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1 Problem

Discuss the scattering of a plane electromagnetic wave of angular frequency ω that is incident
on a perfectly conducting sphere of radius a, which is at rest, when the wavelength obeys
λ � a (ka � 1). Calculate the electromagnetic fields and the Poynting vector everywhere,
and interpret these fields in both the near and far zones. Consider incident electromagnetic
waves of both linear and circular polarization.

2 Solution

We review this well-known problem1 with an emphasis on details of the fields close to the
sphere (sec. 2.2), following the usual, briefer analysis that applies to the far zone (sec. 2.1).

A possible interest in a study of the near zone in this problem is its relation to the
near-zone behavior of broadcast antennas. Although, the latter are not typically considered
as examples of scattering phenomena, in a sense they are. An antenna is fed from an rf
generator by a feedline that is often a coaxial cable. This cable carries power in the form of
a TEM electromagnetic wave, that is delivered to the feedpoints of the antenna. One view of
what follows is that the TEM wave scatters off the feedpoints of the antenna (as in Young’s
view of waves diffracted by an aperture), and the bulk structure of the antenna serves only
to constrain or guide the scattered wave.

In the usual excellent approximation that the antenna is made of a perfect conductor, the
tangential component of the total electric field must vanish everywhere on the antenna (in
a frame where the antenna is at rest). Hence, the total Poynting vector [2], S = (c/4π)E ×
B (in Gaussian units), cannot have a component that is perpendicular to any surface of
the antenna. Thus, a discussion of energy flow of either an antenna or of scattering by a
conducting sphere that is based on the total Poynting vector will consider these two problems
to be similar.

A more “microscopic” view may be preferable to many people. The incident wave, be it a
free-space plane wave or a TEM wave in a cable, excites time-dependent charge and current
distributions in the sphere or antenna. Near- and far-zone fields, which include scattering
(or radiation) terms, can then be deduced from a knowledge of the current distribution. The
Poynting vector of these fields will include a component that is perpendicular to the surface
of the sphere or antenna, which is sometimes interpreted as describing the local strength of
the radiation emitted by a point on the sphere or antenna. This view follows from the spirit

1The earliest study of this problem may be by J.J. Thomson in secs. 369-378 of [1].
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of Poynting, but is somewhat at odds with the view of Huygens [3] in which wave phenomena
are described by sum (interference) of contributions from distributed sources.

In the present problem it is relatively straightforward to deduce the current distribution in
the conducting sphere for first principles. This is not generally the case in antenna problems,
where one often proceeds from a plausible “guess” as to the form of the current distribution.
As will be seen below, the total current distribution is proportional to, but not equal to, that
part of the current distribution that can be said to drive to far-zone scattered (or radiation)
fields.

2.1 Far-Zone Analysis: Scattering

The scattering cross section in spherical coordinates (r, θ, φ) is given by,

dσ

dΩ
=

power scattered into dΩ

incident power per unit area
= r2 〈Sscat(θ, φ)〉

〈Sincident〉 = r2 |Escat|2
E2

0

, (1)

where in the dipole approximation, the far-zone scattered electric field is [4, 5, 6],

Escat = k2ei(kr−ωt)

r
[(n̂× p0) × n̂ − n̂ × m0] , (2)

and p0e
iωt and m0e

−iωt are the electric and magnetic dipole moments induced in the con-
ducting sphere by the incident wave.

Because the incident wavelength is large compared to the radius of the sphere, the incident
fields are essentially uniform over the sphere, and the induced fields near the sphere are the
same as the static fields of a conducting sphere in an otherwise uniform electric and magnetic
field. Then, from p. 57 of the Notes,2 the induced electric dipole moment is given by,

p0 = a3E0. (3)

For the induced magnetic dipole, we recall p. 98 of the Notes,3 remembering that a conducting
sphere can be thought of a permeable sphere with zero permeability and a dielectric sphere
of infinite dielectric constant. Hence, the magnetic dipole moment is,

m0 = −a3

2
B0. (4)

Then,

Escat = −k2a3ei(kr−ωt)

r

[
n̂ × (E0 × n̂) +

1

2
(n̂× B0

]
, (5)

where n̂ is along the vector r that points from the center of the sphere to the distant observer.
For a wave propagating in the +z direction with electric field linearly polarized along

direction l̂, E0 = E0l̂, and the magnetic field obeys B0 = ẑ × E0. Then,

Escat = −k2a3E0
ei(kr−ωt)

r

[
n̂× (̂l × n̂) +

1

2
n̂× (ẑ × l̂)

]

= −k2a3E0
ei(kr−ωt)

r

[̂
l

(
1 − (n̂ · ẑ)

2

)
−

(
n̂− ẑ

2

)
(n̂ · l̂)

]
. (6)

2http://kirkmcd.princeton.edu/examples/ph501/ph501lecture5.pdf
3http://kirkmcd.princeton.edu/examples/ph501/ph501lecture8.pdf
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Inserting this in (1) we find,

dσ

dΩ
= k4a6

[(
1 − n̂ · ẑ

2

)2

− 3

4
(n̂ · l̂)2

]
. (7)

For an observer in the x-z plane, n̂ · ẑ = cos θ. Then, for electric polarization parallel to
the scattering plane n̂ · l̂ = sin θ, while for polarization perpendicular to the scattering plane
n̂ · l̂ = 0.

Thus, eq. (7) yields,

dσ‖
dΩ

= k4a6

(
1

2
− cos θ

)2

,
dσ⊥
dΩ

= a6k4

(
1 − cos θ

2

)2

. (8)

For an unpolarized incident wave,

dσ

dΩ
=

1

2

(
dσ‖
dΩ

+
dσ⊥
dΩ

)
= k4a6

[
5

8
(1 + cos2 θ) − cos θ

]
, (9)

and so,4

σ =

∫
dσ

dΩ
dΩ =

10π

8
k4a6

∫ 1

−1

(1 + cos2 θ) d cos θ =
10πa2

3
k4a4. (10)

4The cross section (10) varies as 1/λ4 in contrast to the Thomson scattering cross section for a free
electron [7], σThomson = 8πr2

e/3, where re = e2/mec
2 is the classical electron radius, which is independent

of wavelength (for λ � λCompton = h/mec). While the conduction electrons in a metallic object of char-
acteristic length a are “free,” they are not free to leave the object, and are bound to it by a force that
can be approximated as springlike with a characteristic angular frequency ω0 ≈ c/a. Then, scattering of
electromagnetic waves with angular frequency ω = kc � ω0 ≈ c/a, i.e., for ka � 1, varies as ω4/ω4

0 ∝ 1/λ4,
as discussed, for example, on pp. 278-279 of the Notes,
http://kirkmcd.princeton.edu/examples/ph501/ph501lecture23.pdf
A consequence is that the total scattering cross section is smaller than the geometric cross section ≈ πa2 by
a factor of order (ka)4 � 1. These general conclusions are verified for small metallic spheres via Maxwell’s
equations in the present example. And, this behavior holds for scattering by small metallic disks [8, 9, 10],
for which σ ≈ 128πa2(ka)4/27π2.

3



From eqs. (8) we see that dσ⊥/dΩ is always nonzero, but dσ‖/dΩ = 0 for θ = π/3, so
for this angle, the scattered radiation is linearly polarized parallel to the scattering plane for
arbitrary incident polarization.

2.2 Near-Zone Analysis

To discuss the fields in the near zone, we can use the full forms of fields from Hertzian dipoles
[4, 5, 6]. Thus, the scattered electric field at any position r outside the sphere is,

Escat(r, t) = k2 ei(kr−ωt)

r

{
(n̂× p0) × n̂ + [3(n̂ · p0)n̂− p0]

(
1

k2r2
− i

kr

)

−
(

1 +
i

kr

)
n̂ ×m0

}

= k2a3ei(kr−ωt)

r

{
(n̂× E0) × n̂ + [3(n̂ · E0)n̂− E0]

(
1

k2r2
− i

kr

)

+
1

2

(
1 +

i

kr

)
n̂× B0

}
, (11)

also using eqs. (3) and (4). From now on we suppose that the electric field of the incident
plane wave is along the x-axis, so that E0 = E0x̂ and B0 = E0ŷ, while the point of observa-
tion is at r = (r, θ, φ). We express the electric field vector in spherical coordinates, noting
that,

n̂ = r̂, (12)

x̂ = sin θ cos φ r̂ + cos θ cos φ θ̂ − sin φ φ̂, (13)

ŷ = sin θ sin φ r̂ + cos θ sinφ θ̂ + cosφ φ̂, (14)

ẑ = cos θ r̂ − sin θ θ̂. (15)

Thus,

Escat(r, t) = k2a3E0
ei(kr−ωt)

r

{
cos θ cosφ θ̂ − sinφ φ̂

+(2 sin θ cos φ r̂ − cos θ cos φ θ̂ + sin φ φ̂)

(
1

k2r2
− i

kr

)

−1

2

(
1 +

i

kr

)
(cosφ θ̂ − cos θ sinφ φ̂)

}

= k2a3E0
ei(kr−ωt)

r

{
2 sin θ cos φ

(
1

k2r2
− i

kr

)
r̂

+cos φ

[
cos θ

(
1 − 1

k2r2
+

i

kr

)
− 1

2

(
1 +

i

kr

)]
θ̂

− sin φ

[
1 − 1

k2r2
+

i

kr
− cos θ

2

(
1 +

i

kr

)]
φ̂

}
. (16)
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Similarly, the scattered magnetic field can be written as,

Bscat(r, t) = k2 ei(kr−ωt)

r

{
(n̂ ×m0) × n̂ + [3(n̂ · m0)n̂− m0]

(
1

k2r2
− i

kr

)

+

(
1 +

i

kr

)
n̂× p0

}

= −k2a3ei(kr−ωt)

2r

{
(n̂ ×B0) × n̂ + [3(n̂ · B0)n̂− B0]

(
1

k2r2
− i

kr

)

−2

(
1 +

i

kr

)
n̂× E0

}

= −k2a3E0
ei(kr−ωt)

2r

{
cos θ sinφ θ̂ + cos φ φ̂

+(2 sin θ sinφ r̂ − cos θ sinφ θ̂ − cos φ φ̂)

(
1

k2r2
− i

kr

)

−2

(
1 +

i

kr

)
(sinφ θ̂ + cos θ cos φ φ̂)

}

= −k2a3E0
ei(kr−ωt)

2r

{
2 sin θ sin φ

(
1

k2r2
− i

kr

)
r̂

+sinφ

[
cos θ

(
1 − 1

k2r2
+

i

kr

)
− 2

(
1 +

i

kr

)]
θ̂

+cos φ

[
1 − 1

k2r2
+

i

kr
− 2 cos θ

(
1 +

i

kr

)]
φ̂

}
. (17)

On the surface of the sphere, r = a, the scattered electromagnetic fields are, to the
leading approximation when ka � 1,5

Escat(r = a) ≈ E0e
−iωt(2 sin θ cos φ r̂ − cos θ cosφ θ̂ + sinφ φ̂), (18)

Bscat(r = a) ≈ −E0

2
e−iωt(2 sin θ sinφ r̂ − cos θ sinφ θ̂ − cos φ φ̂). (19)

In the same approximation, the incident electromagnetic fields at the surface of the sphere
are,

Ein(r = a) ≈ E0e
−iωtx̂ = E0e

−iωt(sin θ cosφ r̂ + cos θ cos φ θ̂ − sinφ φ̂), (20)

Bin(r = a) ≈ E0e
−iωtŷ = E0e

−iωt(sin θ sin φ r̂ + cos θ sinφ θ̂ + cosφ φ̂). (21)

Thus, the total electric field,

Etot(r = a) = Ein(r = a) + Escat(r = a) = 3E0e
−iωt sin θ cos φ r̂, (22)

on the surface of the sphere is purely radial, and the total magnetic field,

Btot(r = a) = Bin(r = a) + Bscat(r = a) =
3

2
E0e

−iωt(cos θ sinφ θ̂ + cos φ φ̂), (23)

5If the fields were to be used to compute the force and torque on the sphere via the Maxwell stress
tensor, terms of order k2a2 must be considered. See secs. 2.3.1-2 for a different method.
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is purely tangential, as expected for a perfect conductor.6

The total charge density σtot on the surface of the conducting sphere follows from Gauss’
law as,

σtot =
Etot(r = a) · r̂

4π
=

3E0

4π
e−iωt sin θ cosφ =

3

2
σscat, (24)

where σscat is the surface charge density corresponding to the scattered field (18). Similarly,
the total current density Ktot on the surface of the sphere follows from Ampère’s law as,

Ktot =
c

4π
r̂ × Btot(r = a) =

3cE0

8π
e−iωt(− cosφ θ̂ + cos θ sinφ φ̂) = 3Kscat, (25)

where Kscat is the surface current density corresponding to the scattered field (19).
We can now discuss the energy flow in the vicinity of the conductor sphere from two

perspectives. These two views have the same implications for energy flow in the far zone,
but differ in their description of the near zone.

First, we can consider the Poynting vector constructed from the total electromagnetic
fields,

Stot =
c

4π
Etot × Btot. (26)

Because the tangential component of the total electric field vanishes at the surface of the
sphere, lines of the total Poynting vector do not begin or end on the sphere, but rather they
pass by it tangentially. In this view, the sphere does not absorb or emit energy, but simply
redirects (scatters) the flow of energy from the incident wave.

However, this view does not correspond closely to the “microscopic” interpretation that
atoms in the sphere are excited by the incident wave and emit radiation as a result, thereby
creating the scattered wave. We obtain a second view of the energy flow that better matches
the “microscopic” interpretation if we write,

Stot =
c

4π
Etot ×Btot

=
c

4π
(Ein + Escat) × (Bin + Bscat)

=
c

4π
Ein × Bin +

c

4π
(Ein × Bscat + Escat × Bin) +

c

4π
Escat ×Bscat

= Sin + Sinteraction + Sscat. (27)

Since the scattered fields (18)-(19) at the surface of the sphere include tangential components
for both the electric and the magnetic field, the scattered Poynting vector, Sscat, has a radial
component, whose time average we wish to interpret as the flow of energy radiated by the
sphere. The scattered Poynting vector at any r is given by,

〈Sscat〉 =
c

8π
Re(E�

scat × Bscat)

6The surface current density K on the sphere is given by K = (c/4π) r̂ × Btot(r = a) =
(3E0 c/8π) e−iωt(cos θ sin φ φ̂ − cosφ θ̂). This is nonzero on the “equator,” θ = 90◦, so current flows be-
tween the two “sides” of the sphere, in contrast to the case of a thin metallic screen [11], which partly
explains why scattering is stronger from a small sphere than from a small disk (footnote 4).
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=
c

8π
Re

[
(E�

θ,scatBφ,scat − E�
φ,scatBθ,scat)r̂ + (E�

φ,scatBr,scat − E�
r,scatBφ,scat)θ̂

+(E�
r,scatBθ,scat − E�

θ,scatBr,scat)φ̂
]

=
c

8π

k4a6E2
0

r2

{[
cos2 φ

(
1

2
− cos θ

)2

+ sin2 φ

(
1 − cos θ

2

)2
]
r̂

− 1

k4r4

(
cos θ

2
r̂ + sin θ θ̂

)}
. (28)

The radial term of eq. (28) in square brackets is identical to the far-zone Poynting vec-
tor, while the other radial term is antisymmetric in cos θ. Hence, the time-average flow of
scattered energy across any sphere of radius r > a corresponds to power,

〈Pscat〉 = r2

∫
〈Sscat〉 · r̂ dΩ =

cE2
0

8π

10πa2

3
k4a4 = 〈Prad〉 . (29)

However, close to the sphere we find additional terms in 〈Sscat〉, so that in the near zone
〈Srad〉 �= 〈Sscat〉. Indeed, at the surface of the sphere we find,

〈Sscat(r = a)〉 =
c

8π
E2

0

{
k4a4

[
cos2 φ

(
1

2
− cos θ

)2

+ sin2 φ

(
1 − cos θ

2

)2
]

r̂

−
(

cos θ

2
r̂ + sin θ θ̂

)}

≈ − c

8π
E2

0

(
cos θ

2
r̂ + sin θ θ̂

)
= − c

8π
E2

0

(
ẑ

2
+

3 sin θ

2
θ̂

)
(30)

The leading radial term of the scattered Poynting vector at the surface of the sphere corre-
sponds to a large energy being emitted by the hemisphere facing the incident wave, and an
equal amount of energy being absorbed by the opposite hemisphere. The energy radiated
into the far zone is negligible compared to the leading terms when ka � 1. As a consequence,
the relatively few lines of 〈Sscat〉 that do not curl back onto the sphere emanates from very
close to the pole of the sphere facing the incident wave, as sketched in the figure below.
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This extreme localization of the origin of the lines of the far-field Poynting vector to one
pole of the sphere suggests that there is limited merit in associating lines of the time-average
scattered Poynting vector with the source of radiation on the sphere.

Of course, the conducting sphere is not an energy source by itself, and the radiated
energy is equal to the energy absorbed from the incident wave. For a description of the flow
of energy that is absorbed, we look to the time-average of the incident and interaction terms
of eq. (27). However, lines of the incident Poynting vector,

〈Sin〉 =
c

8π
E2

0 ẑ =
c

8π
E2

0(cos θ r̂ − sin θ θ̂), (31)

enter and leave the sphere with equal strength, and are therefore not to be associated with
energy transfer to the radiation fields. So, we look to the interaction term,

〈Sinteraction〉 =
c

8π
Re

[
(E�

θ,scatBφ,in + E�
θ,inBφ,scat − E�

φ,scatBθ,in − E�
φ,inBθ,scat)r̂

+(E�
φ,scatBr,in + E�

φ,inBr,scat − E�
r,scatBφ,in − E�

r,inBφ,scat)θ̂

+(E�
r,scatBθ,in + E�

r,inBθ,scat − E�
θ,scatBr,in −E�

θ,inBr,scat)φ̂
]

=
c

8π

k2a3E2
0

r

{[
− cos[kr(1 − cos θ)]

cos θ

2k2r2

−(1 + cos θ)

[
cos2 φ

(
cos θ − 1

2

)
+ sin2 φ

(
1 − cos θ

2

)]
×(

sin[kr(1 − cos θ)]

kr
− cos[kr(1 − cos θ)]

)]
r̂
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+

[
cos[kr(1 − cos θ)]

sin θ

k2r2

(
2 − 9

2
cos2 φ

)
+ . . .

]
θ̂

+

[
9

8
cos[kr(1 − cos θ)]

sin 2θ sin 2φ

k2r2
+ . . .

]
φ̂

}
, (32)

where the omitted terms are small close to the sphere. Note that in the far zone the time-
average interaction Poynting vector contains terms that vary as 1/r times cos[kr(1− cos θ)].
These large terms oscillate with radius r with period λ, and might be said to describe a
radial “sloshing” of energy in the far zone, rather than a radial flow. It appears in practice
that one cannot detect this “sloshing” by means of a small antenna placed in the far zone,
so we consider these terms to be unphysical. Nonetheless, it is interesting that they appear
in the formalism.

At the surface of the sphere we have, again for ka � 1,

〈Sinteraction(r = a)〉 ≈ c

8π
E2

0

[
−cos θ

2
r̂ + sin θ

(
2 − 9

2
cos2 φ

)
θ̂ +

9

8
sin 2θ sin 2φ φ̂

]
. (33)

The total Poynting vector on the surface of the sphere is the sum of eqs. (30), (31) and (33),

〈Stot(r = a)〉 ≈ c

8π
E2

0

(
−9

2
sin θ cos2 φ θ̂ +

9

8
sin 2θ sin 2φ φ̂

)
. (34)

The radial component of the total time-average Poynting vector vanishes on the surface of
the sphere, in the leading approximation, as expected for a perfect conductor.

However, the leading approximation fails to account for the small net outward flow of
energy (29) from the surface of the sphere. Therefore, we examine a higher approximation
to the radial component of the time-average interaction Poynting vector,

〈Sinteraction(r = a)〉 · r̂ ≈ c

8π
E2

0

{
−cos θ

2
+ k2a2 cos θ

4
(1 − cos θ)2 − k4a4cos θ

48
(1 − cos θ)4

+k2a2(1 + cos θ)

[
cos2 φ

(
cos θ − 1

2

)
+ sin2 φ

(
1 − cos θ

2

)]
×[

cos θ − k2a2

6

(
2 − 3 cos θ + cos3 θ

)]}
. (35)

If in addition we now average over φ, the expression in brackets in the middle line of eq. (35)
reduces to (1 + cos θ)/4, and our new average is,

〈Sinteraction(r = a)〉 · r̂ ≈ c

8π
E2

0

{
−cos θ

2
+ k2a2 cos θ

2
(1 + cos2 θ) − k4a4cos θ

48
(1 − cos θ)4

−k4a4

24
(1 + cos θ)2

(
2 − 3 cos θ + cos3 θ

)}

=
c

8π
E2

0

{
−cos θ

2
+ k2a2 cos θ

2
(1 + cos2 θ) (36)

−k4a4

48
(5 − 2 cos θ − 2 cos2 θ − 8 cos3 θ + 5cos4 θ + 2cos5 θ)

}
.
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Integrating this over the surface of the sphere, we find the time-average power absorbed by
the sphere due to the interaction fields to be,

〈Pinteraction〉 = a2

∫
〈Sinteraction〉 · r̂ dΩ = −cE2

0

8π

4πa2

9
k4a4 �= −〈Pscat〉 . (37)

I am disappointed that we have not achieved a complete accounting of energy flow at the
surface of the sphere. However, we recall that the metallic boundary condition that E‖ = 0
on the surface of the sphere is only satisfied in the limit that ka → 0 in our analysis. In this
limit we, of course, recover conservation of energy in the rather trivial form that no energy
is absorbed or radiated by the sphere.

A similar exercise was made by Bohren [12] who made a numerical calculation of 〈Sin〉+
〈Sinteraction〉 for a small aluminum sphere, with results as shown below.

This complements the figure on p. 7 in that the nonscattered Poynting flux touches the
sphere only at its pole facing the incident flux, from which point all the scattered Poynting
flux appears to emanate.

This exercise permits an additional perspective on analysis of radiation from antennas.
Suppose that instead of knowing that a plane wave was incident on the conducting sphere, we
were simply given the surface current distribution Kscat of eq. (25). Then, by use of retarded
potentials, or the “antenna formula” (e.g., eq. (14.70) of [5]), we could calculate the radiated
power in the far zone, and would arrive at the usual expression (28) (ignoring the terms that
fall off as 1/r6). However, this procedure would lead to an incomplete understanding of the
near zone in that additional charges, currents and fields are required to satisfy the metallic
boundary conditions at the surface of the conductors of the antenna.

In the present example, the excitation of the conducting sphere by an external plane wave
leads to a total surface current that is three times larger than the current Kscat. For a good,
but not perfectly conducting sphere, an analysis based on Kscat alone would lead to only 1/9
the actual amount of Joule heating of the sphere. And, if we attempted to assign some kind
of impedance or radiation resistance to the sphere via the form Prad = RradI

2
0/2, where I0 is

meant to be a measure of the peak total current, an analysis based only on knowledge the
current Kscat would lead to a value of Rrad that is 9 times larger than a value based on the
total current.

2.3 Scattering of a Circularly Polarized Wave

If the incident wave is circularly polarized the incident fields can be written as,

Ein = E0 ei(kz−ωt), Bin = B0 ei(kz−ωt), (38)
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where,

E0 = E0
x̂± iŷ√

2
, B0 = ẑ × E0 = ∓iE0. (39)

The dipole moments induced on the conducting sphere by the incident wave are again given
by eqs. (3)-(4), and the scattered electric field in the far zone follows from eq. (4) as,

Escat = −k2a3E0
ei(kr−ωt)

√
2r

(
n̂× [(x̂± iŷ) × n̂] +

1

2
n̂× [ẑ × (x̂± iŷ)]

)

= −k2a3E0
ei(kr−ωt)

√
2r

[
(x̂± iŷ)

(
1 − (n̂ · ẑ)

2

)
−

(
n̂− ẑ

2

)
[n̂ · (x̂ ± iŷ)]

]
. (40)

Inserting this in (1) we find,

dσ

dΩ
= k4a6

[(
1 − n̂ · ẑ

2

)2

− 3

8
[(n̂ · x̂)2 + (n̂ · ŷ)2]

]
. (41)

It suffices to consider an observer in the x-z plane, for which n̂ · x̂ = sin θ, n̂ · ŷ = 0,
n̂ · ẑ = cos θ. Then, eq. (41) yields,

dσ

dΩ
= k4a6

[
5

8
(1 + cos2 θ) − cos θ

]
, σ =

∫
dσ

dΩ
dΩ =

10πa2

3
k4a4. (42)

as found in eqs. (9)-(10) for an unpolarized incident wave.7

2.3.1 Force on the Sphere

The electric field must be perpendicular to the surface of a perfect conductor (at rest), so the
Poynting vector S = cE × B/4π has zero component perpendicular to the surface. That is,
a perfect conductor absorbs no energy from the incident wave. However, the conductor can
acquire momentum (and angular momentum) as a result of scattering of the wave.8 Here,
we consider the momentum (and angular momentum) density in the far zone, where it can
be related to the energy density, to infer the rate of change of (angular) momentum of the
sphere, and hence the force (torque) on the sphere.

The differential cross section (42) peaks at θ = 180◦ (backscattering), so more energy
is scattered backwards than forwards. For electromagnetic waves in vacuum (far from any
conductors) the (time-average) momentum density 〈p〉 is related to the (time-average) energy
density 〈u〉 by,9

〈p〉 =
〈u〉
c

n̂. (43)

7The cross section for scattering (at normal incidence) off a perfectly conducting disk of radius a is about
1/6 that of eq. (42) [9, 10]. This suggests that the force and torque on a conducting disk is about 1/6 of
that found below for a conducting sphere. See also [14].

8While the Poynting vector describes the flux of electromagnetic energy, the fluxes of momentum and
angular momentum are described by tensors. See, for example, sec. 3.2 and prob. 3.5 of [13].

9The momentum density can also be evaluated as 〈pscat〉 = 〈Sscat〉 /c2 = Re(Escat × B�
scat)/8πc, using

the fields given in eqs. (51)-(52).
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The net flux of scattered momentum (which propagates at speed c) along the z-axis is,

d 〈Pz〉
dt

=

∫
ẑ · c r2 〈p〉scat dΩ =

∫
r2 〈u〉scat cos θ dΩ =

∫
r2 |Escat|2

8π
cos θ dΩ (44)

=

∫
E2

0

8π

dσ

dΩ
cos θ dΩ =

E2
0k

4a6

4

∫ [
5

8
(1 + cos2 θ) − cos θ

]
cos θ d cos θ = −E2

0k
4a6

6
.

The reaction force on the sphere is the negative of this,

Fz = −d 〈Pz〉
dt

=
E2

0k
4a6

6
= πa2E2

0k
4a4

6π
≡ πa2Prad , (45)

where Prad = E2
0k

4a4/6π is the effective radiation pressure on the sphere due to the incident
wave.

The nominal radiation pressure of the incident plane wave is,

Pin = c 〈pin〉 = 〈uin〉 =
E2

0

8π
, (46)

so the effective radiation pressure on the sphere can be written as,

〈Prad〉 =
4k4a4

3
Pin � Pin. (47)

That is, the force on the small conducting sphere due to scattering of the incident electro-
magnetic wave is much less than if the sphere totally absorbed the momentum of the incident
wave.10,11,12

2.3.2 Torque on the Sphere

The circularly polarized incident wave carries angular momentum with density,

〈lin,z〉 = ±〈pin,z〉
k

= ±〈uin〉
ck

= ± E2
0

8πck
. (49)

The scattered wave carries (time-average) angular momentum density,

〈lscat〉 =
r

8πc
×Re(Escat × B�

scat) =
r

8πc
Re[(r̂ · B�

scat)Escat − (r̂ ·Escat)B
�
scat]. (50)

10The force on spheres due to an electromagnetic wave was first calculated (using the Maxwell stress
tensor) in [15], although eq. (94) there seems to have a factor 14/3 rather than the 4/3 of eq. (47). See also
[16]. However, my computation via the stress tensor over a sphere of large radius r gives, using eq. (51),

〈Fz〉 = 2πr2

∫
d cos θ cos θ 〈Trr〉 = −2πr2

∫
d cos θ cos θ

|Eθ|2 + |Eφ|2
8π

= −E2
0k4a6

8

∫
d cos θ cos θ

(
cos2 θ − cos θ +

1
4

+ 1 − cos θ +
cos2 θ

4

)
=

E2
0k4a6

6
, (48)

as found in eq. (45).
11The force of radiation pressure was first measured in [17, 18]. See also [19].
12This analysis tacitly assumes that the sphere remains at rest due to an external force Fz, such that the

sphere does not take on any kinetic energy. If the sphere is in motion there is transfer of energy via the
Poynting vector between the fields and the sphere, as discussed in [20].
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To obtain a density that falls off as 1/r2 we need the radial terms in the scattered fields that
fall off as 1/r2 (as well as the transverse field of order 1/r). We recall eqs. (16)-(17) for the
case of x-polarization, and note that the fields for y polarization follow from these via the
substitutions φ → φ − π/2, cosφ → sinφ, and sin φ → − cos φ,

Escat(r, t) ≈ E0k
2a3 ei(kr−ωt)

√
2r

{
− 2i

kr
sin θ (cosφ ± i sinφ) r̂

+(cosφ ± i sinφ)

(
cos θ − 1

2

)
θ̂ − (sinφ ∓ i cos φ)

(
1 − cos θ

2

)
φ̂

}
, (51)

Bscat(r, t) ≈ E0k
2a3ei(kr−ωt)

√
2r

{
− i

kr
sin θ (sinφ ∓ i cosφ) r̂

+(sinφ ∓ i cos φ)

(
1 − cos θ

2

)
θ̂ + (cos φ ± i sinφ)

(
cos θ − 1

2

)
φ̂

}
.(52)

Then,

〈lscat〉 = ±3E2
0k

4a6

32πr2kc
sin θ θ̂. (53)

The net flux of scattered angular momentum (which propagates at speed c) along the z-axis
is,13

d 〈Lz〉
dt

=

∫
ẑ · cr2 〈lscat〉 dΩ = ∓3E2

0k
4a6

16k

∫
sin2 θ d cos θ = ∓E2

0k
4a6

4k
. (54)

The torque required to keep the sphere at rest is the negative of this,

τ = −d 〈Lz〉
dt

= ±E2
0k

4a6

4k
= ±πa2E2

0k
4a4

4πk
. (55)

The angular momentum per unit time incident on the area of the sphere is πa2c 〈lin,z〉 =
±πa2E2

0/8πk, so the fraction of the angular momentum incident on the sphere that is trans-
ferred to it is only 2k4a4 � 1.14

The first mechanical detection of the angular momentum of light was by Beth [21], and
one detection of angular momentum of microwaves has been reported [22, 23].

13The classical form (53) for angular momentum density indicates that the local angular momentum
vector is perpendicular to the (local) direction of propagation of the wave, whereas in the quantum view
the angular momentum vector is parallel to the momentum vector (if these are known/measured). In the
quantum view the wave(function) as a whole carries angular momentum, which cannot be further localized
without a measurement. That is, eq. (53) represents a level of detail not supported in the quantum view.
However, a classical expression like eq. (54) that characterizes the angular momentum of the entire wave will
agree with the quantum view (of the average over many photons).

14If it is desired that the sphere experience a larger torque due to the incident circularly polarized wave,
the sphere must absorb (or scatter) a significant fraction of that wave. In the present case of a conducting
sphere it would be favorable to choose the radius a to be about λ/5, in which case the scattering cross section
exhibits a “resonance” peak, shown in the figure below from [16], as which the cross section is 2.6πa2 ≈ λ2/3.
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