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1 Problem

Following a major earthquake near Naples in 1857, R. Mallet suggested that a measure of the
horizontal velocity of the ground during an earthquake could be deduced from the maximum
height of cylindrical columns that remained standing [1].

Deduce the minimum horizontal velocity v needed to overturn a solid, vertical, cylindrical
column whose diagonal has length 2l and makes angle θ to the vertical, assuming that a point
p on the base remains fixed with respect to the moving ground, as sketched below.

If the cylinder is too squat (large θ), it can lose contact with the ground during its motion.
Supposing that the velocity v is the minimum value found above, deduce a condition on the
angle θ such that the cylinder always remains in contact with the ground as it falls over.

You may assume that the earthquake lasts long enough, with point p always at horizontal
velocity v, that the column could fall over, although in reality the details can be much more
complicated.

2 Solution

This problem is taken from secs. 174-175 of [2].
While we could suppose the ground is initially at rest, and is suddenly given horizontal

velocity v by the earthquake, it is convenient to work in the (inertial) frame in which the
ground (and the vertical cylinder) have initial horizontal velocity v, and the velocity of the
ground is suddenly reduced to zero, such that point p on the cylinder is also brought to rest.

Using point p as the reference for a torque analysis, there is no torque on the cylinder
about this point (due to the impulsive force of the earthquake that is applied at point p).
Hence, angular momentum of the cylinder about point p is conserved during the impulse.
Thus,

�Li = mvl cos θ = Lf = Ip ω0, and so ω0 =
mvl cos θ

Ip
, (1)

where m is the mass of the cylinder, Ip is its moment of inertial about the fixed point, and
ω0 is the initial angular velocity just after the impulse. Recalling that the moment of inertia

1



of a thin disc about an a diameter is mr2/4, the moment of inertia Ip is, using the parallel
axis theorem,

Ip =

∫ h

0

m dy

h

(
r2

4
+ r2 + y2

)
=

m

4

(
5r2 +

4h2

3

)
=

ml2

12
(15 sin2 θ+16 cos2 θ) =

ml2

12
(15+cos2 θ),

(2)
noting that r = l sin θ and h = 2l cos θ.

The column will fall over if the initial kinetic energy Ip ω2
0/2 just after the earthquake is

sufficient that the center of mass of the column can rise from h/2 = l cos θ to l. Hence, the
minimum velocity of the ground needed to topple the column is related by,

mgl(1 − cos θ) =
Ip ω2

0,min

2
=

m2v2
minl

2 cos2 θ

2Ip
, (3)

and so,

v2
min =

2gIp(1 − cos θ)

ml cos2 θ
=

gl

6

(1 − cos θ)(15 + cos2 θ)

cos2 θ
. (4)

As the column rotates about the fixed point with angular velocity ω(φ), where φ is the
angle of the diagonal to the vertical, it will lose contact with the ground if the normal force
N goes to zero.

Referring to the figure above, the y-equation of motion of the center of mass of the
cylinder is,

Fy = mÿ = m
d2

dt2
(l cos φ) = ml

d

dt
(ω sin φ) = ml(ω̇ sin φ − ω2 cos φ) = N − mg, (5)

noting that dφ/dt ≡ φ̇ = −ω. The normal force goes to zero if there is an angle φ such that,

g = l(ω2 cos φ − ω̇ sin φ). (6)

As the column rotates (about the z-axis), conservation of energy relates ω and φ according
to,

ω2 = ω2
0 − 2

mgl

Ip
(cos φ − cos θ). (7)

If we restrict our attention to the case that the velocity of the ground is the minimum value
(4), then using eq. (3) in (7) yields,

ω2 =
2mgl

Ip
(1 − cos φ). (8)
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Taking the time derivative of eq. (8) we find that,

ω̇ = −mgl

Ip
sin φ, (9)

and the condition (6) becomes,

Ip

mgl2
=

15 + cos2 θ

12
= 2 cos φ(1 − cos φ) + sin2 φ = −3 cos2 φ + 2 cos φ + 1, (10)

or,

3 cos2 φ − 2 cos φ +
3 + cos2 θ

12
= 0. (11)

Thus, the column will loose contact with the ground if,

cos φ =
2 ± √

4 − 12(3 + cos2 θ)/12

6
=

2 ± sin θ

6
. (12)

As the column rotates, angle φ is less than θ (and φ0 = θ) so that cos φ ≥ cos θ. If the column
is to remain in contact with the ground at all times, we must have that neither solution (12)
is greater than cos θ, i.e.,

cos θ >
2 + sin θ

6
. (13)

The critical angle is roughly 61.3◦, so if the height of the column is more than 1.83 times its
diameter it will remain in contact with the ground at all times while it falls over after an
earthquake that is minimally capable of causing this.

A Appendix: Use of the Center of Mass as the

Reference Point

The Appendix added July 14, 2023 at the suggestion of Ralph Wang.
As reviewed in [3], it is generally a good strategy in torque analyses of rigid-body motion

to use the center of mass of the body as the reference point for computation of the torque.
The initial angular momentum Li,cm of the cylinder about its center of mass is zero, and

its angular momentum just after the impulse of the earthquake is Lf,cm = Icm ω0, where the
moment of inertia of the cylinder about a horizontal line through its center of mass is,

Icm =

∫ h/2

−h/2

m dy

h

(
r2

4
+ y2

)
= m

(
r2

4
+

h2

12

)
= ml2

(
sin2 θ

4
+

cos2 θ

3

)
=

ml2

12
(3 + cos2 θ),

(14)
recalling that r = l sin θ and h = 2l cos θ.

The change in angular momentum about the center of mass during the impulse equals
the torque impulse about the center of mass, ΔP × l, where ΔP = Pf − Pi is the change
in momentum of the cylinder during the earthquake, and l is the distance vector from the
center of mass to point p.
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Before the earthquake the cylinder has horizontal momentum Pi = mv, and just after the
earthquake is has momentum Pf = mvf = mω0 × l, which makes angle θ to the horizontal.

The torque equation about the center of mass is,

ΔLcm = Lf,cm − Li,cm = Icm ω0 = Pf × l − Pi × l. (15)

The magnitude of Pf × l is ml2 ω0, and the magnitude of Pi × l is mvl cos θ. Noting the
signs of the various terms in eq. (15), it can be rewritten as,

Icm ω0+ml2ω0 =
ml2 ω0

12
(3+cos2 θ)+ml2 ω0 =

ml2 ω0

12
(15+cos2 θ) = Ip ω0 = mvl cos θ, (16)

as previously found (more quickly) in eq. (1).
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