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Abstract

An instructive version of this well-known problem is the case of a current that is zero to
t < 0 and varies as αt for t > 0. A generally excellent discussion of this case by Abbott and
Griffiths features, however, a singularity in the fields at any point at the moment they first
become nonzero. This singularity can be avoided by careful approximation, derived here
using expressions for time-dependent fields rather than potentials. The result is that while
the fields assume a quasistatic character for long times after the current has started to flow
they include a small amount of radiation at short times. Such an effect was observed in a
simple experiment involving a kitchen appliance.

1 Introduction

Electric fields outside a long solenoid with a changing current were first detected experimen-
tally by Oliver Lodge in 1889 [1],1 who presented a quasistatic derivation of the effect based
on the integral form of Faraday’s law,

Emf = 2πrE = −Φ̇B

c
(1)

in Gaussian units for a loop of radius r about an infinite solenoid of radius a along the
z-axis that carries current I = αt per unit length. Then, Ampère’s law was used to deduce
the instantaneous magnetic field inside the solenoid as Bz = 4πI/c, and the magnetic field
outside the solenoid was neglected in the evaluation of the magnetic flux ΦB. The resulting
fields outside the solenoid are,

E = −2πa2α

c2r
, and B ≈ 0. (2)

However, Lodge was very clear that an electric field outside the solenoid is to be expected
because the number of magnetic field lines outside the magnet vary with time. Indeed, (he
argued) magnetic field lines form closed loops only part of which lie within the solenoid.
So, when the number of field lines through the core of the solenoid changes there must
be a corresponding number of lines crossing any concentric cylinder external to the (long)
solenoid. Then, according to Faraday, the movement of the magnetic field lines across
the exterior cylinder will generate an Emf , and consequently an electric field, around the
cylinder. For all this, there must be a small magnetic field outside the solenoid.

1Recent articles in the Journal on this topic include refs. [2]-[7]. For the related example of a straight
wire with a linearly rising current, see [8].
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It has been noted [5] that the example of a linearly rising current which has persisted
forever in an infinite solenoid is a special case in that Maxwell’s equations are satisfied by
an electric field as calculated above and a magnetic field that is zero outside the solenoid.
This pedagogic quandary is reasonably avoided by noting that any real current began from
zero at some finite time in the past [6].

Thus, a more meaningful example is that the current is nonzero only for t > 0. This
case was treated by Abbott and Griffiths [2], who used the retarded potentials to deduce the
following expressions for the fields E and B at the point (r, 0, 0) in cylindrical coordinates
(r, θ, z) outside a solenoid with linearly rising current, I = αt per unit length,

Eθ = −2πa2α

c2r

ct

z0
, and Bz = −2πa2α

c2z0
. (3)

Here, z0 =
√

(ct)2 − r2 is the position along the axis of the solenoid (measured from the
point on the axis closest to the observer) such that the distance to the observer is ct. See
Figure 1. It is easy to verify by direct differentiation that these results satisfy Maxwell’s
equations. For large times Eθ from eq. (3) becomes the same as that found in eq. (2), while
Bz tends to zero. For ct just slightly greater than r, however, Eθ ≈ Bz and these can be
interpreted as radiation fields.

Figure 1: The fields of a solenoid of radius a concentric with the z-axis are
observed at the point (r, 0, 0) in a cylindrical coordinate system. At time t the
observer receives radiation emitted at t = 0 from points z+ and z− on the near
and far side of the solenoid, respectively, both of which are distance ct from
the observer. The point on the axis at distance ct from the observer is labeled
z0.

However, the fields (3) are arbitrarily large at times t sufficiently close to, but larger
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than, r/c. Yet, it is clear that for small enough time difference between ct and r the solenoid
current appears to the observer as that due only to the portion of the surface nearest the
observer. In this limit the effective current is at right angles to the axis of the solenoid and
its magnitude is arbitrarily small (the time being arbitrarily close to zero at the source).
This problem was also treated in the paper of Abbott and Griffiths where the corresponding
radiation fields were found to be arbitrarily small, in agreement with reasonable expectation.

In this Note, I show how more careful approximation in the calculation of the fields of
the solenoid for ct just greater than r leads to arbitrarily small, not arbitrarily large, values.
However, like Abbott and Griffiths I assume an explicit form for the time dependence of
the current. The calculation proves to be most delicate for times of order a/c after the
current begins to flow, where a is the radius of the solenoid. It remains doubtful whether the
assumed time-dependence of the current is a realistic approximation for times less than l/c,
where l is the length of the solenoid and l � a. Departures of the current distribution at
early times from the idealized form assumed here will more likely increase the radiation than
decrease it; compare with problems 14.12 and 14.13 of the textbook of Jackson [9]. Hence,
the experimental detection of radiation during the turn-on of an electric motor, as reported
in the final section of this Note, suggests that the simplified model used here does contain
much of the essential physics.

2 The Vector Potential

It is instructive to begin by considering the retarded vector potential for the solenoid (even
though I will not carry this calculation to completion),

A(x, t) =
1

c

∫
J(x′, t′ = t − R/c)

R
dx′, (4)

where R = |R| and R = x− x′. In the present example the current density J is confined to
the surface of the solenoid of radius a and has value αtθ̂ per unit length along the solenoid.
The unit vector θ̂ can be re-expressed as,

θ̂ = −x̂ sin θ + ŷ cos θ, (5)

in terms of the unit vectors of a rectangular coordinate system.
The observer is outside the solenoid at (x, y, z) = (r, 0, 0) with r > a. A typical point on

the surface of the solenoid has cylindrical coordinates (a, θ, z) with corresponding cartesian
coordinates (a cos θ, a sin θ, z). Hence, the vector R has (x, y, z) components,

R = (r − a cos θ,−a sin θ,−z), (6)

and,
R =

√
z2 + r2 + a2 − 2ar cos θ (7)

The current is nonzero only for t′ > 0, i.e., for only ct > R. For a given angle θ on the
solenoid there is a distance zmax such that this condition is satisfied for all |z| < zmax.
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The subtlety in the calculation is that the condition t′ > 0 is not maintained for θ over
the full range of 2π when ct is close to R. But, at each z there is a value θmax such that the
condition holds for |θ| < θmax.

Then eq. (4) can be written as,

A(r, 0, 0, t) =
1

c

∫ θmax

−θmax

a dθ

∫ zmax

−zmax

dz
α(t− R/c)(−x̂ sin θ + ŷ cos θ)

R
. (8)

The x-component of the integrand is odd in sin θ and so vanishes on integration. Only
component Ay survives,

Ay =
aα

c

∫ θmax

−θmax

cos θ dθ

∫ zmax

−zmax

dz

(
t

R
− 1

c

)
. (9)

At this point it is tempting to make an approximation that proves not to be valid.
Whenever θmax = π (which it is unless ct is very close to R) the integral of the term cos θ/c
vanishes. Thus, if we ignore the (hopefully) small contribution from the second term in the
integrand from the region where θmax < π we could write,

Ay ≈ aαt

c

∫ θmax

−θmax

cos θ dθ

∫ zmax

−zmax

dz

R
≡ aαt

c
f(r, t), (10)

where f(r, t) is the result of the remaining integration.
Before proceeding with the above approach (which leads to the results of Abbott and

Griffiths) it is useful to develop a second method of calculation to aid in evaluating the
merits of the proposed approximation.

3 Direct Calculation of the Fields

Expressions for the fields E and B in terms of time-dependent sources can be deduced by
taking derivatives of the retarded potentials. These expressions have often been attributed
to Jefimenko [10], although they appeared earlier in the textbook of Panofsky and Phillips
[11, 12],

E =

∫
[ρ]

R2
n̂ dx′ +

1

c

∫
[ρ̇]

R
n̂ dx′ − 1

c2

∫ [
J̇
]

R
dx′. (11)

where J̇ = ∂J/∂t, n̂ = R/R and,

B =
1

c

∫
[J] × n̂

R2
dx′ +

1

c2

∫ [
J̇
]
× n̂

R
dx′, (12)

Quantities in brackets, [ ], are to be evaluated at the retarded time t′ = t − R/c.
Assuming that the wire of the solenoid remains neutral, the electric charge density ρ is

zero (along with its time derivative). Hence, the electric field can be written as,

E = −aα

c2

∫ θmax

−θmax

dθ

∫ zmax

−zmax

dz
−x̂ sin θ + ŷ cos θ

R
. (13)
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As before, the x-component vanishes leaving,

Ey = −aα

c2

∫ θmax

−θmax

cos θ dθ

∫ zmax

−zmax

dz

R
= −aα

c2
f(r, t), (14)

where f is the same function introduced in eq. (10). No approximation has been made
in deriving eq. (14) (other than the use of Maxwell’s equations and a specified current
distribution).

Of course, the electric field should be derivable from the vector potential via E =
−(1/c)∂A/∂t, which according to eq. (10) implies,

Ey = −aα

c2

(
f(r, t) + t

∂f(r, t)

∂t

)
. (15)

Comparison of eqs. (14) and (15) indicates that if the approximation in eq. (10) were valid
then ∂f/∂t = 0, and so the electric field should be constant in time.

Apparently the approximation used in deriving eq. (10) is not completely correct.
Either we should return to eq. (9) or continue on from eq. (14), both of which do not

contain approximations. It appears to be more straightforward to continue with eq. (14).
Thus, we have an example of how in practice direct evaluation of time-dependent fields can
be as simple as, or simpler than, use of retarded potentials.

4 The Electric Field

To continue the evaluation of the integral in eq. (14) we anticipate that we will obtain results
only for r � a, i.e., for observers far from the solenoid.

By the symmetry of the problem, the electric field circulates about the solenoid and we
interpret our calculation of Ey at (r, 0, 0) as being Eθ at any (r, θ, z).

It is useful to introduce two additional distances, z+ and z−, corresponding to the smallest
value of z at which θmax = 0 and the largest value of z for which θmax = π, respectively. See
Figure 1. That is,

z± =
√

(ct)2 − (r ∓ a)2 ≈
√

z2
0 ± 2ar, (16)

recalling that z0 =
√

(ct)2 − r2, and where the approximation neglects terms of order a2.
Radiation that leaves the solenoid at t = 0 from points (r, θ, z) = (a, 0, z+) and (a, π, z−)
arrives at the observer at (r, 0, 0) at time t. Equivalently, both source points are at distance
ct from the observer.

For |z| < z− the angular integral in eq. (14) extends over 2π, corresponding to θmax = π.
So, we can split the integral into two ranges and reverse the order of integration in each to
obtain,

Eθ = −4aα

c2

∫ z−

0

dz

∫ π

0

dθ
cos θ

R
− 4aα

c2

∫ z+

z−
dz

∫ θmax

0

dθ
cos θ

R
(17)

In the approximation r � a have from eq. (7),

1

R
≈ 1

(r2 + z2)1/2

(
1 +

ar cos θ

r2 + z2

)
. (18)
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Using this in eq. (17) and performing the θ integrations we find,

Eθ ≈ −2πa2αr

c2

∫ z−

0

dz

(r2 + z2)3/2
−4aα

c2

∫ z+

z−
dz

[
sin θmax

(r2 + z2)1/2
+

ar

(r2 + z2)3/2

(
θmax

2
+

sin 2θmax

4

)]
.

(19)
The first integral is standard but the second is awkward. For the latter we replace z by θmax

as the variable of integration. First, note that for z− < |z| < z+,

(ct)2 = z2 + r2 + a2 − 2ar cos θmax, (20)

so that,

cos θmax ≈ (ct)2 − r2 − z2

2ar
=

z2
0 − z2

2ar
≈ z0(z0 − z)

ar
. (21)

Recalling eq. (16) we see that the second approximation in eq. (21) holds only for,

z0
>∼

√
2ar. (22)

This approximation is distinct from our earlier approximation that r � a. We will have
to examine separately the case z0 <

√
2ar, which corresponds to the early times where the

method of Abbott and Griffiths produced a singularity.

4.1 z0 >
√

2ar

In this realm we have from eq. (21),

sin θmax dθmax ≈ z0 dz

ar
. (23)

With this, eq. (19) becomes,

Eθ ≈ −2πa2α

c2

z−
rct

− 4a2α

c2

r

z0

∫ π

0

dθmax
sin2 θmax

(r2 + z2)1/2
, (24)

where we have dropped terms of order a3. In the remaining integral the factor
√

r2 + z2 is
close to ct. Similarly, z− ≈ z0 for z0 >

√
2ar. With these approximations we have,

Eθ ≈ −2πa2α

c2

(
z0

rct
+

r

z0ct

)
= −2πa2α

c2

ct

rz0
. (25)

The result of the present approximations is the same as that found by Abbott and Griffiths
(eq. (3)). Thus, after some effort we understand that their results hold only for z0 >

√
2ar.

This corresponds to times long enough that radiation has been received from the far side of
the solenoid.

If we applied the approximations of Abbott and Griffiths [2] to the direct calculation of
Eθ then we would obtain only the first term of eq. (24) but with z− being called z0. This
is quite different from eq. (25) (and together with the corresponding result for the magnetic
field does not satisfy Maxwell’s equations), showing again that these approximations are not
fully consistent.

It remains to make a calculation of the early times when radiation can be received only
from the portions of the solenoid corresponding to θmax < π.
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4.2 z0 <
√

2ar

From eq. (16) we deduce that z− is defined only for z0 >
√

2ar. Hence, for z0 <
√

2ar
eq. (19) can be written as,

Eθ ≈ −4aα

c2

∫ z+

0

dz
sin θmax

(r2 + z2)1/2
≈ −4aα

c2

1

r

∫ z+

0

dz sin θmax, (26)

where for z0 <
√

2ar it proves preferable to approximate
√

r2 + z2 by r rather than ct. From
eqs. (16) and (20) we see that sin θmax =

√
(z2

+ − z2)/2ar. Hence,

Eθ ≈ −4aα

c2

1

r
√

2ar

∫ z+

0

dz
√

z2
+ − z2 = −2πa2α

c2

z2
+

(2ar)3/2
, (27)

for early times when z0 <
√

2ar and correspondingly, 0 < z+ =
√

(ct)2 − (r − a)2 < 2
√

ar.

The approximate solutions (25) and (27) do not quite match at z0 =
√

2ar when the field is
near its maximum, but are are good for times earlier or later than this.

5 The Magnetic Field

We use eq. (12) to evaluate the magnetic field. Recalling that J(t > 0) = αt θ̂, we have

[J] = α(t −R/c) θ̂ and
[
J̇
]

= α θ̂, so

B =
1

c

∫
(at− aR/c)

θ̂ × n̂

R2
+

1

c2

∫
a
θ̂ × n̂

R
=

αt

c

∫
θ̂ × n̂

R2
dx′. (28)

From eqs. (5) and (6) we have,

θ̂ × n̂ =
1

R
[z cos θ x̂ + z sin θ ŷ + (a − r cos θ ẑ] (29)

Thus the integrands of the x- and y-components of B are odd in z and so these components
vanish on integration. The remaining component is,

Bz =
αt

c

∫
dz

∫
a dθ

a − r cos θ

R3
≈ aαt

c

∫
dz

(r2 + z2)3/2

∫
dθ

(
−r cos θ + a − 3ar2 cos2 θ

r2 + z2

)
,

(30)
using approximation (18).

Again we split the integration over z into the intervals [0, z−] and [z−, z+]. On performing
the θ integration and neglecting terms in a3, we find,

Bz ≈ 4πa2αt

c

∫ z−

0

dz

(r2 + z2)3/2

(
1 − 3

2

r2

r2 + z2

)
− 4a2α

c2

r

(ct)2

∫ z+

z−
sin θmax dz, (31)

where on the interval [z−, z+] we approximate r2 + z2 ≈ (ct)2.
As for the electric field, we evaluate the integrals separately for z0 less than and greater

than
√

2ar.
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5.1 z0 >
√

2ar

In this region, z− is greater than zero and the first integral of eq. (31) can be found in tables.
For the second integral we again change variables with the aid of eq. (23), after which the
integration is elementary. This leads to,

Bz ≈ −2πa2α

c2

(
z−(r + a)2

r2(ct)2
+

r2

z0(ct)2

)
. (32)

In the first term we may set z− ≈ z0 and r + a ≈ r, leading to,

Bz ≈ −2πa2α

c2

1

z0
. (33)

This is also the result of Abbott and Griffiths.

5.2 z0 <
√

2ar

In this region. z− is not defined. so only the second integral of eq. (31) contributes. In that,
we approximate the factor 1/(ct)2 as 1/r2 and proceed as for the electric field:,

Bz ≈ −4aα

c2

1

r

∫ z+

0

sin θmax dz ≈ −2πa2α

c2

z2
+

(2ar)3/2
= Eθ. (34)

As expected, the electric and magnetic radiation fields at early times have equal magni-
tudes, are mutually orthogonal, and are orthogonal to the line of sight to the closest point
on the solenoid.

The radiation from the far side of the solenoid tends to cancel that from the near side.
As time advances the z-coordinate from which radiation is received becomes more nearly
the same at all azimuths around the solenoid and the cancellation becomes more perfect.
The fields rise from zero until they reach a maximum near time t = (r + a)/c corresponding
to z0 =

√
2ar when radiation has first been received from the far side of the solenoid. The

radiation fields die out rapidly thereafter. The small remaining time-dependent magnetic
field is, however, sufficient to induce locally an electric field of the instantaneous quasistatic
value (2). There is no need to invoke action at a distance, as might be required in a view
that emphasizes only the quasistatic limit.

6 Radiated Power

The power radiated per unit length by the solenoid at time t0 measured at the solenoid can
be found from the Poynting vector, S = (c/4π)E×B, by integrating it over a large cylinder
of radius r at time t = t0 + r/c [2],

P (t0) = lim
r→∞

2πrS(t0 + r/c). (35)

In this, ct = ct0 + r so z0 =
√

(ct)2 − r2 ≈ √
2rct0 and z+ ≈ √

2r(ct0 + a). The fields

found above are written separately for z0 less than or greater than
√

2ar, corresponding to
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t0 less than or greater than a/c, the time it takes radiation to moves across the radius of the
solenoid. A subtlety: by defining the time t0 at the solenoid as t0 = t− r/c in terms of time
t at a distant observer, the radiation begins at t0 = −a/c since it first arrives at the observer
at t = (r − a)/c.

Inserting eqs. (3) and (34) into (35) we find,

P (t0) ≈ π2a3α2

c3

⎧⎨
⎩

(1 + ct0/a)
2
, −a/c < t0 < a/c,

a/ct0, t0 > a/c.
(36)

The total energy radiated up to time t0 > a/c is then,

Urad ≈ π2a4α2

c4

(
8

3
+ ln

ct0
a

)
. (37)

It is interesting to compare this to the energy lost to Joule heating. If the solenoid coil
has thickness b and resistivity ρ then the resistance of length l of the solenoid is R = 2πaρ/bl.
That is, the resistance varies inversely with length, regarding the turns of the coil in parallel.
The current in length l at time t0 is I = αt0l, so the rate of Joule heating is,

I2R =
2πaρα2t20l

b
, (38)

which is proportional to length l. The total energy dissipated in heat per unit length up to
time t0 is then,

UJoule =
2πaρα2t30

3b
=

2cρ

3πb

π2a4α2

c4

(
ct0
a

)3

, (39)

ignoring the tiny contribution from −a/c < t0 < 0. In a typical metal ρ ≈ 10−6 ohm-cm,
while 1 ohm = 1/30c in Gaussian units. Thus the factor 2cρ/3πb is about 10−6/45πb for b
in cm. A typical diameter of the coil wire is b ≈ 1/4.5π cm, so the factor is about 10−7.
Comparing eqs. (37) and (39) we see that the total energy lost to radiation is greater than
that lost to heat until, (

ct0
a

)3

≈ 107

(
8

3
+ ln

ct0
a

)
, (40)

corresponding to t0 ≈ 450a/c. For a solenoid with radius a of 1 cm this transition time is
only about 15 nsec. This result tells us that the initial current in a solenoid need be linear
with time only for a few nanoseconds for the analysis of this Note to be a good approximation
to the transient electromagnetic effects. The currents in an L-R circuit are linear up to times
of order L/R, so the present analysis could be applicable to many practical cases.

7 Discussion

The major qualitative result of the present analysis is the same as that of Abbott and
Griffiths [2]: the fields outside a solenoid include electromagnetic radiation for a short time
after the current starts to flow. Is this radiation in fact detectable?
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Heald [3] notes that establishing a field inside a solenoid (or toroid) via an external power
source requires lines of the Poynting vector to point from the power source into the solenoid.
It could be that the corresponding flow of power through the electromagnetic field masks the
transient radiation effect discussed above.2 However, for a linearly rising current the energy
stored in the solenoid varies quadratically with time, so the Poynting flux considered by
Heald increases with time and is therefore reasonably distinct from the transient radiation
effect considered here. Of course, the Poynting flux from the power source will have a turn-
on transient that, in general, will have the character of radiation. It remains that not all
the energy delivered from the power source ends up stored in the (quasi)static field of the
solenoid; some energy escapes in the form of radiation.

In a different approach to the startup of the field of a solenoid, Protheroe and Koks
[7] considered a double-wound solenoid with a small gap between the two windings. This
model has the merit of being calculable in detail. For equal and opposite currents in the two
windings the fields exist only between the windings. The transient fields propagate parallel
to the axis of the solenoid from the end where the power source is located. The velocity
of propagation is found to be c/(2πan) � c where n is the number of windings per unit
length and a is the solenoid radius. In this model there are no radiation fields (as well as
no quasistatic field inside the inner solenoid). The authors argued that this result can be
extended to a typical solenoid to which the power source is connected by a pair of leads that
do not run close to the surface of the solenoid. I do not find this conclusion to be convincing.
Rather, I find the argument of Heald [3] to be more representative of the general case; most
of the energy in a typical solenoid enters at right angles to the axis rather than along the
axis.

In view of these ambiguities, it is useful to follow the example of Lodge and perform an
experiment.3 Most of us have heard a noise pulse on a radio when some nearby appliance
with an electric motor is switched off (due to the inductive spark). Is there also a noise pulse
when the motor (a crude approximation to an infinite solenoid) first turns on? Indeed, when
starting my electric can opener (model 752R, Rival Mfg. Co., St. Dalia, MO 65301) near
a battery-powered radio tuned between stations, a noise pulse can be heard over the radio
both when the device is turned on and off. There is essentially no noise during the steady
operation of the can opener. I infer that the can opener indeed emits transient radiation
when it is switched on, thereby confirming the spirit of the main argument of this Note.
Thus the topic of this Note is another example of physics in the kitchen.
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