Radiofrequency Quadrupole

Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544

(February 27, 1997)

1 The Problem

A radiofrequency quadrupole (RFQ) is a device for focussing beams of charged particles. The electric field in this device can be approximated as that derived from the quasistatic potential,

$$\phi(x, y, t) = \frac{E_0}{2d} (y^2 - x^2) \sin \omega t,$$
(1)

where d is a length and ω is the frequency of the field. The magnetic field is ignored in this approximation. While the approximate fields do not satisfy Maxwell's equations, there is little error for $|x|, |y| \ll \lambda$, the wavelength of the radiofrequency waves.

Deduce the equations of motion for a particle of charge e and mass m in the radiofrequency quadrupole. Consider solutions of the form,

$$x(t) = f(t) + g(t)\sin\omega t \tag{2}$$

where $g \ll f$ and both f and g are slowly varying compared to $\sin \omega t$. The parameters may be assumed to satisfy the conditions that such solutions exist.

Complete the solution for the particular case that,

$$x(0) = 0, \qquad \dot{x}(0) = v_0 \theta_0,$$
(3)

$$y(0) = 0, \qquad \dot{y}(0) = 0,$$
 (4)

$$z(0) = 0, \qquad \dot{z}(0) = v_0,$$
 (5)

with $\theta_0 \ll 1$. At what distance along the z-axis is the first image of the beam "spot", *i.e.*, where the initially diverging beam is brought back to the z-axis?

2 Solution

This problem was abstracted from [1].

The electric field in the RFQ can be obtained from the potential via $\mathbf{E} = -\nabla \phi$, so,

$$E_x = \frac{x}{d} E_0 \sin \omega t, \tag{6}$$

$$E_y = -\frac{y}{d} E_0 \sin \omega t. \tag{7}$$

The equations of motion are,

$$\ddot{x} = \frac{x}{d} \frac{eE_0}{m} \sin \omega t, \tag{8}$$

$$\ddot{y} = -\frac{y}{d} \frac{eE_0}{m} \sin \omega t, \tag{9}$$

$$\ddot{z} = 0. \tag{10}$$

Then,

$$z(t) = z_0 + v_{0z}t = v_0t \tag{11}$$

for the particular case specified.

For the x motion, we consider the form (2),

$$\dot{x} = \dot{f} + \dot{g}\sin\omega t + \omega g\cos\omega t, \tag{12}$$

$$\ddot{x} = f + \ddot{g}\sin\omega t + 2\omega\dot{g}\cos\omega t - \omega^2 g\sin\omega t.$$
(13)

The x equation of motion now yields,

$$\ddot{f} + 2\omega \dot{g}\cos\omega t = \left[-\ddot{g} + \omega^2 g + \frac{f + g\sin\omega t}{d}\frac{eE_0}{m}\right]\sin\omega t.$$
(14)

Since g is both small and slowly varying by hypothesis, we neglect the terms involving \dot{g} and \ddot{g} , leaving,

$$\ddot{f} \approx \left[\omega^2 g + \frac{f}{d} \frac{eE_0}{m}\right] \sin \omega t + \frac{g}{d} \frac{eE_0}{m} \sin^2 \omega t.$$
(15)

In this, the coefficient of the rapidly varying term $\sin \omega t$ should vanish, and \ddot{f} should be the average of the term in $\sin^2 \omega t$. The first condition tells us that,

$$g = -\frac{eE_0}{m\omega^2 d}f,\tag{16}$$

which combines with the (averaged) second condition to give a differential equation for f,

$$\ddot{f} = -\frac{1}{2} \left(\frac{eE_0}{m\omega d}\right)^2 f.$$
(17)

Thus,

$$f \approx A \cos \Omega t + B \sin \Omega t$$
, where $\Omega = \frac{eE_0}{\sqrt{2m\omega d}}$. (18)

Together we have,

$$x(t) \approx (A\cos\Omega t + B\sin\Omega t) \Big(1 - \frac{eE_0}{m\omega^2 d}\sin\omega t\Big).$$
(19)

The particular initial conditions (3-5) are satisifed by,

$$x(t) \approx \frac{v_0 \theta_0}{\Omega} \sin \Omega t \left(1 - \frac{eE_0}{m\omega^2 d} \sin \omega t \right).$$
(20)

For this to be consistent we must have that,

$$\frac{eE_0}{m\omega^2 d} \ll 1. \tag{21}$$

Then, the beam returns to the z-axis at time $t = \pi/\Omega$, corresponding to distance $z = \pi v_0/\Omega$.

The argument is similar for the y motion. The opposite sign of the electric field leads to,

$$g = +\frac{eE_0}{m\omega^2 d}f,\tag{22}$$

and so,

$$y(t) \approx (C \cos \Omega t + D \sin \Omega t) \left(1 + \frac{eE_0}{m\omega^2 d} \sin \omega t\right).$$
 (23)

The particular initial conditions (3-5), however, require that both C and D vanish.

Experts will recognize that the dimensionless quantity,

$$\eta \equiv \frac{eE_0}{m\omega c},\tag{24}$$

where c is the speed of light, is a useful invariant of the field. In terms of this invariant the condition of validity of the solution is,

$$\eta \frac{\lambda}{2\pi d} \ll 1. \tag{25}$$

If d is a characteristic aperture of the RFQ, we earlier required that $\lambda \gg d$ so the quasistatic approximation to the fields would be valid. Hence, the invariant field strength η cannot be too large in the RFQ.

The physical meaning of the invariant η is that it is the ratio of the energy gain over distance $\lambda/2\pi$ to the electron rest energy mc^2 ,

$$\eta = \frac{eE_0}{m\omega c} = \frac{eE_0\lambda/2\pi}{mc^2}.$$
(26)

Thus, the RFQ should not impart relativistic transverse motion to the particles if it is to function as described above.

References

 T.P. Wangler, Strong focusing and the radiofrequency quadrupole accelerator, Am. J. Phys. 64, 177 (1996), http://kirkmcd.princeton.edu/examples/EM/wangler_ajp_64_177_96.pdf