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1 Problem

The flow of water in a river may not be obvious to an observer on its bank if the surface is
very smooth, and that flow might be characterized as having “hidden” momentum.

The term “hidden” momentum was popularized by Shockley [1] in considerations of an
electromechanical example, and essentially all subsequent use of this term has been for such
examples, where one considers the system to consist of matter plus electromagnetic fields.

Recently, a definition of “hidden” momentum has been proposed [2] (see also [3]) which
can be applied to mechanical systems as well, where a subsystem has a specified volume and
can interact with the rest of the system via contact forces and/or transfer of mass/energy
across its surface (which can be in motion),

Phidden ≡ P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea = −
∫

f0

c
(x− xcm) dVol, (1)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass”,U is its total
energy, xcm is its center of mass/energy, vcm = dxcm/dt, p is its momentum density, ρ = u/c2

is its “mass” density, u is its energy density, vb is the velocity (field) of its boundary, and,

fμ =
∂T μν

∂xν
, (2)

is the 4-force density exerted on the subsystem by the rest of the system, with T μν being
the stress-energy-momentum 4-tensor of the subsystem.

Does a flowing river contain “hidden” momentum according to the above definition?

2 Solution

2.1 The System Moves Along with the River

We consider a rectangular parallelepiped of length L along the x-direction of the flow, with
area A perpendicular to x̂, and volume V = AL. The height of this parallelepiped is small
enough that we can consider the pressure P of the water to be constant. We also assume that
the velocity of the water is everywhere the same, v = v x̂. The velocity of the parallelepiped
is v0, also in the x-direction.

The stress tensor flowing water can be obtained via a Lorentz transformation from the
its rest frame, in which quantities will be labeled with the superscript �.

The water has mass density ρ� which includes the mass/energy of the elastic strain due
to pressure P .
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The stress-energy-momentum tensor in the rest frame of the water is,

T�μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ�c2 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

The Lorentz transformation Lx from the rest frame to the lab frame in which the water
has velocity v = v x̂ can be expressed in tensor form as,

Lμν
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ γv/c 0 0

γv/c γ 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

where γ = 1
√

1 − v2/c2 ≈ 1 + v2/2c2 when v � c. Hence, the energy-momentum-stress
tensor in the lab frame is given by,

Tμν = (LxT
�Lx)

μν =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ2(ρ�c2 + v2P/c2) γ2v(ρ�c2 + P )/c 0 0

γ2v(ρ�c2 + P )/c γ2(ρ�v2 + P ) 0 0

0 0 P 0

0 0 0 P

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

The mass density ρ = u/c2 = T00/c2 in the lab frame is,

ρ =
γ2

c2

(
ρ�c2 +

v2P

c2

)
≈ ρ�

(
1 +

v2

c2

)
, (6)

to order 1/c2, the mass is M = ρV , the momentum density p is given by pi = T0i/c,

p = −γ2v

c2

(
ρ�c2 + P

)
x̂ ≈

(
ρ +

P

c2

)
v, (7)

and the total momentum P of the parallelepiped in the lab frame is,

P = pV ≈
[
ρ�V

(
1 +

v2

c2

)
+

PV

c2

]
v =

(
M +

PV

c2

)
v . (8)

Then, according to the first version of definition (1), the parallelepiped has no “hidden”
momentum in the lab frame,

Phidden = P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea

= P− Mvcm − pV + ρV vb = 0, (9)
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since vcm = vb = v0.
Although the total momentum P of the parallelepiped in the lab frame has two “rela-

tivistic” terms of order 1/c2, as given in eq. (8), there is no “hidden” momentum in the water
whether v0 is zero or not, according to definition (1).

2.1.1 Alternative Analysis

According to definition (1) the “hidden” momentum (of a subsystem) can also be written
as,

Phidden = −
∫

f0

c
(x − xcm) dVol, (10)

where,

fμ =
∂T μν

∂xν
. (11)

is the 4-force density exerted on the subsystem by all other subsystems, and T μν is the stress-
energy-momentum tensor of the subsystem (which is zero outside its bounding surface).

In the present example, f0 = ∂T 0ν/∂xν vanishes inside the parallelepiped (if we ignore
the effect of gravity, as if the “river” flows in “outer space”), while having δ-function terms at
its ends. We consider that the integral in eq. (10) is taken over only the interior of the volume
of the subsystem (i.e., of the parallelepiped), in which case we again find Phidden = 0.1

2.2 The System is at Rest

We can also consider the system to be a parallelepiped at rest in the lab frame, in which
case vcm = 0 = vb, and the “hidden” momentum is given by,

Phidden = P− Mvcm −
∮

boundary

(x − xcm) (p− ρvb) · dArea

= P− pV ≈
(

M +
PV

c2

)
v −

(
ρ +

P

c2

)
V v = 0. (12)
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