system. If these are known (via a computer program such
as NEC4 [10] given the terminal voltage V ), the (complex) terminal current I is known and the terminal
impedance can be directly calculated as Zantenna = V/I.

6See [12] for discussion of the relation between reactive field energy and the Q of a resonant circuit.
7A different definition of “reactive field energy” is advocated in [13], u′

reactive =
√

u2
field − S2/c2 =

ε0
√

(E2 − c2B2)2/4 + (E · cB)2 =
√

u2
reactive + (ε0E · cB)2, where u′

reactive/c2 is identified with the density
of “inertia” in the electromagnetic field. However, this implies that any system “at rest” with a nonzero
Poynting vector (such as a battery connected to a resistor) does not obey Einstein’s relation E = mc2 [14].
Furthermore, such systems would contain “nonreactive” field energy associated with the Poynting vector,
which latter flows from one part of the system to another, which seems to be “reactive”.

8The so-called radiation fields contribute to reactive field energy (15), as shown in Appendix B below.
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whose time average is,

〈ureactive〉 =

∣∣∣B̃∣∣∣2
4μ0

−
ε0

∣∣∣Ẽ∣∣∣2
4

=
|B|2
4μ0

− ε0 |E|2
4

. (19)

For definition (15) to be consistent we should also be able to identify a part, Sreactive, of
the (real) Poynting vector S = ReE × ReB/μ0 that obeys Poynting’s theorem in the form,

∇ · Sreactive = −∂ureactive

∂t
−ReE · ReJ, (20)

where J is the current density. From (18) we find,

− ∂ureactive

∂t
= = ω

[(ReB̃)2 − (ImB̃)2] sin 2ωt + 2ReB̃ · ImB̃ cos 2ωt

2μ0

−ε0ω
[(ReẼ)2 − (ImẼ)2] sin 2ωt− 2ReẼ · ImẼ cos 2ωt

2
, (21)

which has terms of time dependence cos 2ωt and sin 2ωt.9

If we apply eq. (4) to a volume that does not contain any currents or the power source
we obtain, ∮

ImS̃ · dArea = −2ω(〈UB〉 − 〈UE〉). (22)

Equation (22) suggests that the imaginary part of the complex Poynting vector (1) is related
to the flow of reactive field energy, in that we have come to associate the Poynting vector
with flow of electromagnetic field energy. This relation is not immediately evident in that
the reactive field energy 〈UB〉 − 〈UE〉 is constant in time, and cannot be said to flow.

The (real) Poynting vector is, recalling eqs. (16)-(17),

S =
ReE × ReB

μ0

=
(ReẼ cosωt− ImẼ sinωt)× (ReB̃ cos ωt − ImB̃ sinωt)

μ0

=
ReẼ × ReB̃ + ImẼ× ImB̃

2μ0

+
ReẼ × ReB̃ − ImẼ× ImB̃

2μ0

cos 2ωt

−ReẼ × ImB̃ + ImẼ× ReB̃

2μ0

sin 2ωt, (23)

and the complex Poynting vector is,

S̃ =
E × B�

2μ0

= [ReẼ cosωt − ImẼ sinωt + j(ImẼ cos ωt + ReẼ sinωt)]

×ReB̃ cosωt − ImB̃ sinωt− j(ImB̃ cos ωt + ReB̃ sinωt)

2μ0

=
ReẼ × ReB̃ + ImẼ× ImB̃

2μ0

− j
ReẼ × ImB̃ + ImẼ× ReB̃

2μ0

. (24)

9The presence of terms of frequency 2ω in the Poynting vector S and in ∂u/∂t seems disconcerting to
many people, some of whom chose to ignore the time dependence of these quantities, which are quadratic in
the fields and so “naturally” include second-harmonic terms.
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Hence, the imaginary part of the complex Poynting vector, ImS̃, is the coefficient of the
term in the real Poynting vector S that varies as sin 2ωt. However, we cannot consistently
identify this term with the “reactive” part of the (real) Poynting vector, in that its divergence
would also have time dependence sin 2ωt while ∂ureactive/∂t of eq. (21) has a term of time
dependence cos 2ωt.

This leaves us without a crisp physical interpretation of ImS̃, and without a fully con-
sistent identification of reactive field energy. Such difficulties are typical of attempts to
partition quadratic quantities like field energy and Poynting flux. See also the discussion in
[15] and in Appendix B below.

A Appendix: Hertzian (Electric) Dipole

We consider a single charge q that oscillates in vacuum about the origin with (complex)
oscillating dipole moment p = −p ẑ and amplitude small compared to the wavelength λ =
2πc/ω. Then, in spherical coordinates (r, θ, φ), the electromagnetic fields are the real parts
of the complex quantities,10

E = −k2p(r̂ × p̂) × r̂
ej(ωt−kr)

4πε0r
− p[3(p̂ · r̂)r̂− p̂]

(
1

r3
+

jk

r2

)
ej(ωt−kr)

4πε0

= k2p

(
1 − j

kr
− 1

k2r2

)
ej(ωt−kr)

4πε0r
sin θ θ̂ − k2p

(
j

kr
+

1

k2r2

)
ej(ωt−kr)

2πε0r
cos θ r̂, (25)

B =
μ0ck

2p

4π
(r̂ × p̂)

(
1

r
+

1

jkr2

)
ej(ωt−kr)

=
μ0ck

2p

4π

(
1 − j

kr

)
ej(ωt−kr)

r
sin θ φ̂. (26)

A.1 Poynting Vector

The complex Poynting vector of eq. (1) is,

S̃ =
E ×B�

2μ0

=
ck4p2 sin2 θ

32π2ε0r2

(
1 +

j

k3r3

)
r̂ + j

ck3p2 sin 2θ

32π2ε0r3

(
1 +

1

k2r2

)
θ̂. (27)

The real part of the complex Poynting vector is the time-averaged Poynting vector,

〈S〉 = ReS̃ =
ck4p2 sin2 θ

32π2ε0r2
r̂, (28)

which is purely radial, and varies as 1/r2, corresponding to a conserved flow of energy out
from the nominally point, oscillating dipole.

The imaginary part of the complex Poynting vector is,

ImS̃ =
ck4p2 sin2 θ

32π2ε0r2

1

k3r3
r̂ +

ck4p2 sin 2θ

32π2ε0r2

(
1

kr
+

1

k3r3

)
θ̂. (29)

10See, for example, sec. 9.2 of [16], with the convention that j of electrical engineering equals −i of physics.
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To assess the possible physical significance of eq. (28), we consider the actual Poynting vector,
S = E× B/μ0, where the fields E and B are real, i.e., the real parts of eqs. (25)-(26),

E = k2p

(
1 − 1

k2r2

)
cos(ωt − kr)

4πε0r
sin θ θ̂ +

k2p

kr

sin(ωt − kr)

4πε0r
sin θ θ̂

+
k2p

kr

sin(ωt − kr)

2πε0r
cos θ r̂ − k2p

k2r2

cos(ωt − kr)

2πε0r
cos θ r̂, (30)

B =
μ0ck

2p

4π

cos(ωt − kr)

r
sin θ φ̂ +

μ0ck
2p

4πkr

sin(ωt − kr)

r
sin θ φ̂. (31)

S =
ck4p2 sin2 θ

16π2ε0r2

[(
1 − 1

k2r2

)
cos2(ωt − kr) +

1

k2r2
sin2(ωt − kr)(

2

kr
− 1

k3r3

)
cos(ωt − kr) sin(ωt − kr)

]
r̂

+
ck4p2 sin 2θ

16π2ε0r2

[
− 1

k2r2
cos2(ωt − kr) +

1

k2r2
sin2(ωt − kr)

+

(
1

kr
− 1

k3r3

)
cos(ωt − kr) sin(ωt − kr)

]
θ̂

=
ck4p2 sin2 θ

16π2ε0r2

[
cos2(ωt− kr) − cos 2(ωt− kr)

k2r2
+

(
1

kr
− 1

2k3r3

)
sin 2(ωt − kr)

]
r̂

+
ck4p2 sin 2θ

16π2ε0r2

[
−cos 2(ωt − kr)

k2r2
+

1

2

(
1

kr
− 1

k3r3

)
sin 2(ωt − kr)

]
θ̂. (32)

The time average of eq. (32) is the same as eq. (28) as expected, but the full time-dependent
flow of energy in the electromagnetic field, as described by eq. (32) is much more complicated
than eq. (29). This reinforces that the imaginary part of the complex Poynting vector has
no clear physical significance.

A.2 Field Energy

The density uE of energy in the electric field follows from eq. (30) as,

uE(r, θ, t) =
ε0E

2

2
=

k4p2

32π2ε0r2

{[(
1 − 1

k2r2

)2

cos2(ωt − kr)

+

(
1 − 1

k2r2

)
sin 2(ωt − kr)

kr
+

sin2(ωt − kr)

k2r2

]
sin2 θ

+

[
4 sin2(ωt − kr)

k2r2
− 4 sin 2(ωt − kr)

kr
+

4cos2(ωt − kr)

k4r4

]
cos2 θ

}
. (33)

It may be of interest to consider the energy density in a spherical shell of radius r,
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uE(r, t) = 4πr2

∫
uE dΩ =

k4p2

3ε0

[(
1 − 2

k2r2
+

3

k4r4

)
cos2(ωt − kr)

−
(

1 +
1

k2r2

)
sin 2(ωt − kr)

kr
+

3 sin2(ωt− kr)

k2r2

]
.(34)

The time average of this is,

〈uE(r)〉 =
k4p2

6ε0

(
1 +

1

k2r2
+

3

k4r4

)
. (35)

Similarly, the density uB of energy in the magnetic field is,

uB =
B2

2μ0

=
k4p2

32π2ε0

[
cos2(ωt − kr)

r2
+

sin 2(ωt − kr)

k3r3
+

sin2(ωt− kr)

k4r4

]
sin2 θ, (36)

uB(r) = 4πr2

∫
uB dΩ =

k4p2

3ε0

[
cos2(ωt − kr) +

sin 2(ωt− kr)

kr
+

sin2(ωt − kr)

k2r2

]
,(37)

〈uB(r)〉 =
k4p2

6ε0

(
1 +

1

k2r2

)
. (38)

If we suppose that the reactive energy density is given by eq. (15) (or by the negative of
this), then we could have a simple result for its time average,

〈ureactive(r)〉 = 〈uE(r)〉 − 〈uB(r)〉 =
p2

3ε0r4
. (39)

However, the instantaneous (radial) reactive energy density would be,

ureactive(r, t) = uE(r, t)− uB(r, t)

=
k4p2

3ε0

[
3 cos2(ωt − kr)

k4r4
−

(
2 +

1

k2r2

)
sin 2(ωt− kr)

kr
− 2 cos 2(ωt − kr)

k2r2

]
,(40)

which suffers from the issues discussed in sec. 3 above.11

B Appendix: Radiation Field Energy of a Pair of

Oscillating Point Dipoles

We consider a system of only two charges, q1 and q2, at (average) positions x1 and x2, with
(complex) oscillating dipole moments p1 and p2. Then,

E(x, t) = k2p1(r̂1 × p̂1) × r̂1
ej(ωt−kr1)

4πε0r1

+ p1[3(p̂1 · r̂1)r̂1 − p̂1]

(
1

r3
1

+
jk

r2
1

)
ej(ωt−kr1)

4πε0

(41)

11If one ignores the difficulties of interpretation of the time-dependent expression (40), the time-average
result (39) seems appealing, as on p. 17 of [17].
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+k2p1(r̂2 × p̂2) × r̂2
ej(ωt−kr2)

4πε0r2
+ p2[3(p̂2 · r̂2)r̂2 − p̂2]

(
1

r3
2

+
jk

r2
2

)
ej(ωt−kr2)

4πε0
,

B(x, t) =
μ0ck

2p1

4π
(r̂1 × p̂1)

(
1

r1
+

1

jkr2
1

)
ej(ωt−kr1)

+
μ0ck

2p2

4π
(r̂2 × p̂2)

(
1

r2
+

1

jkr2
2

)
ej(ωt−kr2), (42)

where rj = x− xj. The radiation fields are,

Erad(x, t) = k2p1(r̂1 × p̂1) × r̂1
ej(ωt−kr1)

4πε0r1

+ k2p1(r̂2 × p̂2) × r̂2
ej(ωt−kr2)

4πε0r2

, (43)

Brad(x, t) = μ0ck
2p1(r̂1 × p̂1)

ej(ωt−kr1)

4πr1
+ μ0ck

2p2(r̂2 × p̂2)
ej(ωt−kr2)

4πr2
. (44)

The corresponding time-average field-energy densities are,

〈uErad
〉 =

ε0 |Erad|2
4

=
k4p2

1

(
1 − |r̂1 · p̂1|2

)
64π2ε0r2

1

+
k4p2

2

(
1 − |r̂2 · p̂2|2

)
64π2ε0r2

2

+
k4

32π2ε0r1r2
Re

{
p1p

�
2 ejk(r2−r1) [p̂1 · p̂�

2 − (r̂1 · p̂1)(r̂1 · p̂�
2) − (r̂2 · p̂1)(r̂2 · p̂�

2)

+(r̂1 · p̂1)(r̂2 · p̂�
2)(r̂1 · r̂2)]} , (45)

〈uBrad
〉 =

|Brad|2
4μ0

=
k4p2

1

(
1 − |r̂1 · p̂1|2

)
64π2ε0r2

1

+
k4p2

2

(
1 − |r̂2 · p̂2|2

)
64π2ε0r2

2

+
k4

32π2ε0r1r2
Re

{
p1p

�
2 ejk(r2−r1) [(r̂1 · r̂2)(p̂1 · p̂�

2) − (r̂1 · p̂�
2)(r̂2 · p̂1)]

}
. (46)

In general, 〈uBrad
〉 �= 〈uErad

〉, but in the far zone they become equal since r̂1 = r̂2 there.
Hence, radiation field energy contributes to reactive field energy according to the definition
of eq. (15).
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