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1 Problem

Acceleration is not often considered in special relativity,1,2 but it can be,3 as in the following
problem.

A set of pointlike objects, each with initial velocity v0 = (u, 0, 0), initially moving ac-
cording to xi(t) = (i L+u t, 0, 0) in one inertial frame, begin accelerating at a constant value
a = (a, 0, 0) in the first frame at time t′i,0 = 0 in a second inertial frame that has velocity
v = (v, 0, 0) with respect to the first.4 Both a and v are positive.

What are the subsequent histories of these objects according to observers in these two
frames? Can these objects collide with one another for any values of a, L, u and v?

2 Solution

See the Appendix below for a general discussion of the Lorentz transformation of acceleration.
A constant acceleration a cannot be sustained indefinitely, as the speed u + aΔt of an

accelerated object in the first frame would eventually exceed the speed of light c, which is
impossible. So, this problem concerns only time intervals Δt of acceleration small enough
that all speeds are less than c.

While the objects start accelerating simultaneously in the second frame, they do not start
simultaneously in the first frame, due to the so-called relativity of simultaneity. This problem
will illustrate that when the acceleration is constant in the first frame this is not so in the
second frame, which effect could be called the relativity of acceleration.

Since all motion in this problem involves only the x-coordinates, it is sufficient to consider
the Lorentz transformations of only the x-coordinate and time between the two frames,

x′ = γ(x − v t), t′ = γ(t − v x/c2), (1)

x = γ(x′ + v t′), t = γ(t′ + v x′/c2), (2)

where γ =
1√

1 − v2/c2
. (3)

The theory of relativity is based, in part, on the premise that there is only a single

1One reason for this is that special relativity is often illustrated by “rods”, that can be regarded as rigid
bodies in inertial frames, but the acceleration of a rigid body is inconsistent with special relativity [1] (except
for constant acceleration in the rest frame of the body). https://en.wikipedia.org/wiki/Born_rigidity

2Acceleration in an F = ma context was mentioned in the final section of Einstein’s first relativity paper
[2], as reviewed in Appendix A below.

3Pedagogic discussions of acceleration in special relativity include [3]-[18].
4That is, the onset of the acceleration is simultaneous in the second inertial frame.
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“reality”, but different observers can describe this differently.5 For example, the start of
acceleration of object i is an “event”, described by coordinates (xi,0, ti,0) in the first frame
and coordinates (x′

i,0, t
′
i,0) in the second frame (where t′i,0 = 0 for all i). These two sets of

coordinates are related by the Lorentz transformations (1)-(2). However, there is only one
object with index i, not different objects labeled by index i in different frames.

A collision between two objects, say i and i − 1, would be an “event”, described by
coordinates (xi:i−1, ti:i−1) in the first frame and coordinates (x′

i:i−1, t
′
i:i−1) in the second frame.

Again, these two sets of coordinates would be related by the Lorentz transformations (1)-(2).
However, there is only one collision between two objects, not different collisions in different
frames. That is, if a collision occurs in one frame, it occurs in all, or if there is no collision
in one frame there is no collision in any other.

In the present example, we will find no collisions in either frame, by somewhat different
arguments in the two frames.

2.1 History during the Acceleration in the First Frame

Before time t′i,0 = 0 in the second frame, all objects i are in uniform motion, xi(t) = i L+u t,
in the first frame.

These objects start accelerating in the first frame at times ti,0 that can be determined
from the time transformation of eq. (1),

ti,0 =
v xi,0

c2
+

t′i,0
γ

=
v xi,0

c2
=

v(i L + u ti,0)

c2
, ti,0 =

i v L

c2(1 − u v/c2)
. (4)

The acceleration motion of object i in the first frame is given by,

vi(t) = u + a(t − ti,0), xi(t) = xi,0 + u (t − ti,0) +
a

2
(t − ti,0)

2 (ti,0 < t < ti,f) , (5)

where ti,f = ti,0 + (c − u)/a such that vi ≤ c always.
That is, under the assumption of constant acceleration a in the first frame, object i

(if it did not collide with any other object) would reach the speed of light (after infinite
expenditure of energy by the accelerating mechanism) at the “final” time ti,f and “final”
position xi,f related by,

ti,f = ti,0 +
c − u

a
, xi,f = xi,0 + u (ti,f − ti,0) +

a

2
(ti,f − ti,0)

2 . (6)

2.1.1 Do the Objects Collide with One Another?

However, the motion (5) actually holds only if object i does not collide with either of its
nearest neighbors i − 1 and i + 1 while accelerating.

Supposing that there is no limit to the duration of the acceleration, objects i and i − 1
collide at time ti:i−1 related by xi(ti:i−1) = xi−1(ti:i−1),

xi,0 + u (ti:i−1 − ti,0) +
a

2
(ti:i−1 − ti,0)

2 = xi−1,0 + u (ti:i−1 − ti−1,0) +
a

2
(ti:i−1 − ti−1,0)

2 , (7)

5This premise contrasts with that of the “multiverse” interpretation of quantum theory in which different
observers experience different events in different universes.
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xi,0 − xi−1,0 + u(ti−1,0 − ti,0) +
a

2

[
2ti:i−1(ti−1,0 − ti,0) + t2i,0 − t2i−1,0

]
= 0, (8)

ti:i−1 =
xi,0 − xi−1,0

a(ti,0 − ti−1,0)
− u

a
+

ti,0 + ti−1,0

2
, (9)

ti:i−1 = ti,0 +
c2

a v

(
1 − u v

c2

)
− ti,0 − ti−1,0

2
= ti−1,0 +

c2

a v

(
1 − u v

c2

)
+

ti,0 − ti−1,0

2
. (10)

In particular, the supposed collision occurs at time,

ti:i−1 = ti−1,0 +
c − u

a
+

c2

a v

(
1 − u v

c2

)
− c − u

a
+

ti,0 − ti−1,0

2

= ti−1,f +
c

a

( c

v
− 1
)

+
v L

2c2(1 − u v/c2)
> ti−1,f , (11)

which is after time ti−1,f when object i− 1 stopped accelerating (its velocity having reached
the speed of light), independent of the initial velocity u. Hence, object i− 1 would actually
never catch up to object i, and no collision occurs.

Another way to see this is to consider the velocity of object i − 1 at the time of the
supposed collision,

vi−1(ti:i−1) = u + a(ti:i−1 − ti−1,0) = u +
c2

v

(
1 − u v

c2

)
+

a v L

2c2(1 − u v
c2

)
=

c2

v
+

a v L

2c2(1 − u v
c2

)
,(12)

which is greater than the speed c of light for any value of u.
The figures below shows xi(t) and vi(i)/c for i = 0 and 1, for parameters L = 1, a/c2 = 1,

v/c = 0.3 and u/c = −0/9.6 While the objects formally collide at c t = 3, both of their
velocities are greater than c at this time. That is, the collision did not actually occur.

2.2 History during the Acceleration in the Second Frame

Since no collisions between objects i occur in the first frame for any initial velocity u, we
restrict the rest of this note to the case u = 0, which simplifies the algebra.7

6http://kirkmcd.princeton.edu/examples/rel_accel.xlsx
7We display one result in the second frame for arbitrary initial velocity u in the first frame of the objects,

namely, the separation L′ = x′
i,0−x′

i−1,0 between adjacent objects in the second frame at time t′i = 0. Recall
from eq. (4) that the coordinates of object i at time t′i = 0 are xi,0 = i L+u ti,0, ti,0 = i v L/c2(1−u v/c2). The
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In the second frame, which has velocity v relative to the first, all objects i start acceler-
ating at time t′i,0 = 0, and positions x′

i,0 that can be computed from the x-transformation of
eq. (2),

x′
i,0 =

xi,0

γ
− v t′i,0 =

xi,0

γ
=

i L

γ
, (13)

which we recognize as an example of the Lorentz contraction of objects in motion with
respect to an observer (here in the second frame).8 The initial velocity of object i in the
second frame is, of course, vi,0 = −v (for u = 0).

The “final” time and position of object i (in the absence of any other objects) in the
second frame, when and where its speed would reach c, can be computed using the Lorentz
transformations (1), along with eq. (6),9

x′
i,f = γ(xi,f − v ti,f) = γ

(
i L +

c2

2a
− i v2L

c2
− c v

a

)
=

i L

γ
+

γ c

a

(c

2
− v
)

, (16)

t′i,f = γ
(
ti,f − v xi,f

c2

)
= γ

(
i v L

c2
+

c

a
− i v L

c2
− v

2a

)
=

γ

a

(
c − v

2

)
. (17)

The “final” velocity of object i is, of course, v′
i,f = c.

2.2.1 Is the Acceleration of Object i Constant in the Second Frame?

If the motion object i in the second frame were that of constant acceleration a′
i, its velocity

v′
i(t

′) would have the time dependence during the interval [t′i,0, t
′
i,f ] = [0, t′i,f ],

v′
i(t

′) = v′
i,0 + a′

i(t
′ − t′i,0) = −v + a′

it
′, (18)

Lorentz transformation (1) yields x′
i,0 = γ(xi,0−vti,0) = γ(i L+(u−v)ti,0) = γi l[1+(u−v)v/c2(1−u v/c2)] =

γiL(1 − v2/c2)/(1 − u v/c2) = iL/γ(1 − u v/c2). Hence, L′ = x′
i,0 − x′

i−1,0 = L/γ(1 − u v/c2).
In a third frame, denoted by �, in which the objects are initially at rest, the initial separation between ad-

jacent objects is L�. Their separation L in the first frame is related by L = L�/γu where γu = 1/
√

1 − u2/c2.
The velocity of the objects in the second frame is u′ = (u − v)/(1 − uv/c2), according to the Lorentz

transformation of velocity from the first frame. Then, we also have that L′ = L�/γu′ = γuL/γu′ , where
γu′ = 1/

√
1 − u′2/c2, and that γu′ = γγu(1 − u v/c2).

If u = 0, then the first and third frames are the same, and L′ = L/γ = L�/γ, which is the Lorentz
contraction of distance L, which now corresponds to that, L�, between two objects at rest in the first frame.

8We could also have used the x-transformation of eq. (1),

x′
i,0 = γ(xi,0 − v ti,0) = γ

(
i L − v

i v L

c2

)
= γ iL

(
1 − v2

c2

)
=

i L

γ
, (14)

or the time-transformation of eq. (2),

t = γ(t′ + v x′/c2),
v x′

i,0

c2
=

ti,0
γ

− t′i,0 , x′
i,0 =

c2

v

i v L

γ c2
=

i L

γ
. (15)

9It is “amusing” that for v > c/2, the “final” position in the second frame for the object with i = 0, is
at negative x′, while its “final” position in the first frame is at positive x.
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and in particular, recalling eq. (17),

v′
i(t

′
i,f) = c = −v + a′

it
′
i,f , a′

i =
c + v

t′i,f
=

a

γ

c + v

c − v/2
. (19)

Also, the position x′
i(t

′) during this time interval would be related by,

x′
i(t

′) = x′
i,0 − vt′ +

a′
it
′2

2
=

i L

γ
− vt′ +

a′
it
′2

2
, (20)

and in particular,

x′
i(t

′
i,f) =

i L

γ
+

γc

a

(c

2
− v
)

=
i L

γ
− v

γ

a

(
c − v

2

)
+

a′
i

2

γ2

a2

(
c − v

2

)2

a′
i =

a

γ3

c2

(c − v/2)2
.(21)

The two computations (19) and (21) of the supposedly constant acceleration a′
i disagree,

which contradiction indicates that this acceleration is not actually constant.
Thus, we have a first lesson in the relativity of acceleration:

Acceleration that is constant in one inertial frame is not constant in another.10

We now examine the motion of the objects in the second frame in more detail, to deter-
mine the time dependence of the acceleration a′

i(t
′).

2.2.2 Transformation of the History (xi, ti) from the First to the Second Frame

The history of object i in the first frame when accelerating is given in eq. (5) with u = 0,

xi(ti) = xi,0 +
a

2
(ti − ti,0)

2
= i L +

a

2

(
ti − i v L

c2

)2 (
ti,0 =

i v L

c2
< ti < ti,0 +

c

a

)
. (22)

The transformation of this history into the second frame can be made using eq. (1),

x′
i

γ
= xi − v ti = i L +

a

2

(
ti − i v L

c2

)2

− v ti, (23)

t′i
γ

= ti − v xi

c2
= ti − v

c2

[
i L +

a

2

(
ti − i v L

c2

)2
]

. (24)

To convert eq. (23) to a history of the form x′
i(t

′
i) we need to know ti as a function of t′i,

which we can obtain from eq. (24),

a t2i
2

− c2ti

v
− 2i a v L ti

2c2
+ i L +

i2a v2L2

2c4
+

c2t′i
γ v

= 0,

t2i − 2

(
c2

a v
+

i v L

c2

)
ti +

2i L

a
+

i2a v2L2

c4
+

2c2t′i
γ a v

= 0, (25)

ti =
c2

a v
+

i v L

c2
±
√(

c2

a v
+

i v L

c2

)2

−
(

2i L

a
+

i2v2L2

c4
+

2c2t′i
γ a v

)
. (26)

10An exception is the case where the acceleration vector a is perpendicular to the relative velocity vector
v between the two frames. Here, the acceleration is constant in both frames, although with values that differ
by a factor of γ2.
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Note that in arriving at eq. (26), we have divided by the acceleration a in the first frame, so
if this acceleration is zero, this relation is not valid.

Since ti = i v L/c2 when t′i = 0, we use the negative square root,

ti =
i v L

c2
+

c2

a v

(
1 −

√
1 − 2a v t′i

γ c2

)
, (27)

(
ti − i v L

c2

)2

=
2c4

a2v2

(
1 −

√
1 − 2a v t′i

γ c2
− a v t′i

γ c2

)
. (28)

Using this in eq. (23), we obtain the history of object i in the second frame,

x′
i

γ
= i L +

c4

a v2
− c4

a v2

√
1 − 2a v t′i

γ c2
− c2t′i

γ v
− i v2 L

c2
− c2

a
+

c2

a

√
1 − 2a v t′i

γ c2

=

(
1 − v2

c2

)(
i L +

c4

a v2
− c4

a v2

√
1 − 2a v t′i

γ c2

)
− c2t′i

γ v
, (29)

x′
i(t

′
i) =

1

γ

(
i L +

c4

a v2
− c4

a v2

√
1 − 2a v t′i

γ c2

)
− c2t′i

v
. (30)

Taking time derivatives of eq. (30), we obtain the velocity and acceleration of object i in the
second frame,11

v′
i(t

′
i) =

c2

γ2v
√

1 − 2av t′i
γ c2

− c2

v
, v′

i(0) = −v, v′
i(t

′
i,f ) = c for t′i,f =

γ

a

(
c − v

2

)
, (31)

a′
i(t

′
i) =

a

γ3
(
1 − 2av t′i

γ c2

)3/2
. (32)

The velocity v′
i of eq. (31), as observed in the second frame, begins at −v at t′ = 0 when

the acceleration starts, as expected, and reaches the speed of light at time t′i,f as previously
found in eq. (17). The acceleration a′

i is the same for all objects i as observed in the second
frame, but is time dependent, while the acceleration a in the first frame is constant. This
illustrates the “relativity of acceleration” as discussed in sec. 2.2.1 above.

2.2.3 No Collisions in the Second Frame

A consequence of eqs. (30) and (32) is that adjacent objects maintain constant separation
L/γ during their acceleration as observed in the second frame, and hence do not collide, in
agreement with the argument of sec. 2.1.1 above.

11With some effort we can rewrite eq. (32) as a′
i = a/γ3(1 − viv/c2)3, which agrees with the expressions

for a′
x found in eqs. (45) and (55), noting that the acceleration ai = (a, 0, 0) and velocity ui = (vi, 0, 0) of

object i in the first frame are both in the x-direction.
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2.3 Separation of Neighboring Objects According to an Observer

that Accelerates with One of Them

As discussed, for example, in Appendix B of [19], the separation between two objects in an
accelerated frame of reference at some moment is that same as that in an inertial frame with
the same instantaneous velocity as the accelerated frame (at that moment).

We consider objects 0 and −1 for the case that their initial velocity u is zero in the
unprimed inertial frame, and emphasize the accelerated frame associated with object 0.12

Then according to eqs. (4) and (5), their accelerated motion with respect to the unprimed
frame is given by,

vi(t) = a(t − ti,0), xi(t) = iL +
a

2
(t − ti,0)

2

(
ti,0 =

i v L

c2
< t < ti,0 +

a

c

)
, (33)

At some later time 0 < t < −vL/c2 + a/c, when both objects −1 and 0 are still accelerating
their separation in the unprimed frame are,

x0(t)− x−1(t) = L − av2L2

2c4
− avL t

c2
> 0, (34)

and object 0 has velocity v0(t) = a t with respect to the unprimed frame. As discussed
in sec. 2.1.1 above, the two objects never collide before they stop accelerating (when their
speeds reach c, although their separation (in the unprimed frame) decreases with time.

Qualitatively, we also expect that the separation between the two objects decreases with
time according to an observer accelerated along with object zero.

However, a detail computation of this is complicated, because we must deduce to location
of object −1 in the ′′ inertial frame that has velocity v′′ = v0(t) = at with respect to the
unprimed frame, at time t′′0 corresponding to time t in the unprimed frame.

The Lorentz transformation between these two inertial frames is,

x′′ = γ′′(x− v′′ t), t′′ = γ′′(t − v′′ x/c2), (35)

x = γ′′(x′′ + v′′ t′′), t = γ′′(t′′ + v′′ x′′/c2), (36)

where γ′′ =
1√

1 − (v′′/c)2
. (37)

At time t, object 0 has coordinates,

x′′
0 = γ′′

(
at2

2
− v′′ t

)
, t′′0 = γ′′

(
t − av′′ t2

c2

)
. (38)

We now need to deduce the position X ′′ = x′′
−1(t

′′
0) of object −1 in the ′′ frame at time t′′0,

such that the separation Δ between objects −1 and 0 in the accelerated frame of object 0 is

Δ = x′′
0 − X ′′. (39)

12We consider the second object to have index −1 rather than 1 so that it is already accelerating at the
time t = 0 when object 0 begins accelerating with respect to the unprimed inertial frame.
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For this, we use the Lorentz transformation (36) of X ′′ and t′′0 back into the unprimed
frame, where when know the motion of object −1,

x−1 = γ′′(X ′′ + v′′ t′′0), t−1 = γ′′(t′′0 + v′′ X ′′/c2), (40)

These coordinates, x1 and t−1 are related by eq. (33), which gives us a quadratic equation
for the quantity X ′′,

x−1 = γ′′(X ′′ + v′′ t′′0), =
a

2

[
γ′′
(

t′′0 +
v′′ X ′′

c2

)
+

vL

c2

]2

− L, (41)

After solving this equation for X ′′, all the ingredients of the separation (39) are in hand, but
an analytic expression for Δ is very cumbersome.

A Appendix: Transformations of Velocity and

Acceleration

The transformation of velocity in special relativity was considered by Einstein in sec. 5 of his
first paper [2], for a particle with velocity u = dx/dt in the inertial lab frame, and velocity
u′ in an inertial frame that has (constant) velocity v = v x̂ with respect to the lab frame.

The Lorentz transformation of coordinates (x, y, x, z) in the lab frame to coordinates
(x′, y′, z′, t′) in the moving frame can be written as,13

t′ = γ(t − vx/c2), x′ = γ(x − vt), y′ = y, z′ = z, γ =
1√

1 − v2/c2
. (42)

Taking time derivatives of eq. (42), we find,14

dt′

dt
= γ(1 − vux/c

2), u′
x =

dx′

dt′
=

dx′/dt

dt′/dt
=

ux − v

1 − vux/c2
,

u′
y =

dy′

dt′
=

dy/dt

dt′/dt
=

uy

γ(1 − vux/c2)
, u′

z =
dz′

dt′
=

dz/dt

dt′/dt
=

uz

γ(1 − vux/c2)
. (43)

Einstein [2] emphasized the magnitudes u and u′, defining α to be the angle between u and
v, such that ux = u cos α,

u′ =

√
(u cosα − v)2 + (u sinα)2(1 − v2/c2)

γ(1 − vu cosα/c2)3
=

√
u2 + v2 − 2vu cos α − (vu sinα/c)2

1 − vu cosα/c2
. (44)

13As Einstein discussed in secs. 1 and 2 of [2], the theory of special relativity differs from Galilean relativity
by the presence of three effects: the relativity of simultaneity, the Lorentz contraction, and the time dilation
between observations made in inertial frames that are in motion with respect to one another. In the Lorentz
transformation (42), we can say that the factor of γ in the relation t′ = γ(t − vx/c2) is associated with the
time dilation, while the offset vx/c2 is a manifestation of the relativity of simultaneity, and the factor of γ
in the relation x′ = γ(x − vt) is associated with the Lorentz contraction.

14Following the sense of the preceding footnote, we can say that the factor 1 − vux/c2 which appears in
eq. (43) is a result of the relativity of simultaneity, while the factor γ which appears in the equations for u′

y

and u′
z is a result of the time dilation.
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Taking time derivatives of eq. (43), we find,

a′
x =

du′
x

dt′
=

du′
x/dt

dt′/dt
=

ax

γ3(1 − vux/c2)3
,

a′
y =

du′
y

dt′
=

du′
y/dt

dt′/dt
=

ay

γ2(1 − vux/c2)2
+

axv

c2

uy

γ2(1 − vux/c2)3
,

a′
z =

du′
z

dt′
=

du′
z/dt

dt′/dt
=

az

γ2(1 − vux/c2)2
+

axv

c2

uz

γ2(1 − vux/c2)3
. (45)

These results do not appear in Einstein’s first paper [2],15 where he considered only the limit
that u, v and u′ are all small compared to c, but ignored that γ ≈ 1 in this limit, to write,

a′
x ≈ ax

γ3
, a′

y ≈ ay

γ2
, a′

z ≈ az

γ2
. (46)

Then, using the forms (46) in the lab-frame relation F = m a he made the unfortunate
inference that in the moving frame we could write F ′

x = γ3m a′
x, F ′

y = γ2m a′
y, and F ′z =

γ2m a′
z, which led him to introduce the notions of longitudinal mass γ3m and transverse

mass γ2m.16

A important clarification was made by Planck (1906) [21] who argued that Newton’s 2nd

is better expressed as: force equals rate of change of momentum, and used the Lorentz force
on an electric charge e and rest mass m as an example,

F =
dP

dt
=

d

dt
(γumu) = γum

(
a +

γ2
u(a · u)

c2
u

)
= e

(
E +

u

c
× B

)
, γu =

1√
1 − u2/c2

.(47)

In this, one could speak of a single relativistic mass γum, although Einstein never liked this
terminology.17

The next step in the evolution of the concepts of velocity and acceleration in special
relativity was the introduction of 4-vectors by Minkowski (1908) [25]. After Minkowski’s
untimely death in Jan. 1909, the use of 4-vectors was quickly championed by Sommerfeld,
including [26] on the velocity 4-vector.

We consider the position 4-vector xμ = (x0, x1, x2, x3) = (ct, x, y, z), and the velocity
4-vector uμ,

uμ =
dxμ

dτ
= (γuc, γuu), γu =

1√
1 − u2/c2

, (48)

where u = dx/dt in the (inertial) “lab” frame in which the components of uμ are given above,
and dτ = dt/γu is the interval of proper time for an observer/clock with velocity u. We can

15Equation (45) may have first appeared in sec. 42, p. 48 of [20].
16Einstein was aware of the doubtful character of his inference, commenting [2]: With a different definition

of force and acceleration we should naturally obtain other values for the masses. This shows us that in
comparing different theories of the motion of the electron we must proceed very cautiously.

17The convenience of introducing the relation m = γum0, where m0 in the invariant/rest mass was
emphasized by Lewis, starting with eq. (15), p. 711 of [22] (1908). The term relativistic mass was perhaps
first used by Born, eq. (87), p. 203 of [23] (1922). A review of Einstein’s attitudes on this is given in [24].
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transform eq. (48) to the ′ inertial frame that has velocity v with respect to the “lab” frame
by first decomposing velocity u into components u‖ = (u · v̂) v̂ and u⊥ = u − u‖ that are
parallel and perpendicular to the velocity v. Then, the Lorentz transformation (γu′c, γu′u′)
of the 4-vector (γuc, γuu) has components,

γu′c = γ(γuc − γuu‖v/c), γu′u′
‖ = γ(γuu‖ − γuv), γu′u′

⊥ = γuu⊥, (49)

u′
‖ =

u‖ − v

1 − u‖v/c2
=

u‖ − v

1 − u · v/c2
, u′

⊥ =
u⊥

γ(1 − u · v/c2)
, γ =

1√
1 − v2/c2

, (50)

as previously found in eq. (43).
It is now natural to consider the 4-acceleration aμ to be defined as,

aμ =
duμ

dτ
=

(
γuc

dγu

dt
, γu

d γuu

dt

)
=
(
γ4

u(a · u)/c, γ2
ua + γ4

u(a · u)u/c2
)
, (51)

where a = du/dt = a‖ + a⊥. The Lorentz transformation of eq. (51) has components,

γ4
u′(a′ · u′)/c = γ

[
γ4

u(a · u)/c − γ2
ua‖v/c − γ4

u(a · u)u‖v/c3
]

= γ
[
(1 − u · v/c2)γ4

u(a · u)/c − γ2
u(a · v)/c

]
, (52)

γ2
u′a′

‖ + γ4
u′(a′ · u′)u′

‖/c
2 = γ

[
γ2

ua‖ + γ4
u(a · u)u‖/c2 − γ4

u(a · u)v/c2
]
, (53)

γ2
u′a′

⊥ + γ4
u′(a′ · u′)u′

⊥/c2 = γ2
ua⊥ + γ4

u(a · u)u⊥/c2, (54)

a′
‖ =

a‖
γ3(1 − u · v/c2)3

, a′
⊥ =

a⊥
γ2(1 − u · v/c2)2

+
a · v/c2

γ2(1 − u · v/c2)3
u⊥, (55)

as previously found in eq. (45).18,19

A.1 u = v (Mar. 6, 2022)

A special case of interest is for u = v (u⊥ = 0), in which case the ′ frame is the instantaneous
inertial rest frame of the accelerated particle. Then, (1 − u · v/c2)3 = 1/γ6, recalling that
γ = 1/

√
1 − v2/c2, and the transformation of the acceleration is,

a′
‖ = γ3a‖, a′

⊥ = γ2a⊥, (u = v). (56)

In particular, for acceleration along a straight line (a⊥ = 0),

a′ = γ3a (u = v, a ‖ v). (57)

This has the implication, according to the equivalence principle, that the apparent weight
ma′ of a particle of mass m which has acceleration a with respect to the inertial lab frame
is γ3ma for acceleration in a straight line. If the “particle” were an observer who noted a
variation of (her)/his apparent weight with time, (s)he would know (s)he is not at rest in

18The author finds it surprising that the relations (55) seem to be incorrectly stated in eqs. (18)-(19),
p. 318 of [27], and also in sec. 26 of [28] where eq. (193) is valid but eq. (194) is not.

19The transformation of acceleration is expressed in an alternative notation in sec. V of [29].
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a gravitational field.20 Of course, such variation would only be noticeable on the velocity
became “large”.

For acceleration a that is constant in the inertial lab frame, v = at if the particle starts
from rest at t = 0. Then, the particle would reach the speed of light at time t = c/a. At
this time, the acceleration (57) in the inertial rest frame of the particle would be infinite,
requiring an infinite force, and infinite expenditure of energy in that frame.21

A.2 Accelerated Frames of Reference (Apr. 29, 2022)

The preceding discussion considered only inertial frames. Some discussion of accelerated
frames in special relativity is given in [30], including the fact the acceleration of one frame
with respect to another accelerated frame is not necessarily equal and opposite to the accel-
eration of the second accelerated frame with respect to the first. This contrasts with the fact
that the relative velocity one inertial frame with respect to another is equal and opposite to
that of the second inertial frame with respect to the first.

This problem was suggested by David Seppala. Thanks to Jacques Distler for helpful
comments on an earlier version of this note, and to Richard Kaufman for inspiring Appendix
A.1.
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