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1 The Problem

A radiofrequency quadrupole (RFQ) is a device for focussing beams of charged particles.
The electric field in this device can be approximated as that derived from the quasistatic
potential,

φ(x, y, t) =
E0

2d
(y2 − x2) sin ωt, (1)

where d is a length and ω is the frequency of the field. The magnetic field is ignored in this
approximation. While the approximate fields do not satisfy Maxwell’s equations, there is
little error for |x|, |y| � λ, the wavelength of the radiofrequency waves.

Deduce the equations of motion for a particle of charge e and mass m in the radiofrequency
quadrupole. Consider solutions of the form,

x(t) = f(t) + g(t) sin ωt (2)

where g � f and both f and g are slowly varying compared to sinωt. The parameters may
be assumed to satisfy the conditions that such solutions exist.

Complete the solution for the particular case that,

x(0) = 0, ẋ(0) = v0θ0, (3)

y(0) = 0, ẏ(0) = 0, (4)

z(0) = 0, ż(0) = v0, (5)

with θ0 � 1. At what distance along the z-axis is the first image of the beam “spot”, i.e.,
where the initially diverging beam is brought back to the z-axis?

2 Solution

This problem was abstracted from [1].
The electric field in the RFQ can be obtained from the potential via E = −∇φ, so,

Ex =
x

d
E0 sinωt, (6)

Ey = −y

d
E0 sinωt. (7)

The equations of motion are,

ẍ =
x

d

eE0

m
sinωt, (8)

ÿ = −y

d

eE0

m
sinωt, (9)

z̈ = 0. (10)
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Then,
z(t) = z0 + v0zt = v0t (11)

for the particular case specified.
For the x motion, we consider the form (2),

ẋ = ḟ + ġ sinωt + ωg cosωt, (12)

ẍ = f̈ + g̈ sinωt + 2ωġ cos ωt − ω2g sinωt. (13)

The x equation of motion now yields,

f̈ + 2ωġ cosωt =

[
−g̈ + ω2g +

f + g sinωt

d

eE0

m

]
sinωt. (14)

Since g is both small and slowly varying by hypothesis, we neglect the terms involving ġ
and g̈, leaving,

f̈ ≈
[
ω2g +

f

d

eE0

m

]
sinωt +

g

d

eE0

m
sin2 ωt. (15)

In this, the coefficent of the rapidly varying term sinωt should vanish, and f̈ should be the
average of the term in sin2 ωt. The first condition tells us that,

g = − eE0

mω2d
f, (16)

which combines with the (averaged) second condtion to give a differential equation for f ,

f̈ = −1

2

( eE0

mωd

)2

f. (17)

Thus,

f ≈ A cosΩt + B sinΩt, where Ω =
eE0√
2mωd

. (18)

Together we have,

x(t) ≈ (A cos Ωt + B sinΩt)
(
1 − eE0

mω2d
sinωt

)
. (19)

The particular initial conditions (3-5) are satisifed by,

x(t) ≈ v0θ0

Ω
sinΩt

(
1 − eE0

mω2d
sinωt

)
. (20)

For this to be consistent we must have that,

eE0

mω2d
� 1. (21)

Then, the beam returns to the z-axis at time t = π/Ω, corresponding to distance z = πv0/Ω.
The argument is similar for the y motion. The opposite sign of the electric field leads to,

g = +
eE0

mω2d
f, (22)
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and so,

y(t) ≈ (C cos Ωt + D sinΩt)

(
1 +

eE0

mω2d
sin ωt

)
. (23)

The particular initial conditions (3-5), however, require that both C and D vanish.
Experts will recognize that the dimensionless quantity,

η ≡ eE0

mωc
, (24)

where c is the speed of light, is a useful invariant of the field. In terms of this invariant the
condition of validity of the solution is,

η
λ

2πd
� 1. (25)

If d is a characteristic aperture of the RFQ, we earlier required that λ � d so the quasistatic
approximation to the fields would be valid. Hence, the invariant field strength η cannot be
too large in the RFQ.

The physical meaning of the invariant η is that it is the ratio of the energy gain over
distance λ/2π to the electron rest energy mc2,

η =
eE0

mωc
=

eE0λ/2π

mc2
. (26)

Thus, the RFQ should not impart relativistic transverse motion to the particles if it is to
function as described above.
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