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1 Problem

A popular ride at amusement parks is the “slingshot,”
in which two bungee cords of rest length l0 and spring
constant k are attached between two poles distance 2l
apart and connected to mass m. The mass is lowered
by height H > 0 below the tops of the poles, and then
released.
What is the maximum velocity of the mass?
What is the maximum height h above the tops of the
poles reached by the mass? For this, suppose that l0 = 0.
What are the frequencies of the normal modes of small
oscillation of the system about equilibrium?

2 Solution

We assume that there is no energy dissipation in the bungee cords. Then for purely vertical
motion along the z-axis, with z = 0 at the top of the poles, the energy is,
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The maximum velocity occurs when the mass passes by z = 0, where,
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To find the maximum height h we equate the second and third lines of eq. (1), which leads to
a quartic equation in h if l0 > 0. To obtain a simple analytic result we suppose that l0 = 0,
in which case we find only a quadratic equation in h,
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so that the maximum height is,
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The general motion is in all three coordinates x, y and z, where we take the x-axis
along the line connecting the tops of the poles. One normal mode involves purely vertical
oscillations, and another is simple pendulum motion in the y-z plane. The third normal
mode is orthogonal to the first two, so should involve oscillation only in x.

For purely vertical motion,
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Again, an analytic description is much simpler if l0 = 0. Then,

mz̈ = −mg − 2kz, (6)

for which the equilibrium is at,
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and the angular frequency of small oscillations is,
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The second mode is simple pendulum motion in the y-z plane with length |z0| = mg/2k.
The angular frequency of small oscillations for this mode is,
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The third mode is for oscillations along the horizontal line with y = 0, z = z0, for which
the equation of motion is,
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The angular frequency of small oscillations for this mode is,
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All three modes have the same frequency when l0 = 0, and the system is equivalent to
mass m being tied to the equilibrium point (0, 0, z0) by a spring of zero length and constant
2k.
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