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1 Problem

A static magnetic field completely penetrates a resistive conductor that is at rest. Discuss
the case that the conductor is a cylinder with uniform velocity v � c perpendicular to its
axis and to the direction of the external magnetic field, where c is the speed of light in
vacuum.

Discuss the flow of energy in a dynamo based on a resistive cylinder that slides on a
U-shaped track in a transverse magnetic field.

2 Solution

The cylinder has radius a, resistivity ρ, and its axis, which is parallel to the z-axis, moves
with velocity v = v ŷ, where v is small compared to the speed of light c. The external
magnetic field in the lab frame is B0 = B0 x̂.

2.1 Analysis in the Rest Frame of the Cylinder

In the rest frame of the resistive cylinder (where quantities are denoted with the superscript
′) the external field includes both electric and magnetic components, which are for v � c
and in Gaussian units,

E′
0 ≈ E0 +

v

c
×B0 = −v

c
B0 ẑ, B′

0 ≈ B0 − v

c
× E0 = B0 x̂, (1)

as E0 = 0. The axial electric field in the rest frame of the cylinder drives an axial current
density inside the cylinder given by,

J′(r′ < a) =
E′

0

ρ
= −vB0

cρ
ẑ ≡ − I0

πa2
ẑ, i .e., I0 =

πa2vB0

cρ
=

vB0

cR0
, (2)

where (r′, θ′, z) are cylindrical coordinates with origin at the axis of the cylinder, ρ is the
resistivity of the cylinder, I0 is the total current (defined to be positive), and R0 = ρ/πa2

is the resistance per unit length of the cylinder along its axis.1 This current creates an
azimuthal magnetic field in the rest frame of the cylinder given by,

B′
θ′ = −θ̂′

⎧⎨
⎩

2r′I0
a2c

= 2πr′vB0

c2ρ
(r′ < a),

2I0
cr′ = 2πa2vB0

c2r′ρ (r′ > a).
(3)

1The current flows only if the cylinder is connected to some return current path at “infinity” (whose
resistivity is small compared to ρ). A cylinder of finite length (with no return-current path) would develop
a charge separation that produces an electric field −E′

0 inside the cylinder, after which no current flows.
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Because the static field B′
0 penetrates the resistive cylinder, the current density (2)

experiences a Biot-Savart force density,

f ′ =
J′

c
× (B′

0 + B′
θ′) = −vB2

0

c2ρ
ŷ − 2rI2

0

πa4c2
r̂′ ≈ −I2

0R0

πa2v
ŷ. (4)

The radial force is of order v2/c2 and will be ignored here.2 The transverse force component
f ′

y was first identified by Hall [2], who realized that for steady flow of (negative) charge
carriers with drift velocity vd = vd ẑ (and negative charge density �− such that J ′z = �−vd)
there must be a transverse electric field,3,4

E′
H(r′ < a) = −vd

c
× B′

0 = −vdB0

c
ŷ = −vdB0

c

(
sin θ′ r̂′ + cos θ′ θ̂′

)
. (5)

This field, which is uniform inside the cylinder, is established by a surface charge density,

σ′ =
vdB0 sin θ′

2πc
, (6)

on comparing, for example, with sec. 2 of [4]. Outside the cylinder, the Hall field is,

E′
H(r′ > a) = −vdB0a

2

cr′2
(
− sin θ′ r̂′ + cos θ′ θ̂′

)
. (7)

The electric field E′ does work per unit length on the current density J′ at the rate,

P ′
E =

∫ a

0

dr′
∫ 2π

0

r′ dθ′ J′ · E′ = πa2J ′E ′
0 = πa2ρJ ′2 =

ρI2
o

πa2
= I2

0R0, (8)

which equals the power per unit length dissipated in the resistance of the cylinder. The
magnetic force density f ′B = J′/c × B′ = �−vd/c ×B′ does work at the rate vd · f ′ = 0.

The Poynting vector just outside the surface of the cylinder in the rest frame is,

S′(r′ = a+) =
c

4π
E′(r′ = a+) × B′(r′ = a+) =

c

4π
(E′

0 + E′
H) × (B′

0 + B′
θ′)

≈ c

4π

(−vB0

c
ẑ − vdB0a

2

cr′2

(
− sin θ′ r̂′ + cos θ′ θ̂′

))

×
(

B0

(
cos θ′ r̂′ − sin θ′ θ̂′

)
− 2I0

ac
θ̂′

)
(9)

= −vB2
0

4π

(
sin θ′ r̂′ + cos θ′ θ̂′

)
− I2

0R0

2πa
r̂′ −

(
vdB

2
0 cos 2θ′

4π
− vdB0I0 sin θ′

2πac

)
ẑ.

2At order v2/c2 there must be a net volume charge density in the cylinder to cancel this force. This
illustrates that a current-carrying wire is not electrically neutral in its rest frame. See, for example, [1].

3The Hall field (5) leads to a voltage difference 2avdB0/c across a diameter of the wire in y, which
permits determination of the drift velocity vd.

4See [3] for a discussion of the relation between the Hall field (5) and the Lorentz force (4) felt by the
lattice ions of the sliding bar.
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The total electromagnetic power flowing into the cylinder per unit length in z is,

P0 = −
∫ 2π

0

S ′
r′(r

′ = a+) a dθ′ = I2
0R0 = P ′

E , (10)

which provides the power that the electric field delivers to the current density J′.
This power is dissipated in Joule heating, PJoule = I2

0R0 = P0 per unit length, which
power cannot come from a mechanical force on the cylinder, as it is at rest. The power must
come from an electromagnetic source, as suggested by eqs. (9)-(10), but this source is not
obvious.

Recall that the cylinder experiences a force F′ per unit length in the y-direction as given
by πa2 times the force density of eq. (4), i.e., F′ = −P0 ŷ/v. This force is due to the external
magnetic field, so we expect an electromagnetic reaction force −F′ on the source of the
external magnetic field, which source has velocity −v ŷ in the rest frame of the cylinder. The
magnetic source is kept in steady motion by a mechanical force Fmech = −(−F′). Hence, the
force on the magnetic source is doing mechanical work at the rate Pmech = −v ŷ ·Fmech = P0.

In the rest frame we consider that the moving magnetic source acts as a transducer of
mechanical power into electromagnetic power, which then flows into the resistive cylinder.

2.2 Quantities in the Lab Frame of the Cylinder

We now return to the lab frame, where the electric and magnetic fields are related to order
v/c to their values in the rest frame by,

E ≈ E′ − v

c
×B′ ≈ E′

0 + E′
H − v

c
× (B′

0 + B′
θ′) ≈ EH + Ev, (11)

B ≈ B′ +
v

c
× E′ ≈ B′

0 + B′
θ′ +

v

c
× (E′

0 + E′
H) ≈ B0 + Bθ′, (12)

where,5,6

EH = E′
H = −vdB0

c

⎧⎨
⎩

sin θ′ r̂′ + cos θ′ θ̂′ = ŷ (r′ < a),

a2

r′2

(
− sin θ′ r̂′ + cos θ′ θ̂′

)
(r′ > a),

(13)

Ev = −v

c
× B′

θ′ =
2vI0 sin θ′

c2
ẑ

⎧⎨
⎩

r′/a2 (r′ < a),

1/r′ (r′ > a),
(14)

B0 = B0 x̂ = B0

(
cos θ′ r̂′ − sin θ′ θ̂′

)
, (15)

Bθ′ = B′
θ′ = −θ̂′

⎧⎨
⎩

2r′I0
a2c

= 2πr′vB0

c2ρ
(r′ < a),

2I0
cr′ = 2πa2vB0

c2r′ρ (r′ > a).
(16)

5A common argument is that conduction electrons (of charge e), which have velocity component vy = v
because of the motion of the cylinder, experience a Lorentz force ev ŷ × B0/c = −evB0 ẑ/c, which implies
that there is an effective electric field Ev = −vB0 ẑ/c, sometimes called the motional electric field.

6The field Ev is also equal to −∂A/∂ct, where A is the time-dependent vector potential of the moving
magnetic field Bθ′ ≈ B′

θ′ in the lab frame.
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The bulk current density J in the lab frame is related to quantities in the rest frame of
the cylinder by,

J ≈ J′ + �′v ≈ J′ = −vB0

cρ
ẑ, (17)

noting that the volume charge density �′ in the rest frame is of order v2/c2. The volume
charge density � in the lab frame is given by,

� ≈ �′ +
v · J′

c2
≈ 0. (18)

There is a surface charge density on the cylinder in the lab frame, given by,

σ ≈ σ′ +
v ·K′

c2
= σ′ = −vdB0 sin θ′

2πc
, (19)

since there is no surface current density K on a resistive cylinder.
As a check, we verify that the current density obeys the “generalized Ohm’s Law”,

J =
1

ρ

(
E +

vtotal

c
× B

)
=

1

ρ

[
(EH + Ev) +

v + vd

c
× (B0 + Bθ′)

]

=
1

ρ

[(
−vd

c
× B0 − v

c
× Bθ′

)
+

v + vd

c
× (B0 + Bθ′)

]

=
1

ρ

(v

c
× B0 +

vd

c
×Bθ′

)
= −vB0

cρ
ẑ +

2πr′vvdB0

c3ρ
r̂′ ≈ −vB0

cρ
ẑ. (20)

In the lab frame the current density J appears to be driven by the Lorentz force v/c × B0,
and not by the electric field there. That is, the lab-frame electric field E does work per unit
length on the current density J at the rate,

PE =

∫ a

0

dr′
∫ 2π

0

r′ dθ′ J · E = 0. (21)

The current density consists of flow of both positive and negative charges, J = �+v+�−(v+
vd) = �−vd, as the cylinder is neutral. The work done by magnetic force density J/c × B
must be calculated separately for the positive and negative densities as these have different
velocities. Then, no work is done by the magnetic force density, since,

v · �+v/c × B + (v + vd) · �−(v + vd)/c × B = 0. (22)

2.2.1 Forces on the Cylinder

Force is invariant under Lorentz transformations to order v/c, so the force per unit length
on the cylinder in the lab frame is,

F = F′ = −P

v
ŷ = −I2

0R0

v
ŷ = −B0I0

c
ŷ. (23)

4



That is, the total force per unit length on the cylinder is just the Biot-Savart force I0×B0/c
of the external magnetic field on the current.

If the cylinder is to move with constant velocity v ŷ the electromagnetic force (34) must
be opposed by a mechanical force Fmech = B0I0 ŷ/c, which does work on the moving cylinder
at rate Pmech = Fmech · v = vB0I0/c = I2

0R0 = P0.

We verify eq. (23) via the Maxwell stress tensor Tij, which relates to the force Fi on a
surface element dAreaj according to,

Fi =

∫ ∑
k

Tij dAreaj, (24)

where

Tij =
EiDj + BiHj

4π
− δij

E · D + B · H
8π

. (25)

The force on the cylinder is be given by the integral (24) over its surface, whose area element
is dArea = a dθ′ dz r̂′. Hence, we need Tr′r′, Tθ′r′ and Tzr′

We have from eqs. (3) and (14) that just outside the surface r′ = a of the moving cylinder,

E(r′ = a+) = E′
H + Ev =

vdB0

c

(
− sin θ′ r̂′ + cos θ′ θ̂′

)
+

2vI0 sin θ′

ac2
ẑ, (26)

B(r′ = a+) = B0 + B′
θ′ = B0 cos θ′ r̂′ −

(
B0 sin θ′ +

2I0

ac

)
θ′, (27)

E2 + B2 =
v2

dB
2
0

c2
+

4v2I2
0 sin2 θ′

a2c4
+ B2

0 +
4B0I0

ac
+

4I2
0

a2c2
, (28)

and hence to order v/c,

Tr′r′ =
1

8π

[
B2

0

(
cos 2θ′ − v2

d

c2
sin 2θ′

)
− 4v2I2

0 sin2 θ′

a2c4
− 4B0I0

ac
− 4I2

0

a2c2

]
, (29)

Tθ′r′ = − 1

8π

[(
1 − v2

d

c2

)
B2

0 sin 2θ′ +
4B0I0 cos θ′

ac

]
, (30)

Tzr′ = 0. (31)

The nonzero force elements on the surface are,

dFr′ = Tr′r′ dArear′, dFθ′ = Tθ′r′ dArear′. (32)

The x- and y-force elements are related by,

dFx = dFr′ cos θ′ − dFθ′ sin θ′, and dFy = dFr′ sin θ′ + dFθ′ cos θ′. (33)

Integrating over θ′, we find that Fx = 0, and,

dFy

dz
=

∫
dFθ′

dz
cos θ′ = − 1

8π

∫ 2π

0

4B0I0 cos2 θ′

c
dθ′ = −B0I0

c
= −P0

v
. (34)
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2.2.2 Flow of Energy

The Poynting vector outside the cylinder is,

S =
c

4π
E(r′ > a) × B(r′ > a) =

c

4π
(Ev + EH) × (B0 + Bθ′)

≈ c

4π

(
2vI0 sin θ′

c2r′
ẑ +

vdB0a
2

cr′2

(
− sin θ′ r̂′ + cos θ′ θ̂′

))

×
(

B0

(
cos θ′ r̂′ − sin θ′ θ̂′

)
− 2I0

cr′
θ̂′

)
(35)

=
I2
0R0

2πr′
(sin2 θ′ r̂′ + sin θ′ cos θ′ θ̂′) +

vI2
0 sin θ′

πc2r′2
r̂′ +

vdB0a
2

2πr′2

(
B0 cos 2θ′

2
− I0 sin θ′

ac

)
ẑ.

The total electromagnetic power flowing outwards across a cylinder of radius r′ > a, per unit
length in z, is,

PEM =

∫ 2π

0

Sr′(r
′ > a) r′ dθ′ =

I2
0R0

2
. (36)

This cannot be! We need PEM = 0 since we have already accounted in sec. 2.2.1 for the
power dissipated per unit length, I2

0R0, as equal to the rate of work done by the mechanical
force that keeps the cylinder moving at constant velocity.

2.2.3 Stored Electromagnetic Energy

The density u of electromagnetic energy stored outside the cylinder is,

u =
E2 + B2

8π
=

B2
0

8π

(
1 +

v2
da

2

c2r′4

)
+

B0I0 sin θ′

2πcr′
+

I2
0

2πc2r′2

(
1 +

v2 sin2 θ′

c2

)
. (37)

We now check that eqs. (35) and (37) obey Poynting’s theorem that ∇ · S = −∂u/∂t
outside the cylinder where J = 0. For simplicity, we do this at time t = 0 when the axis of
the cylinder is at x = 0 = y and r′ = r, θ′ = θ. Then,

∇ · S(t = 0) =
1

r

∂(rSr)

∂r
+

1

r

∂Sθ

∂θ
+

∂Sz

∂z
= −vI2

0 sin θ

πc2r3
+

I2
0R0 cos 2θ

2πr2
. (38)

To take the time derivative of u we first note that,

r′ cos θ′ = x′ = x, r′ sin θ′ = y′ = y − vt, r′ =
√

x2 + (y − vt)2, (39)

and hence,

∂r′

∂t
= −v sin θ′,

∂ sin θ′

∂t
= −v cos2 θ′

r′
. (40)

Then,

∂u

∂t
(t = 0) = −vv2

da
2B2

0 sin θ

2πc2r5
− vB0I0 cos 2θ

2πcr2
+

vI2
0 sin θ

πc2r3

(
1 − v2 cos 2θ

c2

)

≈ −I2
0R0 cos 2θ

2πr2
+

vI2
0 sin θ

πc2r3
= −∇ · S(t = 0). (41)
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3 Use of a Resistive Cylinder in a Dynamo

A conceptually simple dynamo consists of a resistive cylinder that slides with velocity v ŷ
along a U-shaped track whose cross piece (of length l) is a resistive load R, subject to external
magnetic field B0 x̂. as shown in the sketch below. For an interesting example of such a
dynamo, see [5].

The magnetic flux through this partially moving circuit increases linearly with time,
ΦM = B0 lvt, so application of Faraday’s law7 indicates that there should be an EMF =
−B0 lv/c around the circuit, which drives a clockwise current I = B0 lv/cR.

If the moving conductor is an ordinary conductor with conductivity low enough that the
external magnetic field completely penetrates it, then the conduction electrons, which have
vy = v experience a Lorentz force Fz = −evB0/c, that can be described as due to an effective
electric field in the z-direction, Eeff = −vB0/v, where e is the charge on an electron. In this
case, the system behaves as if there is an EMF Eeff =

∫
Eeff dz = −vB0 l/c between the

points of contact of the sliding cylinder with the U-shaped track, where l is the separation
between the two tracks of the U. Given a load resistance R (assumed for simplicity to be
concentrated in the cross piece of the U), the total resistance in the circuit is Rtot = R+ lR0,
current I = vB0 l/cRtot flows in the circuit, and power I2Rtot is dissipated by Joule heating.

The current I leads to an azimuthal magnetic field about the moving cylinder, such that
the electric and magnetic fields just outside surface of the cylinder are (neglecting the effect
on the cylinder of the fields due to the currents in the tracks for a � l),

B0 = B′
0 = B0 x̂ = B0

(
cos θ′ r̂′ − sin θ′ θ̂′

)
, (42)

Bθ′(r
′ = a+) = B′

θ′(r
′ = a+) = −2I

ac
θ̂′, (43)

EH(r′ = a+) = E′
H(r′ = a+) =

vdB0

c

(
− sin θ′ r̂′ + cos θ′ θ̂′

)
, (44)

Ev(r
′ = a+) = −v

c
× B′

θ′(r
′ = a+) =

2vI sin θ′

ac2
ẑ, (45)

E‖(r′ = a+) = ρJ − v

c
×B0 = −

(
ρI

πa2
− vB0

c

)
ẑ = −(I − I0)R0 ẑ, (46)

where the drift velocity vd ẑ of the electrons here is larger than that in sec. 2, and I0 is the
current (2) when R = 0. The field E‖, which drives the current I − I0, is set up by a surface

7See [6] for discussion of the use of Faraday’s law for circuits with moving parts.
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charge density,

σ‖(z) =
E‖z
2πa

, (47)

taking z = 0 midway between the two tracks of the U.8

The lab-frame electric field E does work the current density J at the rate,

PE = l

∫ a

0

dr′
∫ 2π

0

r′ dθ′ J · E = I(I − I0)R0l. (48)

The Poynting vector S(r′ = a+) just outside the surface of the sliding bar is given by,

4π

c
S = (EH + Ev + E‖) × (B0 + Bθ′)

= EH × B0 + Ev × B0 + E‖ × B0 + EH × Bθ′ + Ev ×Bθ′ + E‖ ×Bθ′ (49)

=
vdB

2
0

c
cos 2θ′ ẑ +

2vB0I sin θ′

ac2

(
sin θ′ r̂′ + cos θ′ θ̂′

)
− B0(I − I0)R0

(
sin θ′ r̂′ + cos θ′ θ̂′

)

+
2vdB0I

c
cos θ′ θ̂′ +

4vI2

a2c3
sin θ′ r̂′ − 2I(I − I0)R0

ac
r̂′.

The total power flowing off the moving cylinder is,

P = l

∫ 2π

0

Sr′(r
′ = a+) a dθ′ =

vB0lI

2c
− I(I − I0)R0l =

I2Rtot

2
− I2R0l + II0R0l. (50)

If R = 0 then Rtot = R0l, I = I0 and eq. (50) becomes eq. (36). Thus, the moving, resistive
cylinder appears to be the source of the power, I2R dissipated by the load resistor.

The current I = πa2J in the cylinder experiences a Lorentz force ,,

F = l I/c ×B0 = − lIB0

c
ŷ. (51)

To keep the cylinder in steady motion, some mechanical agent must provide an opposing
force, which delivers energy into the system at rate,

Pmech = −vFy =
l IvB0

c
= I2Rtot. (52)

Thus, the moving cylinder acts as a transducer of mechanical power to electromagnetic
power, according to the above analysis in the lab frame.9

8See sec. 3 of [4] for more details of the relation between a uniform axial field inside a cylinder and the
surface charge density.

9The currents in this problem are steady, but the magnetic flux through the circuit varies with time,
so we expect an EMF in the (moving) circuit according to a broad interpretations of Faraday’s law. The
resulting power dissipated in the resistor agreeably flows in the form of electromagnetic energy out from the
surface of the sliding bar. But this analysis gives no microscopic picture of how that energy flow arises.
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3.1 Analysis in the Rest Frame of the Cylinder

In the rest frame of the cylinder the magnet that provides the external field B0 = B0 x̂ has
velocity −v ŷ. This magnet exerts total force F = Fy ŷ on the cylinder, so there is a reaction
force −F on the magnet. A mechanical force −F is required in the lab frame to keep the
magnet at rest there, and in the rest frame of the cylinder this force does work on the moving
magnet at rate −v ŷ ·−F = vFy = I2R. Thus, in the rest frame of the cylinder, we are led to
say that the magnet acts as the transducer of mechanical power to electromagnetic power.
This is an example of the relativity of steady energy flow (also discussed in [8]).
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