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1 Problem

Estimate the maximum number C of bits of information that can be transmitted per second
in a communication channel of bandwidth B, meaning that this channel acts as a low-pass
filter with cutoff frequency B.1

2 Solution

The solution proceeds by taking the channel capacity C to be the product of the maxi-
mum number of pulses per second that can be transmitted times the maximum amount of
information that can be encoded onto a single pulse.

2.1 Maximum Number of Pulses per Second

A simple model of a pulse is that it is one-half period of a sine wave. The shortest period
wave that can be transmitted down a channel of bandwidth B is 1/B. Hence, the shortest
pulse that can be transmitted has period 1/2B, and the maximum number of (distinct)
pulses per second that can be transmitted is,

Npulse = 2B. (1)

The estimate (1) is sometimes called Nyquist’s theorem [1].

2.2 Maximum Information per Pulse

If the pulse can have n distinguishable amplitudes (often called levels), this amplitude can
be interpreted as a binary number consisting of log2 n bits.

Hence, the maximum number of bits per second that can be transmitted by encoding
pulses is,2

C = Npulse log2 n = 2B log2 n. (2)

1A communication channel consists of a transmitter, a receiver, and some medium between these two
(possibly vacuum) that supports transmission of signals. In most cases, the transmitter and/or receiver have
limited bandwidth, while the medium could transmit pulses of arbitrarily small time width. Hence, “channel
capacity” is more a property of the transmitter and receiver, than of the signal-transmission medium.

2In simple pulse telegraphy, the presence of a pulse corresponds to a 1 and its absence to a 0. The number
of levels is n = 2, in which case eq. (2) has the same form as eq. (1). If it is desired to transmit a digitized
analog signal with n analog levels via simple pulse telegraphy, the bandwidth of the analog signal is limited
to B/n, since a block of n two-level pulses is used to represent each n-level analog sample. Equivalently, if
the analog sampling is performed to m-bit accuracy, then the analog bandwidth is limited to B/2m.
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If the number of levels per pulse can be arbitrarily high, the amount of information that
can be transmitted can also be arbitrarily large. However, in practice there will be some
maximum transmittable pulse amplitude, Amax, and there will always be some kind of noise
in the transmission. A simple model of the noise is that its average amplitude is zero, with
a Gaussian distribution of variance Anoise.

We estimate that the number of distinguishable levels in this case is n = Amax/Anoise

(although it is doubtful that a pulse of amplitude Anoise can be clearly distinguished from
one of amplitude 2Anoise in the presence of the noise). From this we estimate that the number
of bits per pulse that can be transmitted down a noisy channel is n = log2 Amax/Anoise =
log2

√
S/N = 1

2
log2 S/N , where the signal power S and the noise power N are proportional

to the squares of the respective amplitudes.
While this estimate makes sense if S/N is large, the logarithm is negative when S/N < 1.

To keep the number of bits per pulse positive when the signal-to-noise ratio is low, we revise
our estimate to be,

1

2
log2(1 + S/N). (3)

Combining this with the estimate (1), we obtain the final result that the information
capacity of a noisy channel is,

C = B log2(1 + S/N). (4)

This result is often called Shannon’s theorem [2, 3, 4].3

A simple model is that the noise power per unit bandwidth is the constant η. If so, the
channel capacity for a fixed maximum signal power S but variable bandwidth B is,

C(B) = B log2(1 + S/ηB). (5)

If we can increase the bandwidth B indefinitely then eventually S/ηB becomes small, and,

C → 1

ln 2

S

η
= 1.44

S

η
(6)

is the maximum channel capacity for infinite bandwidth but fixed signal power (in which
case the signal-to-noise ratio is very poor, and we should consider the processing of weak
signals).

2.3 Weak Signals

When the signal-to-noise ratio is low it is better to speak of the number of pulses needed to
successfully transmit one bit of information, rather than the number of bits per pulse.

When S/N � 1 the number of bits per pulse according to eq. (3) is (1/2 ln 2)S/N =
0.7S/N . That is, it takes approximately 1.4N/S pulses to successfully transmit one bit. To

3We have arrived at the results (1) and (4) without requiring the use of Fourier analysis, but only that
there exists a minimum time width of a recognizable pulse. It is claimed in [5] that these results depend
on Fourier analysis, and that the information capacity of “nonperiodic” channels can exceed these bounds.
Note that messages are generally nonperiodic in that a periodic message, such as 01010101..., has very little
information content. Hence, all practical information channels are “nonperiodic”, and the claims of [5] seem
ill founded.
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see that this is reasonable, note that the standard deviation of the mean of a sample of m
pulses of mean amplitude A is σA/

√
m, where σA is the variance of the amplitudes of the

pulses. For the case of A =
√

S the variance is σA =
√

N , so with m = 1.4N/S the standard
deviation of the mean is σA/

√
m =

√
N/

√
1.4N/S =

√
S/1.4 = A/

√
1.4. Thus, the quality

of the measurement of the 1.4N/S pulses is
√

mA/σA =
√

1.4 = 1.2 standard deviations,
which is barely statistically significant.

2.4 Information and Entropy

So far, we have considered the number of bits is a message as the measure of its information
content. But, if all the bits in a long message are the same, a one-bit version would suffice to
carry this message. This led people, starting with Szilard [6], and more famously Shannon
[2], to define a statistical measure H of the information content4 of a set {i} of possible
messages, of which message i is transmitted with probability pi, to be,

H = −
∑

i

pi log2 pi. (7)

This measure is often called Shannon entropy. For a review, see [7]. For discussion of the
relation between entropy and Maxwell’s demon, see, for example, [8].

A way to apply this measure to a single message of m bits is to suppose that there are
only two submessages, a 0 and a 1. So, if 0 ≤ n ≤ m of the bits are 0’s, and m − n are 1’s
we obtain,

H(m, n) = − n

m
log2

n

m
− m− n

m
log2

m− n

m
= log2

m

m − n
+

n

m
log2

(m

n
− 1

)
≤ 1. (8)

H(m, n) is zero when n = 0 or m and 1 when n = m/2. This measure successfully identifies
messages in which all bits are the same as having low information content, but it does not
consider the order of the bits, and rates the message 01010101 as having high information
content.5

A more practical question is: how much shorter could a message be made without losing
any of its information content? This is the challenge of data compression. The measure H
gives a clue as to how much a message could be compressed, but it does not suggest the best
way to do that compression. One of the most popular data-compression algorithms (with
zero loss of information) was developed by Huffman [9], and is the basis for zip files.

4The symbol H honors Boltzmann who first wrote expressions of the form (7).
5A surprising debate persists as to whether H or −H should be considered the measure of information

content of a set of messages. The definition (7) implies that messages consisting of random bits have the
highest information content, whereas many people feel that if the bits are random we should say that the
message has no content.

A lesson I have learned from quantum information theory, which applies also to the classical case, is that
we can say that we have knowledge of a state/message only if we can copy it. In this view, very little
knowledge is required to make a copy of a message in which all the bits are the same, but a lot of knowledge
is required to make a copy if the bits are random. Hence, I am of the persuasion that a random message
actually has high information content, and that definition (7) is appropriate.

Furthermore, as discussed in [8], the task of erasing a message leads to a net increase of entropy of the
Universe, which I find consistent with the notion that a nontrivial message is in some way equivalent to a
high, not low, state of entropy.
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2.5 Increased Channel Capacity via Waves with Field Angular

Momentum

Historically, the earliest physical realization of an information channel was two-wire trans-
mission lines (telegraph lines), and followed by use of (two-conductor) coaxial transmission
lines. These lines support transverse (TEM) waves of any wavelength, with field patterns
that are static solutions, multiplied by an axial wavefunction ei(kz−ωt) (for lines parallel to the
z-axis). For a given wavelength, there is only a single possible wave, unless the wavelength
is smaller than the separation between the two conductors of the line. In the latter case,
there also exist waves for coaxial lines with axial wavefunctions of the form ei(kz−ωt±mφ) for
integer m. Waves with nonzero m carry field angular momentum, and lines of the Poynting
vector (rays) form helices.

Waves of each index m constitute a separate information channel, for which Shannon’s
results hold separately. Hence, use of short (but finite) wavelengths on two-conductor trans-
mission lines permits, in principle, infinite total channel capacity if the waves with field
angular momentum could be exploited. In practice, two-conductor transmission lines are so
lossy for such short wavelengths that only long wavelengths and the TEM mode is used, and
the channel capacity is finite.

Hollow, conducting waveguides, and more particularly dielectric waveguides (optical
fibers) do not support TEM waves, but only waves of small wavelength, which can carry
field angular momentum.6 The two modes, often called TE and TM, with index m = 0 are
the most common, but there exists an infinite set of modes with nonzero m, called EH or HE
depending on whether Ez is larger or smaller than Hz.

7 If the source and receiver on such
a waveguide can generate and detect waves of n different values of index m, for which two
distinct modes exist with each index, the channel capacity would be 2n times larger than
that if only a single mode were used.

Likewise, electromagnetic waves in free space, such as laser beams, have an infinite set
of modes at each wavelength. Such modes can also be characterized by an index m related
to field angular momentum, with two modes (polarizations) for each index m.8 Again, in
principle, use of modes with n different values of index m would permit information channel
capacity 2n times that for a single mode.

At present, such mode separation seems not to be practical for large m, but is an active
area of research. See, for example, [13].
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