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1 Problem

Deduce the no-load (open-circuit) voltage Voc across the terminals of a short, center-fed
linear dipole antenna of half height h when excited by a plane wave of wavelength λ � h
whose electric field vector Ein is parallel to the dipole antenna.

The ratio Heff = |Voc/Ein| is called the effective height of the antenna.1

Also deduce the current Isc that would flow between the terminals if they were short
circuited. Then, according to Thévenin’s theorem the receiving antenna acts on any load
connected to it like a voltage source Voc with internal impedance ZA = Voc/Isc.

You may assume that the antenna conductors have a diameter small compared to the
height h, and that they are perfect conductors. The gap between the terminals is also small
compared to h.

By dimensional analysis, the no-load voltage has amplitude of order E0h, where E0 is the
amplitude of the incident wave. The problem is to show that to a good approximation the
voltage is actually E0h. This problem can be addressed using techniques that are simplifi-
cations of those appropriate for antennas comprised of thick wires with complex geometries.

2 Solution

The spirit of the solution is due to Pocklington [4], who extended the insights of Lorenz [5]
and Hertz [6] that electromagnetic fields can be deduced from the retarded vector potential,
by consideration of the boundary condition that the tangential component of the electric field
must vanish at the surface of a good/perfect conductor. Furthermore, Pocklington noted
that to a good first approximation for conductors that are thin wires, the vector potential
at the surface of a wire depends only on the current in the wire at that point. Pocklington
deduced an integral equation for the currents in the conductors, which equation has been
elaborated upon by L.V. King [7], E. Hallén [8] and R.W.P. King [9]-[12] to become the basis
of numerical electromagnetic codes such as NEC4 [13]. See also [14], on which this solution
is based.

In the present example an incident electromagnetic wave with electric field,

Ein = E0 e−i(kx−ωt) ẑ (1)

excites an oscillating current distribution J(r, t) = J(r) eiωt in the conductors of the receiving
antenna. If this current distribution is known, then the retarded vector potential A(r, t) =

1Schelkunoff [1, 2] has defined an effective length vector Heff for transmitting antennas in terms of
their far-zone electric field E0(θ, φ) e−i(kr−ωt)/r as Heff(θ, φ) = icE0/kI0, where the current at the antenna
terminals is I0 eiωt, and E0 and I0 are complex quantities in general. For a linear antenna, the magnitude
Heff(θ = 90◦) equals the effective height of eq. (15), as can be confirmed using eqs. (10) and (61) of [3].
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A(r) eiωt of the response fields can be calculated as,

A(r, t) =
μ0

4π

∫
J(r′, t′ = t−R/c)

R dVol′ =
μ0

4π

∫
J(r′)

eikR

R dVol′ eiωt = A(r) eiωt, (2)

where R = |r − r′|, c is the speed of light, ω is the angular frequency, k = ω/c is the wave
number, and the medium outside the conductors is vacuum whose permittivity is μ0. In the
present example the conductors are thin wires along the z axis, and we suppose that the
current density J(r) is independent of azimuth in a cylindrical coordinate system (ρ, φ, z) and
is well approximated by a current I(z). Then, the vector potential has only a z, component,

Az(r) =
μ0

4π

∫
I(z′)

e−ikR

R dz′. (3)

Since we work in the Lorenz gauge where,

∇ · A +
1

c2

∂V

∂t
= 0, (4)

the scalar potential V (r, t) = V (r eiωt of the response fields is related to the vector potential
according to,

V (r) =
ic

k

∂Az(r)

∂z
≡ ic

k
∂zAz(r). (5)

The response fields E(r, t) = E(r) eiωt and B(r, t) = B(r) eiωt can then be calculated from
the vector potential Az(r) as,

E(r) = −∇V (r) − iωA(r) = − ic

k
[∂2

rzAz(r) ρ̂ + (∂2
z + k2)Az(r) ẑ], (6)

B(r) = ∇× A(r) = −∂ρAz(r) φ̂. (7)

The key relation between the incident electric field Ein and the response field E is that
the tangential component of the total electric field Ein +E must vanish at the surface of the
conductors. In the thin-wire approximation for wire radius a much less that the antenna half
height h, the constraint is essentially on the z-component of the response electric field on
the z axis,

Ez(0, 0, z) = −Ein = −E0, (8)

for the intervals [−h,−d/2] and [d/2, h] that contain the conductors of the antenna, where
the gap between the terminals of the antenna has width d � h. From eq. (6), we obtain a
differential equation for the vector potential on these intervals,

(∂2
z + k2)Az(0, 0, z) =

ik

c
Ez(0, 0, z) = − ik

c
E0. (9)

Two solutions to the homogeneous differential equation (∂2
z +k2)Az(0, 0, z) = 0 are, of course,

cos kz and sin kz. A solution to the particular equation is simply the constant −iE0/kc.
Hence, a general solution to eq. (9) on the interval [d/2, h] can now be written as,

Az(0, 0, d/2 ≤ z ≤ h) = C1 cos kz + C2 sin kz − iE0

kc
. (10)
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since kd � 1. We expect that the vector potential will be symmetric about z = 0, so the
solution on the interval [−h,−d/2] can be written as,

Az(0, 0,−h ≤ z ≤ −d/2) = C1 cos kz − C2 sin kz − iE0

kc
. (11)

To evaluate the constants of integration C1 and C2 we need additional conditions on
the system. In particular, we note that for a no-load (open circuit) receiving antenna, the
current I(z) must vanish at the ends of the conductors, i.e., at z = −h, −d/2, d/2 and h. In
the thin-wire approximation, the vector potential on the wire is proportional to the current
in the wire at that point, because of the 1/R dependence in eq. (3). In this approximation,
the needed conditions on the vector potential are that it also vanishes at the ends of the
conductors. From this we find,

C1 =
iE0

kc
, C2 = − iE0

kc

1 − cos kh

sin kh
. (12)

Equation (12) for C2 diverges for kh = π (h = λ/2, which indicates that our analysis is valid
only for h � λ/2. Better approximations are reviewed in [15].

Finally, from eq. (5) we obtain the open-circuit voltage across the terminals,

Voc = V (0, 0, d/2) − V (0, 0,−d/2) =
ic

k
(A′

z(0, 0, d/2) − A′
z(0, 0,−d/2))

= 2icC2 = −2E0

k

1 − cos kh

sin kh
. (13)

For a short antenna with kh � 1, the open-circuit voltage is,

Voc = −E0h (kh � 1), (14)

in agreement with the estimate via dimensional analysis.
The effective height of the antenna is,

Heff =

∣∣∣∣Voc

E0

∣∣∣∣ =
λ

π

1 − cos(2πh/λ)

sin(2πh/λ)
. (15)

3 Remarks

This example required a determination of the vector potential only at the antenna itself, and
so is somewhat simpler than the task of determining the response fields in all space around
the antenna. However, the method used here is readily extended to a full solution of the
antenna problem.

In particular, equations (3), (8) and (9) can be combined into an integral equation that
relates the incident electric field at the conductors to the response currents in those conduc-
tors, ∫

I(z′)(∂2
z + k2)

e−ikR

R dz′ = −4πik

Z0
Ein(z), (16)

where Z0 =
√

μ0/ε0 = 377 Ω. This is Pocklington’s integral equation [4], whose solution is
implemented numerically in codes such as NEC4 [13].
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3.1 Short-Circuit Current in a Receiving Antenna

For the receiving antenna, it is of interest to calculate the current across its terminals when
they are shorted. Then, using Thévenin’s theorem [16], we could characterize the behavior
of the antenna as part of the receiving circuit. An accurate calculation of the short-circuit
current (or its equivalent, the antenna terminal impedance ZA) can/must be made by solving
the integral equation (16).

Here, we illustrate the limitations of the thin-wire approximation in estimating the an-
tenna impedance. When the antenna terminals are shorted, the constraint (8) on the re-
sponse field that the total, tangential electric field vanish at the surface of the wire now
applies over the entire interval [−h, h]. Then, a symmetric solution to the differential equa-
tion (9) for the vector potential on this interval is,

Az(0, 0,−h ≤ z ≤ h) = C cos kz − iE0

kc
. (17)

To determine the constant C we again require that the current, and hence the vector potential
in the thin-wire approximation, vanish at the ends of the wire, z = ±h, such that,

Az(0, 0,−h ≤ z ≤ h) =
iE0

kc

cos kz − cos kh

cos kh
. (18)

Equation (18) for Az diverges for kh = π/2 (h = λ/4, which indicates that our analysis is
valid only for h � λ/2. Better approximations are reviewed in [15].

The thin-wire approximation to eq. (3) is that Az(0, 0, z) ≈ μ0I(z)/4π, so we estimate
that the short-circuit current at the terminals of the receiving antenna is,

Isc =
4π

μ0

iE0

kc

1 − cos kh

cos kh
=

4πiE0

kZ0

1 − cos kh

cos kh
, (19)

where Z0 =
√

μ0/ε0 = 377 Ω.2

2(Nov. 28, 2020) Wrenn Wooten noted that eq. (18) implies that the current on a thin wire of length 2h
parallel to E of the incident wave is given by,

I(|z| ≤ h) =
4πiE0

kZ0

cos kz − cos kh

cos kh
. (20)

If the conductor has resistance R, the rate of Joule heating is,

P =
1
2

∫
|I|2 dR =

1
2

∫ h

−h

|I|2 R

2h
dz =

4π2RE2
0

k2Z0 cos2 kh

(
1 − 3 sin2kh

kh
+ 2 cos2 kh

)
≈ 0.04RE2

0(kh)4

k2
, (21)

where the approximation holds for kh � 1.
An application of this is to currents induced in metallic implants in humans during an MRI scan [17].
Very close to the conductors, the radial electric field Eρ is related to the charge distribution q(z) eiωt along

the conductors by Gauss’ law,
Eρ(ρ >∼ a, φ, |z| ≤ h, t) ≈ q(z) eiωt

2πε0ρ
, (22)

in cylindrical coordinates (ρ, φ, z). The charge distribution can be obtained from the current distribution
I(z) eiωt via the continuity equation,

∂I

∂z
= −∂q

∂t
= −iωq, (23)
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The internal impedance ZA of the antenna is then, according to Thévenin’s analysis,

ZA =
Voc

Isc
≈ − iZ0

2π
cot kh. (26)

This correctly indicates that the reactance of a short linear antenna is capacitive and that the
reactance vanishes for h ≈ λ/2, but the predicted divergence of the reactance for kh � 1 is
unphysical. Furthermore, the real part of the current, and also of the impedance, is neglected
in the thin-wire approximation, so if the antenna were used as a transmitter, this analysis
indicates that it would not consume any energy from the rf power source, i.e., the antenna
would not radiate.3

3.2 Receiving Antenna with Load Impedance ZL

If the receiving antenna has a load impedance ZL attached to it, then according to Thévenin’s
analysis the current IL through the load will be,

IL =
Voc

ZA + ZL
. (27)

A difficulty with this approach is that the receiving antenna also scatters the incident electro-
magnetic field, so that the total power “dissipated” by the receiving antenna system includes
the power in the load plus the scattered power. The scattered electromagnetic fields Escat

and Bscat can be computed from the current IL which is also the terminal current of the
antenna, now considering the antenna to be a transmitter. However, the power transmitted
to “infinity” is described by the Poynting vector of the sum of the incident and scattered
fields, so if we write,

S = Sin + Sscat, (28)

then,

Sscat =
Escat × Bscat

μ0

+
Escat ×Bin + Ein × Bscat

μ0

, (29)

which depends on details of the incident wave as well as of the receiving antenna.4 Hence,
the scattered power is not well accounted for in a Thévenin analysis, as discussed on p. 43

so that,

q(z) =
i

ω

dI(z)
dz

=
iI′(z)

ω
. (24)

Thus,
Eρ(ρ >∼ a, φ, |z| ≤ h, t) ≈ iI′(z)

2πε0ωρ
eiωt =

iI′(z)Z0

2πkρ
eiωt. (25)

The peak electric field at the surface of the conductor can be estimated using eq. (20) for the current distri-
bution. The derivative I′(z) is greatest at the end of the conductor, |z| = h, where I′max = 4πiE0 tan(kh)/Z0,
and Emax = 2E0 tan(kh)/ka ≈ 2E0h/a.

3The real part of the antenna impedance, the so-called radiation resistance Rrad, can be well calculated
using the relation 〈P 〉 = I2

0Rrad/2, where 〈P 〉 is the time-average radiated power in the far zone as deduced
from an appropriate thin-wire approximation to the current distribution caused by the rf power source. See,
for example, [3].

4If the cross terms in eq. (29) could be ignored, then the (time-average) scattered power would simply be
the power associated with the scattered fields, |IL|2 ReZA/2, which is the power associated with impedance
ZA in the Thévenin analysis.
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of [18] and in [19]-[24].5,6

3.3 Transmitting Antenna

In the case of a transmitting antenna, the incident electric field is taken to be the internal
field Ein = Vin/d of an rf generator that is located in the gap of width d between the terminals
of the antenna. This internal field is the negative of the (response) field Ez in the gap in
the more realistic case that the rf generator is located some distance from the antenna and
connected to it via a transmission line. The incident electric field is zero elsewhere on the
conductors of the antenna. Then, the relation (8) can be extended for a center-fed linear
dipole antenna to read,

Ez(0, 0, z) = −Ein(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (−h < z < −d/2),

−Vin/d (−d/2 < z < d/2),

0 (d/2 < z < h).

(30)

However, use of the extreme form of the thin-wire approximation to solve eq. (16) for the
transmitting antenna leads to response currents that imply response fields with nonzero Ez

along the antenna conductors. While this approximation turns out to be good at predicting
the response fields in the far zone, greater care is required for a good understanding of the
response fields close to the antenna [15].

A Appendix: “Electric” and “Magnetic” Antennas

Antennas are sometimes characterized as “electric” or “magnetic” depending on whether,
when transmitting, their electric field E is greater or less than the magnetic field cB (SI units,
or just B in Gaussian units) in the near zone (less than one wavelength from the center of
the antenna).7 For example, small linear dipole antennas are “electric”, while small loop
antennas are “magnetic”.8

When considering antennas as receivers of electromagnetic waves, we note that only the
incident electric field is associated with a force on the conduction electrons that can change

5The current (27) in the load can also be computed in a Norton analysis where the receiving antenna
is regarded as a current source of strength Isc = Voc/ZA that is in parallel with the impedance ZA as well
as with the load impedance ZL. However, the Norton analysis suggests that the current into the antenna
terminals is ILZL/ZA which is not correct unless ZA = ZL. For this reason the author prefers the Thévenin
analysis of a receiving antenna to the Norton analysis.

6If no load is attached to the receiving antenna (equivalently, ZL = ∞), the antenna is being operated
“open circuit” but there is still power scattered by the antenna, whereas the Thévenin analysis predicts
IL = IA = 0 and hence no power dissipated by the antenna. Meanwhile, the Norton analysis predicts
IA = Isc (and nonzero power dissipation by the antenna) even though the antenna is actually “open circuit”.

7The energy stored in the near field of an “electric” antenna is dominantly that in the electric field, such
that the antenna’s terminal reactance is capacitative (impedance Z = R + iX with negative X), while the
energy stored in the near field of a “magnetic” antenna is primarily in the magnetic field and the reactance
is inductive (X > 0).

For comments on subtleties associated with antenna reactance, see [25].
8This is illustrated in the figure in sec. 2.2 of [26].
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their velocity/energy, since the magnetic force qv×B is perpendicular to v (whose direction
is along the wires of the antenna).

A.1 Small Loop Antenna

The terminal voltage of a small, loop, receiving antenna is conveniently computed via the
incident magnetic field B, which should be perpendicular to the plane of the loop for best
reception. Then, the integral form of Faraday’s law tells us that the magnitude of the
terminal voltage in a loop of radius r is, for, say, B = B0 ei(kx−ωt) ẑ with cB0 = E0,

Vloop =

∣∣∣∣−dΦB

dt

∣∣∣∣ ≈
∣∣iπr2ωB0

∣∣ =
πr2ωE0

c
= E0r

2π2r

λ
. (31)

This is much smaller than the terminal voltage E0r for a small linear antenna with arms of
length r, as discussed in sec. 2 above.

Faraday’s law can also be written as,

Vloop = −dΦB

dt
= − d

dt

∫
B · dArea = −

∫
∂B

∂t
· dArea = −

∫
∇ × E · dArea

=

∮
loop

E · dl, (32)

which latter form gives emphasis to E rather than B. That is, Faraday’s law, by itself, does
not allow us to say that the terminal voltage is “caused” by E or by B. Thus, it is misleading
to imply that a “magnetic” receiving antenna couples only to the incident magnetic field, as at
https://en.wikipedia.org/wiki/Loop_antenna#Magnetic_vs._electrical_antennas.

To show that the terminal voltage in the loop can be computed from the incident electric
field, we suppose the loop is in the x-y plane with its leftmost point at the origin, as in
the figure on the next page. The magnetic field is in the z-direction, perpendicular to the
loop, and the electric field is in the y-direction, Ey = E0 cos(kx−ωt). The induced EMF is
greatest when the time derivative of the incident magnetic (and electric) field is the greatest,
such as for ωt = 3π/2, when the electric field varies in space as Ey = −E0 sin(kx).

Self resonant antennas (with zero reactance) are neither “electric” nor ‘”magnetic”. Both linear and loop
antennas of appropriate dimensions can be self resonant, such that not all linear antennas are “electric”, and
not all loop antennas are “magnetic”.
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Then, for r � λ (kr � 1), and noting that x = r(1 − cos θ) for a point on the loop,

Vloop =

∮
E · dl =

∫ 2π

0

r dθ Ey cos θ = −rE0

∫ 2π

0

dθ sin(kx) cos θ

= −rE0

∫ 2π

0

dθ sin[kr(1 − cos θ)] cos θ ≈ −rE0

∫ 2π

0

dθ kr(1 − cos θ) cos θ

= πkr2E0 = E0r
2π2r

λ
, (33)

as previously found more simply in eq. (31).9
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