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1 Problem

A spherical shell of radius a carries charge Q uniformly distributed over its surface. Give
expressions for the electric field E and magnetic field B everywhere in space when the shell
it rotating with angular velocity ω about an axis. Compare these fields with those reported
by an observer in a frame that rotates with angular velocity ω′ about the same axis.

It suffices to consider the low-velocity case, where ωr � c and ω′r � c for any relevant
radius r.

2 Solution

This problem will illustrate a remark by Schiff [1] that care must be taken when discussing
electrodynamics in rotating frames, because the effect of the “distant stars” is to introduce
“fictitious” charges and currents into the problem.

The example chosen here for a spherical shell of charge is perhaps slightly more com-
plicated algebraically that the case of a cylindrical shell of charge, but the latter is less
consistent with a universe in which “distant stars” play a role.

2.1 Rotating Spherical Shell in the Lab Frame

We work in a spherical coordinate system (r, θ, φ) with origin at the center of the sphere,
and z axis along the axis of rotation, such that the angular velocity of the spherical shell is
ω = ωẑ. Then, in Gaussian units, the electric field is simply,

E(r < a) = 0,

E(r > a) =
Q

r2
r̂ , (1)

independent of the angular velocity ω. If that angular velocity is nonzero, there is also a
nonzero magnetic field in the lab frame.

A calculation of the magnetic field via the vector potential is given in sec. 5.4.1 of [2].
For possible contrast, we utilize a scalar potential Φ that can be defined everywhere except
on the shell of radius a, since ∇ × B = 0 every where except on that surface. Thus, we
write,

B = −∇Φ, (2)

where the potential Φ is not continuous across the surface r = a because of the surface
currents there. The potential is azimuthally symmetric, should be finite at the origin and
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should vanish at infinity. Suitable forms for the regions inside and outside of the sphere are
therefore,

Φ(r < a) =
∑

An
rn

an
Pn(cos θ),

Φ(r > a) =
∑

Bn
an+1

rn+1
Pn(cos θ). (3)

We can obtain two matching condition across the surface r = a from Maxwell’s equations.
First, ∇ ·B = 0 implies that the radial component of B, ie, Br = −∂Φ/∂r, is continuous at
r = a. Hence, ∑ nAn

a
Pn(cos θ) = −

∑ (n + 1)Bn

a
Pn(cos θ), (4)

and therefore,

An = −n + 1

n
Bn. (5)

Also, Ampere’s law, ∇ × B = 4πJ/c, applied to a small loop in a plane of constant φ that
surrounds a segment of the charged surface, tells us that,

4π

c
Kφ = Bθ(r = a+) − Bθ(r = a−) = −1

a

∂Φ(r = a+)

∂θ
+

1

a

∂Φ(r = a−)

∂θ
, (6)

where the surface current density K due to the rotating charge is given by,

K =
Q

4πa2
2πa2 sin θ dθ

ω

2π

1

a dθ
φ̂ =

ωQ sin θ

4πa
φ̂ = − ωQ

4πa

d cos θ

dθ
φ̂ = − ωQ

4πa

dP1(cos θ)

dθ
φ̂. (7)

Using eq. (7) in (6), we can integrate the latter to find,1

ωQ

c
P1 = Φ(r = a+) −Φ(r = a−) =

∑
n

(Bn − An)Pn. (8)

Since the Pn are a set of orthogonal functions, we see that An = Bn = 0 for n �= 1, and
that in view of eq. (5),

ωQ

c
= B1 − A1 = 3B1. (9)

Thus,

A1 = −2ωQ

3c
, B1 =

ωQ

3c
, (10)

and,

Φ(r < a) = −2ωQ

3ac
rP1 = −2ωQz

3ac
,

Φ(r > a) =
ωQa2

3c

cos θ

r2
. (11)

1Thanks to Marco Moriconi for pointing this out.
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It is useful to note that the magnetic moment m of the spinning shell of charge is,

m =
ẑ

c

∫ π

0

Q

4πa2
2πa2 sin θ dθ

ω

2π
π(a sin θ)2 =

ωQa2ẑ

4c

∫ π

0

sin3 θ dθ =
ωQa2ẑ

3c
=

Qa2

3c
ω. (12)

The potential can now be written

Φ(r < a) = −2m

a3
z,

Φ(r > a) =
m cos θ

r2
. (13)

Thus, inside the shell the magnetic field is uniform, and outside the shell it has the form of
a point dipole whose strength is the total magnetic dipole moment of the rotating shell,2

B(r < a) =
2m

a3
,

B(r > a) =
3(m · r̂) r̂ − m

r3
. (14)

2.2 Electrodynamics in a Rotating Frame

2.2.1 Summary of the Principles

We desire the fields E′ and B′ seen by an observer in a frame that rotates with angular
velocity ω′ with respect to the lab frame, where ω′ = ω′ ẑ is parallel to the angular velocity
ω of the spherical shell in the lab frame.3 We restrict our attention to points r′ in the rotating
frame such that the velocity v = ω′ × r′ of the points with respect to the lab frame is small
compared to the speed of light. Then, we can largely ignore issues of whether rods and clocks
in the rotating frame measure the same lengths and time intervals as would similar rods and
clocks in the lab frame, and whether the speed of light is the same in both frames. That is,
we ignore Ehrerfest’s paradox [7].

A discussion by the author of electrodynamics in a slowly rotating frame appears in the
lengthy Appendix to [8].

For reference, we reproduce the principles of electrodynamics in the frame of a slowly
rotating medium where ε and μ differ from unity.4

2Another derivation is to note that the surface current (7) is the same as would hold for a uniformly
magnetized sphere of radius a and magnetization M = Qω/4πac. Then, a solution based on a scalar potential
for the field H rather than B [3] quickly leads to the result that B(r < a) = 8πM/3 = 2m, where the total
dipole moment m = 4πa3M/3 = Qa2ω/3c is the same as that calculated in (12). Again, the magnetic field
outside the sphere is that due to a point dipole of strength m.

3In many examples of electrodynamics of rotating systems we are less interested in the fields observed
in the rotating frame than those in the lab frame. Yet, it may be that knowledge of some aspects of the
fields in the moving frame is helpful in reaching an understanding of the fields in the lab frame. In this case
it is often convenient to characterize the fields in the moving frame via the use of Lorentz transformations
between the lab frame and an inertial (nonrotating) frame in which some point of the rotating system is at
rest. For reviews of this approach, see [4, 5]. A pedagogic example is given in [6].

4This case is discussed most thoroughly by Ridgely [9, 10], but primarily for the interesting limit of
steady charge and current distributions.
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The (cylindrical) coordinate transformation is,

r′ = r, φ′ = φ − ω′t, z′ = z, t′ = t, (15)

where quantities in observed in the rotating frame are labeled with a ′. The transformations
of charge and current density are,

ρ′ = ρ, J′ = J − ρv, (16)

where v (v � c) is the velocity with respect to the lab frame of the observer in the rotating
frame. The transformations of the electromagnetic fields are,

B′ = B, D′ = D +
v

c
× H, E′ = E +

v

c
× B, H′ = H. (17)

The transformations of the electric and magnetic polarizations are,

P′ = P− v

c
× M, M′ = M, (18)

if we regard these polarizations as defined by D′ = E′ + 4πP′ and B′ = H′ + 4πM′.
The lab-frame bound charge and current densities ρbound = −∇ ·P and Jbound = ∂P/∂t+

c∇ × M transform to,

ρ′
bound = −∇′ · P′ − 2ω′ · M′

c
+

v

c
· ∇′ × M′, (19)

J′
bound =

∂P′

∂t′
+ c∇′ × M′ + v(∇′ · P′) +

v

c
× ∂M′

∂t′
+ (P′ · ∇)v − (v · ∇)P′. (20)

Force F is invariant under the transformation (15). In particular, a charge q with velocity
vq in the lab frame experiences a Lorentz force in the rotating frame given by,

F′ = q

(
E′ +

v′
q

c
× B′

)
= q

(
E +

vq

c
× B

)
= F, (21)

where v′
q = vq −v. Similarly, the Lorentz force density f ′ on charge and current densities in

the rotating frame is,

f ′ = ρ′E′ +
J′

c
× B′ = (ρ′

free + ρ′
bound) E′ +

J′
free + J′

bound

c
× B′. (22)

Maxwell’s equations in the rotating frame can be written as,

∇′ · B′ = 0, (23)

∇′ · D′ = 4πρ′
free,total = 4π (ρ′

free + ρ′
other) , (24)

∇′ × E′ +
∂B′

∂ct′
= 0, (25)

∇′ × H′ − ∂D′

∂ct′
=

4π

c
J′

free,total =
4π

c
(J′

free + J′
other) , (26)
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where ρ′
free = ρfree and J′

free = Jfree − ρfreev are the free charge and current densities, and the
“other” charge and current densities that appear to an observer in the rotating frame are,

ρ′
other = −v · J′

free

c2
+

ω′ · H′

2πc
− v

4πc
· ∂D′

∂ct′
, (27)

J′
other = ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′
. (28)

The “other” charge and current distributions are sometimes called “fictitious” [1], but we
find this term ambiguous. For an example with an “other” charge density ω′ ·H′/2πc in the
rotating frame, see [11].

Maxwell’s equations can also be expressed only in terms of the fields E′ and B′ and
charge and current densities associated with free charges as well as with electric and magnetic
polarization,

∇′ · E′ = 4πρ′
total, (29)

and,

∇′ × B′ − ∂E′

∂ct′
=

4π

c
J′

total, (30)

where,

ρ′
total = ρ′

free −
v

c2
· J′

free − ∇′ · P′ +
ω · H′

2πc
− v

4πc
· ∂D′

∂ct′
= ρ′

free,total − ∇′ · P′

= ρ′
free + ρ′

bound + ρ′
more , (31)

ρ′
more = − v

c2
·
(
J′

free +
∂P′

∂t′
+ c∇′ × M′

)
+

ω · B′

2πc
− v

4πc
· ∂E′

∂ct′
, (32)

J′
total = J′

free +
∂P′

∂t′
+ c∇′ × M′ + ρ′

freev +

(
D′

4π
· ∇

)
v − (v · ∇)

D′

4π
− v

4πc
× ∂H′

∂t′

= J′
free,total +

∂P′

∂t′
+ c∇′ ×M′

= J′
free + J′

bound + J′
more , (33)

J′
more = v

(
ρ′

free − ∇′ · P′ − 2ω · M′

c
+

v

c
· ∇′ ×M′

)

+

(
E′

4π
· ∇

)
v − (v · ∇)

E′

4π
− v

4πc
× ∂B′

∂t′
. (34)

The contribution of the polarization densities to the source terms in Maxwell’s equations
in much more complex in the rotating frame than in the lab frame.Because of the “other”
source terms that depend on the fields in the rotating frame, Maxwell’s equations cannot be
solved directly in this frame. Rather, an iterative approach is required in general.

The constitutive equations for linear isotropic media at rest in the rotating frame are,

D′ = εE′, B′ = μH′ − (εμ − 1)
v

c
× E′, (35)
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in the rotating frame, and,

D = εE + (εμ − 1)
v

c
× H, B = μH − (εμ − 1)

v

c
× E, (36)

in the lab frame. The lab-frame constitutive equations (36) are the same as for a nonrotating
medium that moves with constant velocity v with respect to the lab frame.

We can also write the constitutive equations (35) for a linear isotropic medium in terms
of the, fields B′, E′, P′ and M′ by noting that D′ = E′ +4πP′ and H′ = B′−4πM′, so that,

P′ =
ε − 1

4π
E′,

M′ =

(
1 − 1

μ

)
B′

4π
−

(
ε − 1

μ

)
v

c
× E′

4π
=

(
1 − 1

μ

)
B′

4π
− εμ − 1

μ(ε− 1)

v

c
× P′. (37)

Similarly, the constitutive equations (36) in the lab frame can be written to order v/c as,

P =
ε − 1

4π
E +

(
ε − 1

μ

)
v

c
× B

4π
=

ε − 1

4π
E +

εμ − 1

μ − 1

v

c
× M,

M =

(
1 − 1

μ

)
B

4π
−

(
ε − 1

μ

)
v

c
× E

4π
=

(
1 − 1

μ

)
B

4π
− εμ − 1

μ(ε− 1)

v

c
× P. (38)

Ohm’s law for the conduction current JC has the same form for a medium with velocity
u′ relative to the rotating frame as it does for a medium with velocity u relative to the lab
frame,

J′
C = σ

(
E′ +

u′

c
× B′

)
= σ

(
E +

u

c
× B

)
= JC, (39)

where σ is the electric conductivity of a medium at rest.

2.2.2 Fields of a Rotating Shell of Charge in a Rotating Frame

While the source charge and current densities ρ′ and J′ are readily transformed from the
lab frame to the rotating frame using eq. (16), it is not straightforward to solve Maxwell’s
equations in the rotating frame because the “other” charge and current densities in eqs. (31)-
(34) depend on the as-yet-unknown fields in that frame.

However, in the present example, we can simply transform the fields (1) and (14) to the
rotating frame using eq. (17), with the results,

E′(r < a) = E(r < a) +
v

c
× B(r < a) =

v

c
× 2m

a3
,

E′(r > a) = E(r > a) +
v

c
× B(r > a) =

Q

r2
r̂ +

v

c
× 3(m · r̂) r̂ −m

r3
, (40)

B′(r < a) = B(r < a) =
2m

a3
,

B′(r > a) = B(r > a) =
3(m · r̂) r̂ − m

r3
. (41)

where v = ω′ × r. Even when ω′ = ω, so that the electric charge appears at rest in
the rotating frame, a nonzero magnetic field (41) is observed in that frame, which can be
attributed to the “fictitious” currents.
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