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1 Problem

When an isotropic dielectric (for example, a gas) is placed in a strong electric field, the
induced polarization is a nonlinear function,1

P = χ1E + χ3E
2E + ... (Gaussian units) (1)

a) Give an order of magnitude estimate of the susceptibilities χ1 and χ2 for a nitrogen gas
at STP, supposing the nonlinear polarization is comparable to the linear term in an electric
field just strong enough to ionize the gas. Fact: liquid nitrogen has index of refraction 1.2
and density 0.8 g/cm3.

If the applied electric field is due to a laser beam, the nonlinear polarizability results in
an index of refraction that is larger where the electric field is stronger. The radial gradient of
the index of refraction is similar to that in a fiberoptic cable, so the laser beam can become
trapped in a kind of “light pipe” of its own making.

b) Suppose a laser beam of wavelength λ is focused at angle θ ≈ λ/w into a slab of
nonlinear dielectric over a radius of diameter w. What is the minimum power of the laser
beam so that it becomes trapped in a channel of constant radius?

c) Deduce the pulse shape Ex(y) of a 2-dimensional beam (which obeys ∇ · E = 0),

E = Ex(y) x̂ ei(kzz−ωt), (2)

that propagates with an invariant transverse profile in the nonlinear medium, assuming
that the pulsewidth in y is large compared to a wavelength so that Ex is determined by
time-averaged quantities.

1In SI units one writes P = ε0χ1E + ..., with the unfortunate result that χSI = 4πχGaussian.
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2 Solution

This problem is based on a paper by R.Y. Chiao, E. Garmire and C.N. Townes, Phys. Rev.
Lett. 13, 479 (1964).2

We work in Gaussian units.
a) We recall that the electric displacement is related by,

D = E + 4πP = εE, (3)

so the dielectric “constant” ε follows from eq. (3) as,

ε = 1 + 4πχ1 + 4πχ3E
2 + .... ≡ ε1 + ε3E

2 + .... (4)

The index of refraction n is, of course, related by,

n =
√

ε ≈ 1 + 2πχ1 + 2πχ3E
2 + .... (5)

For a typical gas at STP, n− 1 ≈ few ×10−4, so we estimate the linear susceptibility as,

χ1 ≈
n − 1

2π
≈ 10−4. (6)

For a somewhat more precise estimate we use the given facts about nitrogen. The index
of liquid nitrogen is related to its susceptibility χL via nL = 1.2 ≈ √

1 + 4πχL, so χL ≈
0.44/4π = 0.035. The susceptibility is proportional to the density, so the susceptibility
of nitrogen gas, whose density is ρgas = 28 g/22.4 l = 1.25 × 10−3 g/cm3, is given by
χ1 = χLρgas/ρL = 0.035 · 1.25 × 10−3/0.8 = 5.5 × 10−5. The index of the gas is n ≈√

1 + 4πχ1 ≈ 1 + 2πχ1 ≈ 1.00035. The actual value for the index of nitrogen gas at STP is
n = 1.00030.

We estimate that the nonlinear term in the polarizability is comparable to the linear
term when the external field is barely sufficient to ionize a nitrogen atom. For this the
field strength would need to be about 6 V/angstrom (since air is transparent for light up to
about 6 eV, and the size of a nitrogen atom is about 1 angstrom). Recalling that 1 V = 300
statvolt, we need field Eionize ≈ (6/300) × 108 = 2 × 106 statvolt/cm. Thus, we estimate,

χ3 ≈
χ1

E2
ionize

≈ 5 × 10−5

(2 × 106)2
≈ 1.25 × 10−17. (7)

b) We consider the fate of a ray that is initially at angle θ ≈ λ/w to the axis of the laser
beam, shown as a dashed line in the figure.

2http://kirkmcd.princeton.edu/examples/optics/chiao_prl_13_479_64.pdf
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The index of refraction is varying with position along this ray, reaching a value nmax on
the axis of the laser beam. In a simplified view, this ray would like to continue across the
axis of the beam back into the region of low index of refraction, where n ≈ 1. However, a
ray is subject to total internal relection when going from high index to low index if,

nmax sin θi > 1, (8)

according to Snell’s law. From the figure, we see that,

sin θi ≈ cos θ. (9)

Taking nmax from eq. (4), the ray will be totally internally reflected, and hence trapped in a
tube, if,

(1 + 2πχ1 + 2πχ3E
2)

(
1 − θ2

2

)
≈ 1. (10)

For 2πχ1 ≈ 2πχ3E
2 and θ ≈ λ/w, this requires a laser electric field strength of,

E2 ≈ θ2

8πχ3

≈ (λ/w)2

8πχ3

. (11)

The corresponding laser power P is given in terms of the Poynting vector S as,

P = S · Area ≈ c

4π
E2w2 ≈ c(λ/w)2w2

2(4π)2χ3

=
c

2χ2

(
λ

4π

)2

≈ 3 × 1010 · (5 × 10−6)2

2 × 10−17

≈ 3 × 1016 erg/s = 3 × 109 W = 3 GW. (12)

Such powers can be achieved in table-top lasers, where a pulse of is compressed to 100 ps
and amplified to 1 J.

We note that for the focused laser beam to be just below the ionization threshold, the
focus angle θ obeys,

θ ≈
√

8πχ3E
2 ≈ √

8πχ1 ≈
√

14 × 10−4 ≈ 1

25
. (13)

Since the focus angle is roughly the ratio D/f of the diameter D of the focusing lens to
its focal length f , we see that a “long” lens of f/D ≈ 25 must be used. The spot size
w, and hence the approximate diameter of the self-trapped filament of light, is given by
w ≈ λ/θ ≈ 25λ ≈ 12 μm.

c) The wave equation in the nonlinear medium is,

∇2E =
n2

c2

∂2E

∂t2
=

ε1 + ε3E
2

c2

∂2E

∂t2
, (14)

where ε1 = 1 + 4πχ1 and ε3 = 4πχ3. Inserting the pulse (2) into the wave equation, we find,

E
′′
x − k2

zEx = −ω2

c2
(ε1 + ε3E

2)Ex, (15)
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where E ′
x = dEx/dy.

We suppose that the slowly varying waveform Ex responds only to the time average of
E2 that appears in eq. (15); of course 〈E2〉 = E2

x/2.
We define,

k ≡ ω

c
, k1 ≡ ω

c/n1
=

√
ε1ω

c
, and Γ2 ≡ k2

z − k2
1. (16)

Then, eq. (15) becomes,

E
′′
x = Γ2Ex − ε3k

2

2
E3

x ≡ Γ2

(
Ex − 2

a2
E3

x

)
, (17)

where the constant a is defined by,

a =
2Γ√
ε3k

. (18)

Perhaps surprisingly, this nonlinear differential equation is easily integrated after multi-
plying by E ′

x,

E ′
xE

′′
x =

1

2

dE
′2
x

dx
= Γ2

(
ExE

′
x −

2

a2
E3

xE
′
x

)
= Γ2

(
1

2

dE2
x

dx
− 2

a2

1

4

dE4
x

dx

)
. (19)

Hence,

E
′2
x = Γ2

(
E2

x − 1

a2
E4

x

)
+ C. (20)

For a pulse, we desire that Ex(±∞) = 0 = E ′
x(±∞), so the integration constant C is zero.

Then,

E ′
x =

dEx

dy
=

Γ

a
Ex

√
a2 − E2

x, (21)

which integrates to,

Γ

a
y +

D

a
=

∫
dEx

Ex

√
a2 − E2

x

= −1

a
sech−1 Ex

a
, (22)

or,
Ex = a sech(Γy + D). (23)

For a pulseshape that is symmetric about y = 0, we set the integration constant D to zero,
and have,

Ex =
2Γ√
ε3k

sech Γy. (24)

This pulse exhibits the hyperbolic secant shape found in many distortionless solutions (soli-
tons) to nonlinear wave equations. Note also that the pulse amplitude is larger for narrower
pulses.
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