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1 Problem

The electromagnetic fields far from any antenna can be conveniently described as the sum
of the radiation fields of a series of oscillating point multipoles, of which the leading term
is a dipole in many cases of practical interest. The form of the fields associated with the
nth multipole is independent of the details of the physical layout of the antenna (other than
that the layout determines the magnitudes of the multipole moments). However, close to the
antenna the electromagnetic fields include quasistatic components as well as radiation terms.
A well-known argument due to Hertz [1, 2] gives the fields in the near and far zone of an
ideal point dipole. In this and companion notes [3, 4] we explore examples in which analytic
expressions can be given for the near and far zone fields of antennas of finite dimensions.

Here, the task is to describe the electromagnetic fields, and the Poynting vector [5], of an
oscillating current loop of radius a when a � λ = 2πc/ω, where c is the speed of light and
ω is the angular frequency of oscillation of the current in the loop. The current is assumed
to be independent of the azimuth around the loop.1

2 Solution

The qualitative character of the solution is readily anticipated. Within one wavelength of the
current loop, the magnetic field looks essentially the same as the dipole field pattern due to
a steady current loop, multiplied by cosωt. The electric field is azimuthal everywhere, and
relatively weak close to the loop, where it is roughly that induced by the oscillating dipole
magnetic field according to Faraday’s law. Far from the loop, the electric and magnetic
fields are transverse to the radial direction, and have the form of ideal magnetic dipole
radiation. In the far zone, the Poynting vector is essentially radial, with the well-known
sin2 θ dependence on the polar angle θ. The lines of the Poynting vector emanate from the
current loop. On average, there is no Poynting flux inwards from the loop; the radiated
energy flows, on average, outwards from the loop and the lines of Poynting flux are almost
purely radial once they are more than a few wavelengths from the antenna.

A real current loop would be fed at some point on its circumference by a pair of leads,
perhaps in the form of a coaxial cable. This breaks the perfect azimuthal symmetry of the
problem, such that Poynting flux would emanate from the feed point, passing across the
space inside the loop all points along the loop (as sketched in the original article of Poynting
[5] for a DC current loop), and from there radiating outwards as sketched above.

The assumption of a uniform oscillating current in the loop is not consistent with the
loop being a perfect conductor, which cannot sustain electric fields parallel to its surface.

1This problem was first solved by FitzGerald [6, 7], prior to the invention of the Poynting vector.
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We now give as much of an analytic solution as possible. This solution is inspired by
sec. 12.13 of [8], which uses the method of Hertz vectors and scalars, which are reviewed in
the Appendix. See also [9]. Early work on this theme is by Pocklington [10] and Rayleigh
[11].

We will work in a spherical coordinate system (r, θ, φ) whose origin is at the center of
the loop and whose z axis coincides with that of the loop. The solution will be based on the
use of potentials for the electromagnetic fields. The charge density is effectively zero in this
problem, so the scalar potential V may be ignored. The currents in the loop are azimuthal,
so the vector potential A will only have an azimuthal component, and this in independent
of the azimuth,

A(r, t) = Aφ(r, θ, t)φ̂. (1)

Furthermore, we restrict our attention to waves of angular frequency ω, and write the vector
potential as,

A(r, t) = Aφ(r, θ)e
−iωtφ̂. (2)

Outside the current loop the vector potential obeys the free-space wave equation,

∇2A =
1

c2
∂2A

∂t2
= −ω

2

c2
A = −k2A, (3)

where we have introduced the wave number k = ω/c. The time-independent form of eq. (3)
is called the Helmholtz equation.

We can also note at the outset that the assumption of uniform current around the ring
implies that the wavelength of the radiation is large compared to the radius a (i.e., ka� 1).
Otherwise, the amplitude of the wave would vary from place to place around the ring, and
the current would take on spatial modulations.

2.1 Series Expansion of the Vector Potential

We need the prescription for the Laplacian operator as applied to a vector (which is much
less straightforward in curvilinear coordinates than in rectangular coordinates). From p. 116
of [12] we find that for the vector potential (1),

∇2[Aφ(r, θ)φ̂] = φ̂

(
∇2Aφ − Aφ

r2 sin2 θ

)
. (4)

Writing out the Laplacian as applied to the scalar Aφ, our Helmholtz equation (3) becomes,

1

r2

∂

∂r

(
r2∂Aφ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Aφ

∂θ

)
− Aφ

r2 sin2 θ
+ k2Aφ = 0. (5)

Anticipating the appearance of spherical Bessel functions in Aφ, we seek a solution that is a
sum of terms of the form,

Aφ =
R(r)√
r

Θ(θ). (6)

We insert the trial solution (6) into eq. (5), multiply by r2 and divide by Aφ to find,

r2

R2

d2R

dr2
+
r

R

dR

dr
− 1

4
+ k2r2 +

1

Θ

d2

d(cos θ)2
[(1− cos2 θ)Θ] − 1

1 − cos2 θ
= 0. (7)
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As is usual for separation-of-variables techniques in spherical coordinates, we introduce a
separation constant ±n(n+ 1) to obtain the radial and polar equations,

d2Rn

dr2
+

1

r

dRn

dr
+

[
k2 − (n+ 1

2
)2

r2

]
Rn = 0, (8)

d2

d(cos θ)2
[(1 − cos2 θ)Θn] +

[
n(n+ 1) − 1

1 − cos2 θ

]
Θn = 0. (9)

The solution to polar eq. (9) is the associated Legendre function,

Θn = P 1
n(cos θ). (10)

(Since the vector potential must be finite on the z axis, we exclude the solution Q1
n.) The

three lowest-order P 1
n are,

P 1
1 (cos θ) = sin θ, P 1

2 (cos θ) = 3 cos θ sin θ, P 1
3 (cos θ) =

3

2
(5 cos2 θ − 1) sin θ. (11)

The present problem is symmetric about the plane of the ring, θ = π/2, so that only
odd-n Legendre functions can contribute to the solution.

Solutions to the radial equation (9) are the so-called spherical Bessel functions of order
n, which are related to ordinary Bessel functions of order n+ 1

2
(see, for example, secs. 5.31

and 5.37 of [8], sec. 10.1 of [13], sec. 9.6 of [16]). At large r, we expect the vector potential
to consist of spherical waves of the form ei(kr−ωt)/r. This suggests that we use the spherical
Bessel function of the third kind,

h(1)
n (kr) = jn(kr) + iyn(kr), (12)

where jn and yn are the spherical Bessel functions of the first and second kind, as the
asymptotic is behavior of h

(1)
n is,

h(1)
n (kr � 1)) → (−i)n+1e

ikr

kr
. (13)

The three lowest-order h
(1)
n are,

h
(1)
0 (kr) = −ie

ikr

kr
, h

(1)
1 (kr) = −e

ikr

kr

(
1 +

i

kr

)
, h

(1)
2 (kr) = i

eikr

kr

(
1 +

3i

kr
− 3

(kr)2

)
.

(14)
Inside the current ring, where r < a, it is not appropriate to consider spherical traveling

waves. Rather, only standing waves can exist here, with a finite value of the vector potential
at the origin. This suggests that we use the jn(kr) in this region. The three lowest-order jn
are,

j0(kr) =
sin(kr)

kr
, j1(kr) =

sin(kr)

(kr)2
−cos(kr)

kr
, j2(kr) = sin(kr)

(
3

(kr)3
− 1

kr

)
−3 cos(kr)

(kr)2
.

(15)
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Altogether, our expansion for the vector potential of the current ring of radius a is,

Aφ(r < a, θ, t) = i
∑

odd n

Anh
(1)
n (ka)jn(kr)P

1
n (cos θ)e−iωt, (16)

Aφ(r > a, θ, t) = i
∑

odd n

Anjn(ka)h(1)
n (kr)P 1

n (cos θ)e−iωt, (17)

where we have inserted the factors i, h
(1)
n (ka) and jn(ka) so that the remaining Fourier

coefficients An will be real, and the same for r < a and r > a.

2.2 Fields Close to the Ring (r ≈ a)

As remarked earlier, the assumption of a uniform current distribution around the ring is only
consistent with large wavelengths, i.e., ka� 1. Hence, inside the ring we may approximate
the spherical Bessel functions by their values for small arguments,

jn(kr � 1) → (kr)n

(2n + 1)!!
, h(1)

n (ka � 1) ≈ iyn(ka � 1) → −i(2n− 1)!!

(ka)n+1
, (18)

where (2n+ 1)!! = 1 · 3 · 5 · · · (2n + 1). The vector potential is therefore,

Aφ(r < a, θ, t) = Re

{
1

ka

∑
odd n

An

2n + 1

(r
a

)n

P 1
n(cos θ)e−iωt

}

=
1

ka

∑
odd n

An

2n+ 1

(r
a

)n

P 1
n(cos θ) cosωt. (19)

As expected, this is a standing wave, being cosωt times the vector potential of a steady
current in the ring. Indeed, the latter is (from, for example, sec. 7.13 of [8] or sec. 5.5 of
[16]),

Aφ(r < a, θ) =
2πI

c

∑
n

(r
a

)n P 1
n(0)

n(n+ 1)
P 1

n(cos θ)

= −2πI

c

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n+ 1)

(r
a

)n

P 1
n(cos θ). (20)

This determines the Fourier coefficients An. Thus the series expansion of the time-dependent
vector potential of a ring of radius a that carries a current I cosωt is,

Aφ(r < a, θ, t) = −2πI

c

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n+ 1)

(r
a

)n

P 1
n(cos θ) cosωt, (21)

Aφ(r > a, θ, t) =
2πiIka

c

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n− 2)(2n + 1)

2 · 4 · 6 · · · (n+ 1)
jn(ka)h(1)

n (kr)P 1
n(cos θ)e−iωt. (22)

For radii only slightly larger than a, the vector potential is still largely that of a standing
wave cosωt multiplied by the vector potential of a steady current,

Aφ(λ >∼ r > a, θ, t) ≈ −2πI

c

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n+ 1)

(a
r

)n+1

P 1
n(cos θ) cosωt. (23)
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The electric and magnetic fields are, of course, obtained from the potentials according
to,

E = −∇V − 1

c

∂A

∂t
, B = ∇ × A. (24)

Since the scalar potential V vanishes in this problem, the electric field has only a φ compo-
nent, whose value inside the ring is,

Eφ(r < a, θ, t) ≈ 2πIk

c

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n+ 1)

(r
a

)n

P 1
n(cos θ) sinωt. (25)

Using the fact that,
d[sin θP 1

n(cos θ)]

d cos θ
= n(n + 1)Pn(cos θ), (26)

the magnetic field inside the ring has radial and polar components given by,

Br(r < a, θ, t) =
2πI

ac

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n)

2 · 4 · 6 · · · (n − 1)

(r
a

)n−1

Pn(cos θ) cosωt, (27)

Bθ(r < a, θ, t) = −2πI

ac

∑
odd n

(−1)
n+1

2
1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n− 1)

(r
a

)n−1

P 1
n(cos θ) cosωt. (28)

Inside the ring, the electric field is much smaller than the magnetic field, E/B ≈ ka� 1,
as the former is induced by the time variation of the quasistatic magnetic field, whose period
2π/ω is small compared to the transit time a/c of light across the ring.

2.3 Radiation in the Near Zone of the Ring

The flow of electromagnetic energy is described by the Poynting vector,

S =
c

4π
E× B. (29)

Using eqs. (25) and (27)-(28), we see that S has both radial and polar components inside
the ring (r < a). However, the time average 〈S〉 of the Poynting vector vanishes here, since
S ∝ sinωt cosωt. This is to be expected from the standing wave character of the fields inside
the ring. There is no (net) radiation from the ring into the region r < a.

Just outside the ring, the approximation (23) is an excellent description of the vector
potential. However, if we calculate the electric and magnetic fields and the Poynting vector
from this approximation, we will find only standing waves and no net radiation.

To discuss radiation in the near zone (a < r <∼ λ), we must use eq. (22) for the vector
potential. Because ka � 1, we can use approximation (18) for jn(ka) to write,

Aφ(r > a, θ, t) =
2πiIka

c

∑
odd n

(
−1

2

)n+1
2 (n− 2)!!

(n+1
2

)!!(2n− 1)!!
(ka)nh(1)

n (kr)P 1
n(cos θ)e−iωt. (30)

If we identify the radiation part of this vector potential as those terms that fall off as
1/r, we will be led to keep only the n = 1 term of the series (30), and hence to the radiation
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fields of a point dipole, as discussed in sec. 2.4. To describe the radiation very close to the
ring (r ≈ a), which will be strong only for θ ≈ 90◦, we must keep many terms in the series,
which converges slowly.

Thus I am disappointed to conclude that the approach taken here is not very good for
characterizing radiation in the near zone of a small loop antenna.

2.4 Fields Far from the Ring (r � λ� a)

For large r and ka � 1, the factor jn(ka)h
(1)
n (kr) in the expansion (22) for the vector

potential outside the ring can be well approximated by eqs. (13) and (18) as,

jn(ka � 1)h(1)
n (kr � 1) → (−i)n+1 e

ikr

kr

(ka)n

(2n + 1)!!
. (31)

Hence, only the n = 1 term is significant for large r, and eq. (22) becomes,

Aφ(r � a, θ, t) =
πa2Iik

c
sin θ

ei(kr−iωt)

r
= ikm sin θ

ei(kr−iωt)

r
, (32)

where the magnetic moment of the current loop is given by,

m =
πa2I

c
. (33)

The asymptotic form (32) is identical to the far-zone vector potential of an idealized point
magnetic dipole (see, for example, sec. 9.3 of [16]), as is to be expected. The asymptotic
electric and magnetic field (the far-zone radiation fields) are, as usual,

Eφ = −∂Aφ

∂ct
= −k2m sin θ

ei(kr−iωt)

r
, Bθ = −1

r

∂(rAφ)

∂r
= k2m sin θ

ei(kr−iωt)

r
. (34)

The time average Poynting vector is purely radial,

〈S〉 =
cr̂

8π
Re(EφB

�
θ) =

ck4m2

8πr2
sin2 θ. (35)

The time-average angular distribution of radiated power is,

dP

dΩ
= r2 〈S · r̂〉 =

ck4m2

8π
sin2 θ. (36)

The time-average radiated power is,

P =

∫
dP

dΩ
dΩ =

ck4m2

3
=

16π6a4I2

3cλ4 =
1

2
RradI

2, (37)

where the radiation resistance is,

Rrad =
32π6a4

3cλ4 = 307, 646
a4

λ4 Ω, (38)

recalling that 1/c = 30 Ω.
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A Appendix: Hertz Vectors and Scalars

While the electromagnetic fields E and B of many antennas (including a point dipole) can
be deduced from considerations of the vector potential A, it is also useful to follow a line of
thought due to Hertz in which the scalar and vector potentials, V and A, can be related to
another vector, the Hertz vector [1], and hence to the scalar components of the latter.

In empty space the electric and magnetic fields E and B can be derived from the scalar
and vector potentials V and A according to,

E = −∇V − 1

c

∂A

∂t
, B = ∇ × A, (39)

in Gaussian units. We shall work in the Lorentz gauge where the potentials obey the auxiliary
condition,

∇ ·A = −1

c

∂V

∂t
. (40)

The potentials then obey the wave equations of the form,

∇2A− 1

c2
∂2A

∂t2
= −4π

c
J, ∇2V − 1

c2
∂2V

∂t2
= −4πρ, (41)

where ρ and J are the charge and current densities of the sources of the waves. Formal
solutions for the (retarded) potentials have been given by Lorenz [14],

A(x, t) =
1

c

∫
J(x′, t′ = t− r/c)

r
dVol′, V (x, t) =

∫
ρ(x′, t′ = t− r/c)

r
dVol′, (42)

where r = |x− x′|.
The present problem involves a loop antenna in which we may suppose that there is

nowhere any accumulation of charge, so that ρ = 0 and hence the scalar potential V is zero
as well. In this case, the charge conservation simplifies to,

∇ · J = 0, (43)

and the Lorentz gauge condition (40) tells us that,

∇ · A = 0, (44)

so that the vector potential can be written as the curl of another vector, which we will call
ZM, the magnetic Hertz vector,2

A = ∇ × ZM V = 0. (45)

While 3-space vectors have, in general, 3 independent components, the divergence condition
(44) implies that in this problem the potentials A and ZM actually have only two independent
scalar components.

2When the charge density ρ has a nontrivial time dependence (as in the case of linear dipole antennas [3]),
one can introduce an appropriate electric Hertz vector ZE as well. In this case, V = −∇ ·ZE, A = ∂ZE/∂ct.
See, for example, [15].

7



In the far zone of an antenna the electromagnetic fields are transverse to the vector r
from the center of the antenna. In the near zone the fields are more complicated, but we
may hope that one of E or B remains transverse to r for antennas of sufficient symmetry.
That is, we are led to seek fields that can be characterized as transverse electric (TE) or
transverse magnetic (TM).

This suggests that we take one of the two independent components of the Hertz vector
ZM to be radial, say rZTE, and the other to be transverse, say r×∇ZTM = ∇×rZTM. That
is,

ZM = rZTE + r × ∇ZTM. (46)

Then,

A = ∇ × ZM = ∇ × rZTE + ∇× (r × ∇ZTM)

= ∇ZTE × r + r∇2ZTM − (r · ∇)∇ZTM − 2∇ZTM

= ∇ZTE × r + r∇2ZTM − ∇(r · ∇ZTM − ZTM), (47)

using the identity that,

∇(r · ∇ZTM) = (r · ∇)∇ZTM + ∇ZTM. (48)

Thus, if ZTM = 0, then A = ∇ZTE×r is transverse, and hence the electric field E = −∂A/∂ct
is transverse also. On the other hand, if ZTE = 0, then B = ∇ × A = ∇(∇2ZTM) × r is
transverse. Hence, the subscripts TE and TM in the decomposition (46) indeed label scalar
superpotentials that lead to transverse electric and transverse magnetic fields, respectively.

In view of the definition (46) of the magnetic Hertz vector and the wave equation (41)
for the vector potential, we have,

∇2A = ∇2(∇× ZM) = ∇ ×∇2ZM =
1

c2
∂2A

∂t2
− 4π

c
J = ∇ × 1

c2
∂2ZM

∂t2
− 4π

c
J (49)

If we write the current density as,
J = c∇ × M, (50)

in terms of a magnetization density M, the magnetic Hertz vector satisfies the wave equation,

∇2ZM − 1

c2
∂2ZM

∂t2
= −4πM (51)

(although strictly speaking, the proper wave equation is the curl of eq. (51)). This justifies
the alternative terminology that the magnetic Hertz vector is a polarization potential, with
the formal solution,

ZM(x, t) =

∫
M(x′, t′ = t− r/c)

r
dVol′. (52)

The magnetization density M has the same formal relation to the current density J =
c∇×M as does the Hertz vector ZM to the vector potential A = ∇×ZM . Hence, following
eq. (46), we can write the magnetization as,

M = rψTE + r × ∇ψTM, (53)
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and the current density as,

J = c∇ × M = c∇× rψTE + c∇ × (r × ∇ψTM), (54)

in terms of two scalar source fields ψTE and ψTM.
We also seek the wave equations for the scalar superpotentials ZTE and ZTM, for which

we need to evaluate ∇2(rZTE) and ∇2(r×∇ZTM.). This is more easily done in rectangular
coordinates than in spherical coordinates. We write the ith component of ∇2(rZTE) as,

∇2(xiZTE) =
∂

∂xj

∂

∂xj
(xiZTE) =

∂

∂xj

(
δijZTE + xi

∂ZTE

∂xj

)
= 2δij

∂ZTE

∂xj
+ xi

∂2ZTE

∂xj∂xj

= xi∇2ZTE + 2
∂ZTE

∂xi

, (55)

using the summation convention over repeated indices. That is,

∇2(rZTE) = r∇2ZTE + 2∇ZTE. (56)

Similarly, the ith component of ∇2(r ×∇ZTM.) is,

∇2

(
εijkxj

∂ZTM

∂xk

)
=

∂

∂xl

∂

∂xl

(
εijkxj

∂ZTM

∂xk

)
=

∂

∂xl
εijk

(
δjl
∂ZTM

∂xk
+ xj

∂2ZTM

∂xk∂xl

)

= 2εijkδjl
∂2ZTM

∂xk∂xl
+ εijkxj

∂3ZTM

∂xk∂xl∂xl
= 2εijk

∂2ZTM

∂xk∂xj
+ εijkxj

∂∇2ZTM

∂xk

= εijkxj
∂∇2ZTM

∂xk
(57)

Hence,
∇2(r ×∇ZTM.) = r × ∇∇2ZTM. (58)

As remarked above, it is the curl of the wave equation (51) for the magnetic Hertz vector
(46) which has physical significance. This can now be rewritten as,

− 4π

c
J = −4π∇ × rψTE − 4π∇ × (r × ∇ψTM)

= ∇ ×
[
r∇2ZTE + 2∇ZTE + r× ∇∇2ZTM − 1

c2
∂2

∂t2
(rZTE + r ×∇)ZTM

]

= ∇ × r

[
∇2ZTE − 1

c2
∂2ZTE

∂t2

]
+ ∇×

{
r ×∇

[
∇2ZTM − 1

c2
∂2ZTM

∂t2

]}
. (59)

Thus, at some length we deduce that the Hertz scalars ZTE and ZTM also satisfy the wave
equations,

∇2ZTE − 1

c2
∂2ZTE

∂t2
= −4πψTE, ∇2ZTM − 1

c2
∂2ZTM

∂t2
= −4πψTM. (60)

These wave equations, of course, have the formal, retarded solutions,

Z(x, t) =

∫
ψ(x′, t′ = t− r/c)

r
dVol′, (61)

9



where r = |x− x′|.
We now restrict our attention to sources, and hence waves, of pure angular frequency ω,

writing,
ψ(x, t) = ψ(x)e−iωt, and Z(x, t) = Z(x)e−iωt (62)

for the scalar source fields ψTE and ψTM and for the Hertz scalars ZTE or ZTM. The scalar
wave equations (60) then reduce to the Helmholtz equation,

∇2Z(x) +
ω2

c2
Z = −4πψ(x), (63)

whose formal solution is,

Z(x) =

∫
ψ(x′)eikr

r
dVol′. (64)

As discussed above in sec. 2.1, in case the sources have azimuthal symmetry and the
region of interest extends over all polar angles θ, a suitable expansion for a Hertz scalar is,

Z(r < a, θ, t) = i
∑

odd n

Anh
(1)
n (ka)jn(kr)P

1
n(cos θ)e−iωt, (65)

Z(r > a, θ, t) = i
∑

odd n

Anjn(ka)h
(1)
n (kr)P 1

n(cos θ)e−iωt. (66)

Multipole expansions of the source fields ψTE and ψTM have been given in [17], where
they are called ψ and χ, respectively. These are variants on the multipole expansions in
term of vector spherical harmonics given, for example, in [16]. The lowest-order moment
contributing to ψTE is the magnetic dipole moment, with respect to whose axis the radiation
electric field is well known to the azimuthal (and hence transverse). The lowest-order moment
contributing to ψTM has been called the toroid moment [17], which is nonzero for poloidal (also
called meridianal) current distributions as flow on the surface of a torus with no azimuthal
component. In this case the radiation magnetic field is azimuthal, and the radiation electric
field has the form of that due to an electric dipole, but proportional to k3 rather than k2.
For an example, see [18].

B Appendix: Use of Toroidal Coordinates (July 10, 2020)

The present problem has a formal solution in toroidal coordinates. See, for example, [19],
where sec. 3 discusses (TE) waves with azimuthal electric field.

The example of a toroidal ring with a gap and a DC azimuthal current is discussed in
[20].
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