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1 Problem

Discuss the motion of a zig-zag-shaped pipe of mass m that can roll (or slide) without friction
on a horizontal surface, supposing that the pipe is initially filled with water of density ρ to
height h0 above the horizontal segment (of length L) of the pipe. The water exits the pipe
from a vertical segment of height H below the horizontal segment, where H is large enough
that the exit velocity of the water from the pipe is vertical in the rest frame of the pipe.

This variant of the leaky-tank-car problem [1] was suggested by Johann Otto.1

2 Solution

Energy and horizontal momentum are conserved in this problem. The center of mass of the
pipe + water is initially at rest, and the horizontal coordinate, xcm, of the center of mass
remains constant as all times.

As the water first begins to flow, water moves from the right vertical pipe to the left
vertical pipe, from which it exists. This action moves the center of mass to the left with
respect to the pipe. Hence, the initial horizontal velocity of the pipe must be to the right so
that the center of mass remains fixed.

As the water exits the pipe with downward vertical velocity in frame of the pipe, the
exiting water has horizontal velocity to the right. And, the pipe has horizontal velocity to
the right. Meanwhile, water flows to the left in the horizontal segment of the pipe, such that
the velocity of the center of mass of the system remains zero.

1Feb. 8, 2022. A version of this problem was first posed (and solved) by E.B. Wilson in 1910 [2].
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However, if this qualitative situation remained until all the water exited the pipe, after
which no more water flows to the left inside the pipe, the center of mass of the system would
be moving to the right, rather than being at rest.

Hence, the velocity of the pipe must reverse direction by the time that all the water has
drained out of the pipe.

We now deduce equations of motion for the pipe + water using conservation of momentum
and energy. For motion that begins at time t = 0, the left side of the pipe is at x(t) and
the height of the water in the right vertical segment of the pipe is h(t) above the horizontal
segment (until h goes to zero, after which h is no longer meaningful). The water that has
exited the pipe has a complicated pattern whose details we can omit by consideration only
of the momentum and energy of the pipe + water therein at time t.

2.1 Momentum

The pipe has mass m and cross sectional area A, and the water has density ρ. The horizontal
velocity of the pipe is dx/dt = ẋ, and the velocity of the water inside the pipe relative to
it is dh/dt = ḣ. The mass of the pipe + water inside it is min = m + mwater,in, where
mwater,in = ρA(H + L + h), and ṁin = ṁwater,in = ρAḣ, so long as h ≥ 0.

Then, the horizontal momentum of the pipe + water therein at time t is,

pin,x = [m + ρA(h + H)]ẋ + ρAL(ẋ + ḣ) = [m + ρA(h + H + L)]ẋ + ρALḣ, (1)

since the water in the horizontal section of pipe has mass ρAL and horizontal velocity ẋ+ ḣ.
The horizontal momentum of the pipe + water still therein at time t + dt has changed by
amount,

dpin,x = [m + ρA(h + H + L)]ẍ dt + ρAḣ dt ẋ + ρALḧ dt, (2)

to order dt, while the horizontal momentum of the water newly outside the pipe is,

dpout,x = −ρAḣ dt ẋ, (3)

since the water that exits the pipe has horizontal velocity ẋ in the lab frame, and the volume
of newly exited water is −Aḣ dt.

If the pipe rolls without friction, horizontal momentum is conserved, dpin,x + dpout,x = 0,
such that,2

[m + ρA(h + H + L)]ẍ = minẍ = −ρALḧ. (5)

2Alternatively [1], we could analyze the horizontal position xcm of the system which must be fixed if the
pipe rolls/slides without friction.

We take the left end of the pipe to start from rest at x = 0 at time t = 0, such that at time t,

mtotalxcm = m(x + x̃p) + ρAHx + ρAL(x + L/2) + ρAh(x + L) +
∫ t

0

(−ρAḣ dt′)X(t, t′), (4)

where x̃p is the distance of the center of mass of the pipe from its left end, and X(t, t′) = x(t′)+ ẋ(t′)(t− t′)
is the present position of the element of water of mass −ρAḣ(t′) dt′ that left the pipe at time t′ with zero
relative horizontal velocity, and hence with lab-frame horizontal velocity ẋ(t′). Taking the time derivative
of this we find eq. (7), and taking the time derivative of eq. (7) we find eq. (5).
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In an F = ma interpretation, the horizontal acceleration ẍ of the pipe + water inside is due
to the reaction force associated with the horizontal acceleration −ḧ relative to the pipe of
the mass ρAL of water in the horizontal segment of the pipe. Alternatively, in a view that
emphasizes the pipe, we could write eq. (5) as,

mẍ = −mwater,inẍ − ṁwater,inẋ − ρALḧ + ṁwater,inẋ, (6)

where −mwater,inẍ is the inertial force of the water in the pipe back on the walls of the pipe
that are accelerating the water; −ṁwater,inẋ is a correction to the inertial force of the water
because the amount of water inside the pipe is changing; −ρALḧ is the force of the water on
the left bend of the pipe where the horizontal velocity water relative to the pipe is reduced
from ḣ to zero; and ṁwater,inẋ is the reaction force of the water that leaves the pipe back
on the pipe. Because the water leaves the pipe with zero relative horizontal velocity, the
reaction force of the water leaving the pipe exactly cancels the correction to the inertial force
of the water left in the pipe.

A formal time integration of eq. (5) yields (using an integration by parts), for the system
starting from rest at t = 0,

minẋ−
∫ t

0

ṁin(t
′)ẋ(t′) dt′ = −ρLAḣ, (7)

ẋ = −ρAL

min
ḣ +

ρA

min

∫ t

0

ḣ(t′)ẋ(t′) dt′, (8)

recalling that ṁin = ρAḣ. At time t = 0+, when the water starts to drain out of the pipe,
the integral in eq. (8) is negligible and we have that,

ẋ(0+) = −ρAL

min
ḣ(0+) > 0, (9)

since ḣ is always negative as the water drains. That is, the pipe initially moves to the right,
as the water drains out of the left end of the pipe, such that the center of mass of the system
stays at rest.

As time increases, the first term on the right of eq. (8) remains positive, while the second
term becomes increasingly negative, such that the sign of ẋ can reverse. Indeed, we noted
at the beginning of sec. 2 that the sign of ẋ must eventually reverse, as the momentum of
the system would eventually be nonzero and positive if ẋ is always positive. However, if can
still be that the height h of the water in the right vertical pipe segment goes to zero before
ẋ changes sign.

2.2 Energy

The kinetic energy of the pipe + water therein at time t in the lab frame is,

Tin = [m + ρA(h + H)]
ẋ2

2
+ ρA(h + H)

ḣ2

2
+ ρAL

(ẋ + ḣ)2

2
. (10)
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The kinetic energy of the pipe + water still therein at time t + dt has changed by amount,

dTin = [m + ρA(h + H)]ẋẍ dt + ρA(h + H)ḣḧ dt + ρAḣ dt
ẋ2 + ḣ2

2
+ρAL(ẋ + ḣ)(ẍ + ḧ) dt, (11)

to order dt, while the kinetic energy of the water newly outside the pipe is,

dTout = −ρAḣ dt
ẋ2 + ḣ2

2
. (12)

Assuming that no dissipative forces are present, the change in kinetic energy equals to
work W done on the system by gravity as mass element −ρAḣ is transferred from height h
to height −H,3

dTin + dTout = W = −ρAḣg(h + H) = dPotential Energy. (13)

That is,

[m + ρA(h + H + L)]ẋẍ + ρA(h + H + L)ḣḧ + ρAL(ẋḧ + ḣẍ) + ρA(h + H)gḣ = 0. (14)

The first term can be eliminated using the momentum equation (5), leading to,4,5

ẍ = −h + H + L

L
ḧ − h + H

L
g (20)

3Equivalently, mass of water ρA(h + H) drops by distance −ḣ dt, and the work done by gravity is again
ρA(h + H)g(−ḣ dt).

4If L = 0, the system is simply a vertical pipe with vertically falling water, and eq. (20) reduces to
ḧ = −g as expected.

5We could also work in the accelerated frame of the pipe, if we take into account the apparent horizontal
“coordinate” force −Mẍ on any mass M in the accelerated frame. The kinetic energy of the pipe + water
therein at time t in the accelerated frame is,

T �
in = +ρA(h + H)

ḣ2

2
+ ρAL

ḣ2

2
. (15)

The kinetic energy of the pipe + water still therein at time t + dt has changed by amount,

dT �
in = ρA(h + H)ḣḧ dt + ρAḣ dt

ḣ2

2
+ ρALḣḧ dt, (16)

to order dt, while the kinetic energy of the water newly outside the pipe is,

dT �
out = −ρAḣ dt

ḣ2

2
. (17)

Assuming that no dissipative forces are present, the change in kinetic energy equals the work W done
by gravity as mass element −ρAḣ is transferred from height h to height −H , plus the work done by the
coordinate force −Mẍ on the mass of water M = ρAL that moves horizontal distance ḣ dt,

dT �
in + dT �

out = W � = −ρAḣg(h + H) − ρALẍḣ dt. (18)

That is,

ρA(h + H + L)ḣḧ + ρALḣẍ + ρA(h + H)gḣ = 0, (19)

which becomes eq. (20) after dividing by ρALḣ. This equation can be regarded as an example of the so-called
extended Bernoulli equation, eq. (12) of [3], for nonsteady fluid flow in possibly accelerating frames.
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A formal integration of eq. (20), for a system that starts from rest at t = 0, is,

ẋ = −h + H + L

L
ḣ +

1

L

∫ t

0

ḣ2(t′) dt − H

L
gt − g

L

∫ t

0

h(t′) dt′. (21)

At a small time ε after the motion begins, ḣ and ẋ are still small, so the first integral in
eq. (21) can be neglected, and,

ẋ(t = ε) ≈ −ḣ− h + H

L
(ḣ + εg). (22)

However, we cannot make a crisp inference from this as the small value of ḣ at early times
is not yet determined.

Instead, we combine the two equations (5) and (20) for ẍ, obtaining (for h > 0),

ḧ = −minρA(h + H)

m2
in − (ρAL)2

g, (23)

which is negative so long as any water remains in the right vertical segment of the tube.
Then, eq. (5) tells us that ẍ is positive when h > 0, and since ẋ(0+) > 0, as in eq. (9), the
velocity ẋ of the pipe remains positive for h > 0.

We noted at the beginning of sec. 2 that the velocity of the pipe must change sign
eventually, but we now understand that this does not happen until after the water has
completely drained from the right vertical pipe segment.

Once this has happened, we can consider that the water separates from the right “elbow”
in the pipe, and the water no longer exerts a force to the right on the pipe. The now rapidly
moving water continues to impact on the left “elbow” of the pipe, which decelerates the pipe
and changes the sign of ẋ before the water drains past that “elbow”.

That is, the most dramatic behavior in this problem occurs only after the height h has
gone to zero. In principle we can deduce the equations of motion after this event, but as we
don’t know the water speed when h goes to 0, we cannot complete the solution analytically.

In contrast, the approximations of the leaky-tank-car problem [1] permit a simpler an-
alytic discussion of the time dependence and reversal of the velocity ẋ of the tank car as
water drains out from it.

Oct. 1, 2023. An analysis of the motion after the water has drained from the vertical
section of the pipe has been carried out in [10] (where this behavior is called Phase 2), and
exhibits a change in the sign of the horizontal velocity.

A Appendix: A Lagrangian Analysis

A Lagrangian approach to variable-mass problems has been given in [4, 5], which was applied
in Appendix B of [6] to a leaky tank at rest (Torricelli’s problem), and in sec. 2.2 of [7] to
a leaky bucket suspended from a spring. Lagrangian analyses of two variants of leaky tank
cars have been given in [8]. See also [9, 10].

This method considers the kinetic energy T (qk, q̇k, t) (but not the potential energy) of
a system described by coordinates qk, and supplements the generalized forces of Lagrange
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with additional terms, related to a so-called control volume whose velocity is w, according
to eq. (5.6) of [4] and eq. (1) of [5],

d

dt

∂Tw

∂q̇k
− ∂Tw

∂qk
+

∫
∂T̃

∂q̇k
(v − w) · dArea−

∫
T̃

∂(v −w)

∂q̇k
· dArea = Qk, (24)

where Tw is the kinetic energy within the control volume, T̃ is the kinetic energy per unit
volume, v is the velocity of the material at a point in the system, and the generalized forces
Qk are related to the external forces on the system by,

Qk =
∑

i

Fext
i · ∂ri

∂qk
, (25)

supposing the system to consist of particles with mass mi at positions ri subject to external
forces Fext

i .
In the present example we take the system to be the zig-zag pipe (of mass mp) and the

water (of density ρ) therein, which system can be characterized by two coordinates, x =
horizontal position of the drain pipe (as in the figure on p. 1), and h = height of water in
the vertical pipe on the right. The cross sectional area A of the pipe is everywhere the same.

We take the surface of the control volume to be just outside the physical surface of the
zig-zag pipe. The velocity of the control volume is then w = ẋ. There is no matter of the
system on the surface of the control volume, except for the water that is exiting the drain
with vertical velocity,

V = ḣ ŷ, (26)

(approximating the water as incompressible), The horizontal velocity of the exiting water is,
of course ẋ = w, so v − w = ẋ + V − w = V = ḣ ŷ. The kinetic energy within the control
volume is, for h ≥ 0, as in eq. (10),

Tw = Tin = [m + ρA(h + H)]
ẋ2

2
+ ρA(h + H)

ḣ2

2
+ ρAL

(ẋ + ḣ)2

2
. (27)

The kinetic energy per unit volume at the drain is,

T̃drain = ρ
ẋ2 + V 2

2
= ρ

ẋ2 + ḣ2

2
. (28)

The area vector at the drain is dArea = −A ŷ.
The external force on the system is −[m + ρA(h + H + L)]g ŷ.6

6We recall that Lagrange’s method distinguishes between external and constraint forces. In the present
example, the upward normal on the rolling pipe is a constraint force, and so is not included in the computation
of the generalized force.
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A.1 Equation of Motion for Coordinate x

The generalized force Qx is,

Qx = −
∑

i

min,i g ŷ · ∂ri

∂x
= −

∑
i

min,i g ŷ · x̂ = 0. (29)

From the kinetic energy (27) we have,

d

dt

∂Tw

∂ẋ
− ∂Tw

∂x
= [m + ρA(h + H)]ẍ + ρAḣẋ + ρAL(ẍ + ḧ). (30)

From eq. (28) we have,

∂T̃drain

∂ẋ
= ρẋ. (31)

Then,

∫
drain

∂T̃drain

∂ẋ
(v − w) · dArea = ρẋ

(
ḣ ŷ

)
· (−A ŷ) = −ρAḣẋ, (32)

and since ∂(v − w)/∂ẋ = ∂V/∂ẋ = 0, we have that,

∫
drain

T̃drain
∂(v − w)

∂ẋ
· dArea = 0. (33)

Altogether, the equation of motion for coordinate x, according to eq. (24), is,

[m + ρA(h + H + L)]ẍ + ρALḧ = 0, (34)

as found in eq. (5) above.

A.2 Equation of Motion for Coordinate h

The generalized force Qh is (delicately),

Qh = −
∑

i

[m + ρA(h + H + L)]i g ŷ · ∂ri

∂h
= −

∑
i

ρA(hi + Hi) g ŷ · ŷ = −ρA(h + H) g,(35)

in that only for water in the vertical sections of the pipe are the y-coordinates of particles
related to the water level h. From the kinetic energy (27) we have,

d

dt

∂Tw

∂ḣ
− ∂Tw

∂h
= ρA(h + H)ḧ + ρAL(ẍ + ḧ) + ρAḣ2 − ρA

ẋ2 + ḣ2

2
. (36)

From eq. (28) we have,

∂T̃drain

∂ḣ
= ρḣ. (37)
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Then,

∫
drain

∂T̃drain

∂ḣ
(v −w) · dArea = ρḣ

(
ḣ ŷ

)
· (−A ŷ) = −ρAḣ2, (38)

and since ∂V/∂ḣ = ŷ, we have that,

∫
drain

T̃drain
∂(v − w)

∂ḣ
· dArea = ρ

ẋ2 + ḣ2

2
(ŷ) · (−A ŷ) = −ρA

ẋ2 + ḣ2

2
. (39)

Altogether, the equation of motion for coordinate h according to eq. (24) is,

ρA(h + H + L)ḧ + ρALẍ + ρA
ḣ2 − ẋ2

2
− ρAḣ2 + ρA

ẋ2 + ḣ2

2
= −ρA(h + H) g, (40)

(h + H + L)ḧ + Lẍ = −(h + H) g, (41)

as previously found in eq. (20).

B Another Variant

In this Appendix, we consider the variant of the rolling pipe sketched below, where the
horizontal pipe of length D is actually at the same height as the horizontal pipe of length L.

Because the water exits the pipe of length D with a horizontal velocity to the right,
providing a kind of “rocket propulsion,” we might expect that the rolling pipe moves to the
left in the lab frame. However, when the system starts from rest, water is taken away from
the top of the vertical pipe and appears at the exit of the horizontal pipe of length D, which
moves the center of mass of pipe + water to the left with respect to the pipe. Assuming no
friction, the horizontal coordinate of the center of mass of the entire system must remain at
rest, so the pipe initially moves to the right.

The water that has left the pipe continue to move to the right, assuming that it does
not hit anything, and is eventually to the right of the initial position of the vertical pipe.
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Then, the center of mass of the entire system, relative to the pipe, is to the right of its initial
location, so now the pipe must be moving to the left in the lab frame. That is, the velocity
of the pipe in the lab frame reverses direction at some time, and this time is earlier than
that of the reversal of velocity in the example shown on p. 1.

B.1 Equations of Motion for h > 0

We now use the Lagrangian method of Appendix A to deduce the equations of motion for
coordinates x and h when water is still in the vertical pipe (h > 0).

We again take the surface of the control volume to be just outside the physical surface of
the zig-zag pipe (of mass m and cross-sectional area A). The velocity of the control volume
is then w = ẋ, where x is the coordinate of the left side of the pipe in the lab frame. There
is no matter of the system on the surface of the control volume, except for the water that is
exiting the drain with horizontal velocity,

V = −ḣ x̂, (42)

in the frame of the pipe (approximating the water as incompressible), The horizontal velocity
of the exiting water in the labe frame is v = ẋ + V, so v − w = V = −ḣ x̂. The kinetic
energy within the control volume is, for h ≥ 0,

Tw = Tin = m
ẋ2

2
+ ρAh

ẋ2 + ḣ2

2
+ ρAL

(ẋ + ḣ)2

2
+ ρAD

(ẋ − ḣ)2

2
. (43)

The kinetic energy per unit volume at the drain is,

T̃drain = ρ
(ẋ − ḣ)2

2
. (44)

The area vector at the drain is dArea = A x̂.
The external force on the system is −[m + ρA(h + D + L)]g ŷ.

B.1.1 Equation of Motion for Coordinate x

The generalized force Qx is,

Qx = −
∑

i

min,i g ŷ · ∂ri

∂x
= −

∑
i

min,i g ŷ · x̂ = 0. (45)

From the kinetic energy (43) we have,

d

dt

∂Tw

∂ẋ
− ∂Tw

∂x
= [m + ρA(h + L + D)]ẍ + ρAḣẋ + ρA(L − D)ḧ. (46)

From eq. (44) we have,

∂T̃drain

∂ẋ
= ρ(ẋ − ḣ). (47)
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Then,

∫
drain

∂T̃drain

∂ẋ
(v − w) · dArea = ρ(ẋ − ḣ)

(
−ḣ x̂

)
· (A x̂) = −ρAḣ(ẋ − ḣ), (48)

and since ∂(v − w)/∂ẋ = ∂V/∂ẋ = 0, we have that,

∫
drain

T̃drain
∂(v − w)

∂ẋ
· dArea = 0. (49)

Altogether, the equation of motion for coordinate x, according to eq. (24), is,

[m + ρA(h + L + D)]ẍ + ρA(L − D)ḧ + ρAḣ2 = 0. (50)

B.1.2 Equation of Motion for Coordinate h

The generalized force Qh is (delicately),

Qh = −
∑

i

[m + ρA(h + L + D)]i g ŷ · ∂ri

∂h
= −

∑
i

ρAhi g ŷ · ŷ = −ρAhg, (51)

in that only for water in the vertical section of the pipe are the y-coordinates of particles
related to the water level h. From the kinetic energy (43) we have,

d

dt

∂Tw

∂ḣ
− ∂Tw

∂h
= ρA(h + L − D)ḧ + ρA(L + D)ẍ + ρA

ḣ2 − ẋ2

2
. (52)

From eq. (44) we have,

∂T̃drain

∂ḣ
= ρ(ḣ − ẋ). (53)

Then,

∫
drain

∂T̃drain

∂ḣ
(v − w) · dArea = ρ(ḣ − ẋ)

(
−ḣ x̂

)
· (A x̂) = ρAḣ(ẋ − ḣ), (54)

and since ∂V/∂ḣ = −x̂, we have that,

∫
drain

T̃drain
∂(v − w)

∂ḣ
· dArea = ρ

(ẋ − ḣ)2

2
(−x̂) · (A x̂) = −ρA

(ẋ− ḣ)2

2
. (55)

Altogether, the equation of motion for coordinate h according to eq. (24) is,

ρA(h + L − D)ḧ + ρA(L + D)ẍ + ρA
ḣ2 − ẋ2

2
+ ρAḣ(ẋ − ḣ) + ρA

(ẋ − ḣ)2

2
= −ρAhg, (56)

(h + L − D)ḧ + (L − D)ẍ = −h g, (57)
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B.2 Comments on the Motion

As in eq. (7) above, we can make a formal time integration of eq. (50), using an integration
by parts, for the system starting from rest at t = 0,

minẋ −
∫ t

0

ṁin(t
′)ẋ(t′) dt′ = −ρ(L − D)Aḣ − ρA

∫ t

0

ḣ2(t′) dt′, (58)

ẋ = −ρA(L − D)

min
ḣ +

ρA

min

∫ t

0

ḣ(t′)ẋ(t′) dt′ − ρA

min

∫ t

0

ḣ2(t′) dt′, (59)

with min = m + ρA(h + L + D) and ṁin = ρAḣ. At time t = 0+, when the water starts to
drain out of the pipe, the integrals in eq. (59) are negligible and we have that,

ẋ(0+) = −ρA(L − D)

min
ḣ(0+) > 0, (60)

which is positive provided L > D, since ḣ is always negative as the water drains. That is,
the pipe initially moves to the right, as the water drains out of the left end of the pipe, such
that the center of mass of the system stays at rest.

As time increases, the integrals in eq. (59) become increasingly negative, such that the
sign of ẋ can reverse.

To estimate the time treverse, when ẋ(treverse) = 0 and the velocity of the rolling pipe
reverses, we approximate the relative exit velocity V = −ḣ as

√
2gh, which implies that,

h(t) ≈
(√

h0 −
√

g/2 t
)2

= h0

(
1 − t

te

)2

, (61)

such that the water has emptied out of the vertical pipe approximately at time te =
√

2h0/g.

Then, also assuming that ẋ � −ḣ, eq. (59) tells us that,

ẋ ≈ ρA(L − D)

min

√
2gh − 2gρAh0

min

∫ t

0

(
1 − t′

te

)2

dt′

=
ρA(L − D)

min

√
2gh − 2gρAh0t

min

(
1 − t

2t2
+

t2

3t2e

)
. (62)

This vanishes when,

te
L −D

2h0

(
1 − t

te

)
= t

(
1 − t

2t2
+

t2

3t2e

)
≈ t, (63)

such that,

treverse ≈ te
L − D

2h0(1 + (L − D)/2h0)
≈ te

L − D

2h0
� te, (64)

where the last approximation holds when L − D � h0. That is, the rolling pipe reverses
direction long before the water drains completely from the vertical pipe.

In contrast, when the short pipe section of length D is vertical (with length H as in sec. 2
above), the reversal of the horizontal velocity of the rolling pipe comes at a time close to te

(when the vertical pipe on the right becomes empty). And, if the drain pipe is horizontal
and the water exits to the left, the rolling pipe always moves to the right, never reversing
direction.
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