
A Rolling-Cylinder Problem
Kirk T. McDonald

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544
(January 18, 2022; updated January 26, 2022)

A hollow cylinder of mass M and radius R lies, initially at on a frictionless horizontal
surface with its axis in the y direction.1,2 A point mass m is fixed to the surface of the
cylinder, and the radius from the center of the cylinder to mass m makes angle θ to the
vertical. The system is initially at rest, with mass m at angle θ0.

There is no external horizontal force on the system (of masses M and m), so its center
of mass remains at rest (and its total horizontal momentum is always zero).

We define x = 0 to be the x-coordinate of the center of mass of this system,

(M + m)xcm = 0 = Mxcyl + mxm = Mxcyl + m(xcyl + R sin θ), (1)

xcyl = −mR sin θ

M + m
, ẋcyl = −mR cos θ θ̇

M + m
. (2)

In general, the cylinder has horizontal velocity ẋcyl and rotates with angular velocity θ̇.
Hence, the kinetic energy of the (hollow) cylinder is,

Tcyl =
Mẋ2

cyl

2
+

MR2θ̇
2

2
=

MR2 θ̇
2

2

(
1 +

m2 cos2 θ

(M + m)2

)
. (3)

The coordinates of mass m are, using eq. (3),

xm = xcyl + R sin θ = R sin θ

(
1 − m

M + m

)
=

M

M + m
R sin θ, ym = R(1 − cos θ), (4)

ẋm =
M

M + m
R cos θ θ̇, ẏm = R sin θ θ̇, (5)

v2
m = R2 θ̇

2
(

M2 cos2 θ

(M + m)2
+ sin2 θ

)
. (6)

1In the absence of friction between the horizontal surface and the cylinder, the motion of the cylinder is
the same whether the horizontal surface is at rest or in (horizontal) motion.

2A cylinder that rolls without slipping outside/inside a cylinder that rolls without slipping on a horizontal
plane is discussed in http://kirkmcd.princeton.edu/examples/2cylinders.pdf
http://kirkmcd.princeton.edu/examples/2cylinders_in.pdf
These examples feature “ignorable” coordinates associated with nonintuitive conserved canonical momenta.
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The total kinetic energy is,

T = Tcyl + Tm =
R2 θ̇

2

2

[
M

(
M2 cos2 θ

(M + m)2
+ sin2 θ

)
+ m

(
M2 cos2 θ

(M + m)2
+ sin2 θ

)]

=
M2R2 θ̇

2

2(M + m)

(
cos2 θ +

(M + m)2

M2
sin2 θ

)
. (7)

and the (gravitational) potential energy, relative to height R above the plane, is,

V = −mgR cos θ. (8)

Total energy E = T + V is conserved in this problem, so for an initial configuration at rest
with mass m at angle θ0 we find that,

θ̇
2

2
=

m(M + m)g(cos θ − cos θ0)

M2R

(
cos2 θ +

(M + m)2

M2
sin2 θ

)−1

. (9)

For what it’s worth,

θ̈ =
d

dθ

{
m(M + m)g(cos θ − cos θ0)

M2R

(
cos2 θ +

(M + m)2

M2
sin2 θ

)−1
}

. (10)

The motion is oscillatory, and for small θ0 has the form,

θ = θ0 cosωt, θ̇ = −ω θ0 sin ωt,
〈
θ̇

2
〉

=
ω2 θ2

0

2
, (11)

while from eq. (9),

〈
θ̇

2
〉
≈ 2m(M + m)g

M2R
〈cos θ − cos θ0〉 ≈ 2m(M + m)g

M2R

θ2
0

2
, (12)

and hence the angular frequency ω of the small oscillations is,

ω ≈
√

2m(M + m)g

M2R
. (13)

If m = 0, there is no oscillation.

Remarks

This problem was suggested by Vladimir Onoochin, based on a paper by Nivaldo Lemos,
https://arxiv.org/abs/2111.06226.3

3Also N.A. Lemos, Breakdown of the connection between symmetries and conservation laws for semi-
holonomic systems, Am. J. Phys. 90, 221 (2022),
http://kirkmcd.princeton.edu/examples/mechanics/lemos_ajp_90_221_22.pdf
http://kirkmcd.princeton.edu/examples/mechanics/mcdonald_ajp_90_407_22.pdf
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That paper supposes the cylinder rolls without slipping on a horizontal plane (at rest),
and that mass m slides without friction on the inside of the hollow cylinder of mass M . In this
case there is an “external” horizontal force on the system of masses M and m, so its center
of mass does not remain at rest and its horizontal momentum is not conserved. However,
as Lemos’ noted, the Lagrangian L for the cylinder + block of his example is independent
of position x of the center of the cylinder along the horizontal plane, so there exists a
conserved canonical momentum px = ∂L/∂ẋ, which is not the total linear momentum of the
system in this example.4 He then called the independence of the Lagrangian on position x
“translation invariance” (as commonly done), and noted that examples of his type (which he
called “semiholonomic”) are exceptions to a näıve interpretation of Noether’s theorem about
conservation laws and “symmetries” to be that “translation invariance” implies conservation
of linear momentum.5 Lemos characterized this as a “breakdown”, but it seems to the
present author that Noether’s theorem works well for his example.6

A possible moral is that the term “translation invariance” is subject to misinterpretation,
as it is readily associated with other meanings than independence of a Lagrangian on a spatial
coordinate. For example, if mass m is subject to a force related by potential V (x), the motion
of the mass is of the same form if the mass and the source of the potential are both translated
by any Δx, but this “translation invariance” does not mean that the linear momentum of
the mass is conserved.

A Appendix: Lemos’ Example and the Routhian

In Lemos’ example, https://arxiv.org/abs/2111.06226, the cylinder rolls without slipping on
the horizontal plane, and mass m slides without friction inside the (hollow) cylinder of mass
M . The Lagrangian for this system is given by Lemos’ eq. (5),

L = T − V =
(2M + m)ẋ2

2
+

mR2 θ̇
2

2
+ mRẋ θ̇ cos θ + mgR cos θ. (14)

The Lagrangian is independent of x (which is called a cyclic or ignorable coordinate in the
British literature), and the corresponding conserved canonical momentum is (Lemos’ eq. (8)),

px =
∂L
∂ẋ

= (2M + m)ẋ + mR θ̇ cos θ = const. (15)

4There is no simple physical interpretation of this conserved momentum, but it is useful in quickly finding
the equation of motion in θ, as discussed in Appendix A below.

5Noether, https://arxiv.org/abs/physics/0503066, was concerned with the issue of conservation of
energy in general relativity, and never mentioned momentum or “translation invariance”. For historical
comments, see https://arxiv.org/abs/physics/9807044. What is commonly called Noether’s theorem in
classical mechanics is that if a Lagrangian L is independent of coordinate q, then the canonical momentum
pq = ∂L/∂q̇ is conserved, and if L is independent of time then the Hamiltonian H =

∑
pqq̇−L) is conserved

(but not necessarily the energy T + V ), as was known to Hamilton.
See also https://en.wikipedia.org/wiki/Noethers_theorem.

6The first example in the present note is also “translation invariant” in the Lagrangian sense, but here
the conserved canonical momentum is the total, horizontal, linear momentum of the system of masses M
and m, as discussed in Appendix B below.
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If we suppose the system starts from rest, then px = 0 and,

ẋ = −mR θ̇ cos θ

2M + m
, x = A − mR sin θ

2M + m
. (16)

If x = 0 is the initial coordinate of the center of the cylinder, and θ0 that of mass m,

A =
mR sin θ0

2M + m
≈ mRθ0

2M + m
, (17)

where the approximation holds for small θ0.
In examples like this, with an ignorable coordinate, it may be advantageous to consider

the Routhian R,7 which is a function of (x, px, θ, θ̇) rather than (x, ẋ, θ, θ̇),

R = ẋpx − L, (18)

for which the equation of motion in θ is,

d

dt

∂R
∂θ̇

=
∂R
∂θ

. (19)

However, since ∂R/∂θ̇ = −∂L/∂θ̇ and ∂R/∂θ = −∂L/∂θ, there is actually little advantage
to use of the Routhian in this example.8

We now deduce the θ equation of motion directly from the Lagrangian (14),

d

dt

∂L
∂θ̇

= mR2 θ̈ + mRẍ cos θ − mRẋ θ̇ sin θ =
∂L
∂θ

= −mRẋ θ̇ sin θ − mgR sin θ. (22)

Note that if m = 0, there is no equation of motion in θ (and, of course, no motion in θ).
From eq. (15) we have,

ṗx = (2M + m)ẍ + mR θ̈ cos θ − mR θ̇
2
sin θ = 0, (23)

so the θ equation of motion can be written as,

mR2 θ̈

(
1 − m cos2 θ

2M + m

)
+

m2R2 θ̇
2
sin 2θ

2(2M + m)
= −mgR sin θ. (24)

7https://en.wikipedia.org/wiki/Routhian_mechanics
8The Routhian is perhaps prone to misuse, in that eq. (18), without replacing ẋ by the form (16), would

lead to,

R =
(2M + m)ẋ2

2
− mR2 θ̇

2

2
− mgR cos θ, (20)

and then eq. (19) would imply that,

mR2 θ̈ = −mgR sin θ, (21)

which holds only if the cylinder is always at rest.
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For small oscillations of the form θ = θ0 cos ωt, eq. (24) implies that their angular frequency
is,

ω2

(
2M

2M + m
+

m θ2
0 cos2 ωt

2M + m

)
≈ g

R
. , (25)

ω ≈
√

(2M + m)g

2MR
, (26)

which is fairly close to that of a simple pendulum of length R. That is, the motion of the
cylinder is slight, so the problem almost reduces to the case of mass m sliding without friction
inside a cylinder at rest.

However, as m → 0, ω → √
g/R, while for m = 0 there is no oscillation. This “discon-

tinuous” behavior also holds for the case of mass m sliding without friction inside a fixed
cylinder.

A.1 The Hamiltonian

Lemos’ example involves friction, but the force of friction does no work, such that the energy
T + V is conserved.

For completeness, we note that the Lagrangian and Hamiltonian are independent of time,
so the Hamiltonian a constant of the motion, which should be the energy.

For motion that starts from rest, px = 0,

pθ =
∂L
∂θ̇

= mR2θ̇ + mRẋ cos θ = mR2θ̇

(
1 − m cos2 θ

2M + m

)
(27)

T =
(2M + m)ẋ2

2
+

mR2 θ̇
2

2
+ mRẋ θ̇ cos θ =

mR2θ̇

2

(
1 − m cos2 θ

2M + m

)
=

pθ θ̇

2
, (28)

recalling eqs. (14) and (16). Hence,

H = pxẋ + pθ θ̇ − L = pθ θ̇ − T + V =
pθ θ̇

2
+ V = T + V, (29)

is the constant energy of the system of masses M and m, as expected.

B Appendix: Lagrangian Analysis of the First

Example: No Friction, Mass m Fixed to Mass M

In a Lagrangian analysis of the example on p. 1 above, we should not begin with eq. (1),
which is a “Newtonian” insight. Rather, we use x = xcyl and θ as the two independent
coordinates of the system of masses M and m.

Then, the kinetic energy of the cylinder is simply,

Tcyl =
Mẋ2

2
+

MR2θ̇
2

2
. (30)
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The coordinates of mass m are,

xm = x + R sin θ, ym = R(1 − cos θ), (31)

ẋm = ẋ + R cos θ θ̇, ẏm = R sin θ θ̇, (32)

v2
m = ẋ2 + 2Rẋ θ̇ cos θ + R2 θ̇

2
. (33)

The total kinetic energy is,

T = Tcyl + Tm =
(M + m)(ẋ2 + R2θ̇

2
)

2
+ mRẋ θ̇ cos θ, (34)

and the (gravitational) potential energy, relative to height R above the plane, is,

V = −mgR cos θ. (35)

The Lagrangian L = T −V does not depend on coordinate x, and hence there is a conserved
canonical momentum,

px =
∂L
∂ẋ

=
∂T

∂ẋ
= (M + m)ẋ + mR θ̇ cos θ = Mẋ + mẋm = const. (36)

That is, the x-component of the ordinary linear momentum of the system is conserved, so we
recover the Newtonian insight that led to eq. (1) above, and the rest of the previous analysis
follows (more quickly than via continuation of the Lagrangian analysis).

C Appendix: Other Variants

C.1 No Friction, Mass m Slides Freely

If there is no friction between the hollow cylinder and the horizontal plane, or between the
cylinder and mass m, then the angular velocity of the cylinder never changes. Then, for
a system that starts from rest with mass m at angle θ0 to the vertical, the Lagrangian is
simply,

L =
Mẋ2

2
+

m
(
ẋ2 + 2Rẋ θ̇ cos θ + R2θ̇

2
)

2
+ mRg cos θ. (37)

The horizontal coordinate x of the center of the cylinder is “ignorable”, so there is a conserved
canonical momentum,

px =
∂L
∂ẋ

= Mẋ + m
(
ẋ + R θ̇ cos θ

)
= Mẋ + mẋm, (38)

which is just the x-component of the total linear momentum of the system (as expected since
there is zero x-component of the external force on the system). For a system that starts
from rest, px = 0, and,

ẋ = −mR θ̇ cos θ

M + m
, ẍ =

mR
(
θ̇

2
sin θ − θ̈ cos θ

)
M + m

. (39)
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The θ equation of motion is,

d

dt

∂L
∂θ̇

= mR2 θ̈ + mRẍ cos θ − mRẋ θ̇ sin θ =
∂L
∂θ

= −mRẋ θ̇ sin θ −mgR sin θ, (40)

mR2 θ̈

(
1 − m cos2 θ

M + m

)
+

m2R2 θ̇
2
sin 2θ

2(M + m)
= −mgR sin θ. (41)

For small oscillations (with nonzero mass m) of the form θ = θ0 cos ωt, eq. (41) implies that
their angular frequency is,

ω2

(
M

M + m
+

m θ2
0 cos2 ωt

M + m

)
≈ g

R
, (42)

ω ≈
√

(M + m)g

MR
, (43)

which is fairly close to that of a simple pendulum of length R. That is, the motion of the
cylinder is slight, so the problem almost reduces to the case of mass m sliding without friction
inside a cylinder at rest.

As in Lemos’ variant, ω → √
g/R as m → 0, although there is no oscillation if m = 0.

C.2 Mass m Fixed to the Cylinder, which Rolls without Slipping

In the fourth variant, we suppose the cylinder rolls without slipping on the horizontal plane,
while mass m is fixed to a point on the cylinder. Then, the angular velocity θ̇ of the cylinder
is related to its horizontal velocity ẋ by the rolling constraint,

ẋ = −R θ̇, x = R(θ0 − θ), (44)

for a system that starts from rest with the center of the cylinder at x = 0 and mass m at
angle θ0.

The kinetic energy of the cylinder is,

Tcyl =
Mẋ2

2
+

MR2 θ̇
2

2
= Mẋ2 = MR2 θ̇

2
, (45)

and the kinetic energy of mass m is given by,

xm = x + R sin θ, ym = R(1 − cos θ), (46)

ẋm = ẋ + R θ̇ cos θ = R θ̇(cos θ − 1), ẏm = R θ̇ sin θ, (47)

Tm = mR2 θ̇
2
(1 − cos θ). (48)

The Lagrangian of the system is,

L = R2 θ̇
2
[M + m(1 − cos θ)] + mRg cos θ. (49)
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The θ equation of motion is,

d

dt

∂L
∂θ̇

= 2R2 θ̈[M + m(1 − cos θ)] + 2mR2 θ̇
2
sin θ =

∂L
∂θ

= mR2 θ̇
2
sin θ − mgR sin θ, (50)

θ̈

(
M

m
+ 1 − cos θ

)
+ θ̇

2
sin θ = − g

2R
sin θ. (51)

For small oscillations of the form θ = θ0 cos ωt, eq. (51) implies that their angular frequency
is,

ω2 ≈ mg

2MR
, ω ≈

√
mg

2MR
. (52)

If m = 0, there are, of course, no oscillations.
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