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1 Problem

Deduce the force between two halves of a uniformly magnetized sphere, for halves defined
by planes perpendicular and parallel to the magnetization density M, assuming the sphere
to be in vacuum.

Show that the force between hemispheres in the left figure is the same as that between
one such hemisphere and either a perfectly conducting plate, or a plate of infinite magnetic
permeability.

This problem was inspired by e-discussions with J. Castro Paredes. The force between
two rectangular-prism permanent magnets has been deduced in [1]. For cylindrical magnets,
see [2, 3], and for spheres, see [4].

2 Solution for Two Hemispheres

2.1 Fields of a Uniformly Magnetized Sphere

That we should discuss two magnetic fields, B and H = B − 4πM in Gaussian units
(H = B/μ0 − M in SI units), in materials that support a (magnetization) density M of
magnetic dipole moments was first noted by W. Thomson in 1871, eq. (r), sec. 517 of [5],
and acknowledged in Art. 399 of Maxwell’s Treatise [6]. That a uniformly magnetized sphere
has Hin = −4πM/3 throughout its interior was stated by Thomson (1851) in a footnote to
sec. 48 of [7],1 and demonstrated in greater detail in a footnote to sec. 610 of [5]. Hence,
Bin = 8πM/3.

Outside the sphere of radius a, where Bext = Hext, these fields are simply those of a
magnetic dipole moment m = 4πa3M/3, the total magnetic moment of the sphere. This
result is implicit in Thomson’s discussion in secs. 632-633 of [5], though not explicity stated.2

1The sign of Hin was not clearly stated by Thomson (who did not at that time distinguish between B
and H).

2For a textbook discussion, see sec. 5.10 of [8].
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In sum, the fields of a sphere of radius a with uniform magnetization density M, centered
on the origin, are,

Bin =
8πM

3
, Hin = −Bin

2
= −4πM

3
, Bext = Hext =

3(m · r̂)r̂ − m

r3
, m =

4πa3

3
M. (1)

2.2 Forces via the Maxwell Stress Tensor in Vacuum

Use of the Maxwell stress tensor is generally the most reliable method for computing forces
on magnetic materials [9]. However, there is some ambiguity as to the form of the stress
tensor inside permanent magnets, so we first consider that the between two hemispheres of
a uniformly magnetized sphere are to be computed after a small gap (sometimes called a
“virtual air gap” [10, 11]) has been opened between the hemispheres.3 Then, the force on a
hemisphere can be evaluated via a surface entirely in vacuum which encloses the hemisphere.
On such a surface the (magnetic part of) the Maxwell stress tensor is simply,

Tij =
BiBj

4π
− δij

B2

8π
. (2)

For hemispheres with bases perpendicular to M, where B is normal to the bases and
so continuous across their surfaces, Bgap = Hgap = Bin, while for hemispheres with bases
parallel to M, where H is parallel to the bases and so continuous across their surfaces,
Bgap = Hgap = Hin.

2.2.1 Bases of the Hemispheres Perpendicular to M

For hemispheres of a sphere centered on the origin, with bases perpendicular to M = M ẑ,
we compute the force on the “lower” hemisphere (z < 0) using a hemispherical surface whose
base is the plane z = 0 and whose radius is so large that the fields on the hemispherical surface
can be neglected. Then, the force is in the z-direction, and since Bz,gap = Bz,in = 8πM/3,
while Bz(r > a, z = 0) = −m/r3 = 4πa3M/r3, where we also use a spherical coordinate
system (r, θ, φ) with θ measured with respect to the z-axis,

Fz = 2π

∫ ∞

0

Tzz r dr =
1

4

∫ ∞

0

B2
z r dr =

1

4

∫ a

0

64π2M2

9
r dr +

1

4

∫ ∞

a

16π2a6M2

9r6
r dr

=
8π2a2M2

9
+

π2a2M2

9
= π2a2M2. (3)

The force (3) is positive, meaning that the lower hemisphere is attracted to the upper.4

3Once a small gap is opened, physical surfaces are created, at which there might be surface forces that
didn’t exist prior in the absence of the gap. Hence, it is not clear that a stress tensor for a material without
a gap should correctly predict forces once a gap is opened. However, if the magnetic force across the gap
is repulsive, we might expect there to be a repulsive magnetic force across an imaginary surface inside the
material at the location of the eventual gap, even if the magnitude of the repulsive force is different with
and without the gap.

4As a check, we can evaluate the force on the lower hemisphere using a surface of integration that closely
surrounds the hemisphere, just outside it. The integral over the base of this surface is again 8π2a2M2 ẑ/9,
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2.2.2 Bases of the Hemispheres Parallel to M

For hemispheres with bases parallel to M = M ẑ we compute the force on the “left” hemi-
sphere (y < 0) using a hemispherical surface whose base is the plane y = 0 (the x-z plane)
and whose radius is so large that the fields on the hemispherical surface can be neglected.
Then, the force is in the y-direction, and since Bz,gap = Hz,gap = Hz,in = −4πM/3, while

B(r > a, y = 0) = (3 cos θ r̂− ẑ)m/r3 = 4πa3M(2 cos θ r̂ + sin θ θ̂)/3r3 and the area element
is r dr dθ ŷ, we find,

Fy = 2

∫ ∞

0

r dr

∫ π

0

dθ Tyy = − 1

4π

∫ ∞

0

r dr

∫ π

0

dθ B2

= −πa2/2

4π
(4πM/3)2 − 1

4π

(
4πa3M/3

)2
∫ ∞

0

r dr

∫ π

0

dθ
3 cos2 θ + 1

r6

= −2π2a2M2

9
− 4πa6M2

9

1

4a4

5π

2
= −π2a2M2

2
. (5)

The force (5) is negative, meaning that the force between the two hemispheres is repulsive
(with magnitude one half that, eq. (3), for hemispheres with bases perpendicular to M).

2.3 Forces via Effective Magnetic Poles

The forces on the magnetization of the media can also considered as due to a density of
effective magnetic poles. Some care is required to use this approach, since a true magnetic
pole density ρM would imply ∇ ·B = 4πρM , and the bulk force density on these poles would
be F = ρMH [12].5 However, in reality 0 = ∇ · B = ∇ · (H + 4πM), so we write,

∇ · H = −4π∇ · M = 4πρM,eff, (6)

and we identify ρM,eff = −∇ ·M as the volume density of effective magnetic poles. Inside a
uniform magnetization density, as considered here, B = μH and ∇ · B = 0 together imply
that ρM,eff = 0. However, a surface density σM,eff of effective poles can exist on the surface
of magnetized object, and we see that Gauss’ law for the field H implies that,

σM,eff = −H · n̂
4π

, (7)

while the z-component of the integral over the hemispherical surface of radius a+, where the magnetic field
is B = (3 cos θ r̂ − ẑ)m/a3 = (2 cos θ r̂ + sin θ θ̂)4πM/3 and the area element is 2πa2 d cos θ r̂, is,

Fz = 2πa2

∫ 0

−1

(cos θTrr − sin θTθr) d cos θ =
a2

2

∫ 0

−1

[
cos θ

(
B2

r − B2

2

)
− sin θBrBθ

]
d cos θ

=
a2

2

∫ 0

−1

{
cos θ

[(
8πM cos θ

3

)2

− 1
2

(
4πM

3

)2

(3 cos2 θ + 1)

]
− 2 cos θ sin2 θ

(
4πM

3

)2
}

d cos θ

=
4π2a2M2

9

∫ 0

−1

{
cos θ

[
8 cos2 θ − (3 cos2 θ + 1)

] − 4 cos θ(1 − cos2 θ)
}

d cos θ

=
4π2a2M2

9

∫ 0

−1

(−5 cos θ + 9 cos3 θ) d cos θ =
π2a2M2

9
, (4)

which is the same as the integral
∫ ∞
a

B2
z (z = 0) r dr/4 in eq. (3).

5See [13] for additional discussion of true and effective magnetic charges.

3



where unit normal n̂ points outwards from the object. The effective surface pole density can
also be written in terms of the magnetization M = (B − H)/4π as,

σM,eff = M · n̂, (8)

since ∇ · B = 0 insures that the normal component of B is continuous at the interface.
The force on the surface density of effective magnetic poles is,

F = σM,effBeff = σM,eff
B+ + B−

2
, (9)

where B+ and B− are the magnetic fields on the two sides of the surface where σM,eff resides,
since the effective poles (which are representations of effects of Ampèrian currents) couple
to the macroscopic average of the microscopic magnetic field B.6,7,8

A sphere of radius a with uniform magnetization M = M ẑ has effective surface pole
density,

σM,eff(r = a−) = M cos θ. (10)

2.3.1 Bases of the Hemispheres Perpendicular to M

The lower hemisphere also has an effective surface pole density on its base,

σM,eff ,base = M, (11)

and the field Beff ,base which acts on this density is just Bin = 8πM ẑ/3. The net force on the
effective pole densities on the lower hemisphere has only a z-component,

Fz =

∫
S

σM,effBz,eff dArea =

∫
base

σM,eff ,baseBz,eff ,base dArea +

∫
hemi

σM,eff ,hemiBz,eff ,hemi dArea

= πa2M
8πM

3
+ 2πa2

∫ 0

−1

M cos θ

2

[
4πM

3
(3 cos2 θ − 1) +

8πM

3

]
d cos θ

=
8π2a2M2

3
+

4π2a2M2

3

(
−3

4
+

1

2
− 1

)
= π2a2M2, (12)

as previously found in eq. (3).9

6Poisson [12] worked exclusively with the magnetic field H, but realized that the effective force on a
true (Gilbertian) magnetic pole p is not necessarily F = pH if the pole is at rest inside a bulk medium,
which results in an altered force on the pole depending on the assumed shape of the surrounding cavity.
W. Thomson (Lord Kelvin) noted in 1871, sec. 517 of [5], that for a pole in a disk-shaped cavity with axis
parallel to the magnetization M of the medium, the force would be F = p(H + 4πM), and therefore he
introduced the magnetic field B = H + 4πM “according to the electromagnetic definition” (in Gaussian
units). In sec. 400 of his Treatise [6], Maxwell followed Thomson in stating that the effective force on a true
magnetic pole is usefully considered to be F = pB (Gaussian units). This convention for the effective force
on a true (Gilbertian) magnetic pole is the same as the “true” force on an effective (Ampèrian) magnetic
pole, which latter is the topic of the sec. 2.2 of this note.

7Equation (9) is in agreement with prob. 5.12 of [8]. However, the Coulomb Committee in their eq. (1.3-
4) [14], and Jefimenko in his eq. (14-9.9a,b) [15], recommended that the field H be used rather than B when
using the method of effective magnetic poles.

8If the object has permeability μ, rather than permanent magnetization, such that its magnetization
arises when it is placed in an “initial” field Bi, then this initial field, rather than the effective field Beff

should be used in eq. (9). See [9] for additional discussion.
9Some people claim that the field H rather than B should be used when computing the force on effective

pole densities. See, for example, sec. IIA of [16]. If we use H in eq. (12), the predicted force on the lower
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2.3.2 Bases of the Hemispheres Parallel to M

Since the magnetization M is parallel to the surface of the bases of the hemispheres in the
plane y = 0, there is no effective pole density on these bases (and we don’t have to face the
delicate question of what is the field Beff that would act on this pole density).

The force on the left hemisphere (y < 0) is then given by an integral over the hemispher-
ical surface,

Fy =

∫
hemi

σM,eff ,hemiBy,eff ,hemi dArea

= a2

∫ 1

−1

d cos θ

∫ 2π

π

dφ
M cos θ

2

{
[Br(r = a+) sin θ + Bθ(r = a+) cos θ] sinφ + 0

}
=

2πa2M2

3

∫ 1

−1

d cos θ

∫ 2π

π

dφ cos θ(2 cos θ sin θ + sin θ cos θ) sinφ (14)

= 2πa2M2

∫ 1

−1

d cos θ cos2 θ
√

1 − cos2 θ

∫ 2π

π

dφ sinφ = 2πa2M2 π

8
(−2) = −π2a2M2

2
,

as previously found in eq. (5), using Dwight 352.01 [17].10

2.4 The Biot-Savart Force Law for Bound Current Densities

The present example has no conduction current density, Jcond = 0, so we can’t use the basic
form of the Biot-Savart force law,

F =
1

c

∫
Jcond × Bi dVol, (15)

where Bi is the “initial” magnetic field that exists when the conduction currents are zero.11,12

However, we can consider the forces on the bound current densities associated with the

hemisphere would be (assuming that a small gap between the hemispheres with Hgap = Bgap = Bin),

Fz =
∫

S

σM,effHz,eff dArea =
∫

base

σM,eff,baseHz,eff,base dArea +
∫

hemi

σM,eff,hemiHz,eff,hemi dArea

=
πa2M

2

(
−4πM

3
+

8πM

3

)
+ 2πa2

∫ 0

−1

M cos θ

2

[
4πM

3
(3 cos2 θ − 1) − 4πM

3

]
d cos θ

=
2π2a2M2

3
+

4π2a2M2

3

(
−3

4
+

1
2

+
1
2

)
= π2a2M2, (13)

which is the same as when B is used!
10If we use H rather than B in eq. (14), the predicted force is the same, since a y-component to the

magnetic field exists only outside the sphere, where B = H. Hence, the present problem does not resolve
the issue of whether B or H should be used when computing forces via effective magnetic-pole densities.

11See, for example, [9]. If one is interested in the force on a subset of the conduction currents, say Jcond,1

where Jcond = Jcond,1+Jcond,2, then Bi is the field due to Jcond,2 plus that due to any permanent magnetism.
12Biot and Savart [18, 19] were concerned with the force on a magnetic pole p due to an electric current

(density), and they had no concept of a magnetic field. An expression like eq. (15) was given by Ampère
(1825 [21] and by Grassmann (1845) [22], but the first version easily recognizable as the J×B force appeared
as eq. (11) of Art. 603 of Maxwell’s Treatise [6]. Einstein may have been the first to call this the Biot-Savart
law, in sec. 2 of [23], and the first such designation in English may be that sec. 7-6 of [24].
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magnetization density M according to,

JM = c∇ × M, (16)

in the bulk, and,

KM = cΔM× n̂, (17)

on a surface where ΔM is the difference between the magnetization on its two sides, and n̂
is the outward, unit normal vector. The force on such bound current densities is,13

F =
1

c

∫
JM × B dVol +

1

c

∫
KM ×Beff dArea (18)

where Beff is the effective magnetic field at the surface, introduced in eq. (9).

In the present example, with uniform magnetization M, the bound current density JM

is zero, while the bound current density on the surface of the hemispheres is,

KM,hemi = cM ẑ × r̂ = cM sin θ φ̂, (19)

and the effective magnetic field at this surface which acts on KM,hemi is,

Beff ,hemi =
Bin + Bext(r = a)

2
=

4πM

3
ẑ +

2πM

3
(3 cos θ r̂ − ẑ) =

8πM cos θ

3
r̂ − 2πM sin θ

3
θ̂.(20)

The integrand of eq. (18) on a hemispherical surface is then,

KM,hemi × Beff ,hemi

c
=

8πM2 cos θ sin θ

3
θ̂ +

2πM2 sin2 θ

3
r̂

=
2πM2

3

[
3(cos3 θ − cos θ) ẑ + sin θ(3 cos2 θ + 1) ρ̂

]
(21)

=
2πM2

3

[
3(cos3 θ − cos θ) ẑ + sin θ(3 cos2 θ + 1)(cos φ x̂ + sinφ ŷ)

]
,

using the transformations r̂ = cos θ ẑ+sin θ ρ̂ and θ̂ = − sin θ ẑ+cos θ ρ̂ from unit vectors in
spherical coordinates to those in cylindrical coordinates, and then that ρ̂ = cos φ x̂+sinφ ŷ.

2.4.1 Bases of the Hemispheres Perpendicular to M

For hemispheres with bases in the plane z = 0, the bound surface current density is zero
on these bases, KM = cM × ±ẑ = 0. Hence the only force on the hemispheres (from the
perspective of the Biot-Savart law) is that on their hemispherical surfaces.

For the lower hemisphere (z < 0), this force has only a net z-component,

Fz = 2πa2

∫ 0

−1

d cos θ [KM × Beff ]z = 4π2a2M2

∫ 0

−1

d cos θ (cos3 θ − cos θ) = π2a2M2, (22)

13In case of permeable media, rather than permanent magnets, the magnetic field in the Biot-Savart law
is the “initial” field Bi, or equivalently, the total H field [9]. In view of such caveats, it is generally more
straightforward to use the stress tensor to compute the forces.
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as previously found in eqs. (3) and (12).
Note that if we supposed that the field which acts on the bound current density were H

rather than B, with Heff = [Hin +Hext(r = a)]/2 = [−Bin/2+Bext(r = a)]/2 as the effective
field on the bound current on the spherical surface, then we would not find agreement with
the previous calculations of the force on the lower hemisphere.

2.4.2 Bases of the Hemispheres Parallel to M

In this case there bound surface current densities on the bases of the “left” (y < 0) and
“right” (y > 0) hemispheres,

KM,base = cM ẑ ×±ŷ = ±cM x̂. (23)

However, the effective field Beff that acts on these surface current densities would appear to
be different depending on whether or not a small gap had opened up between the bases of
the two hemispheres. If the gap had not opened, we expect that Beff = Bin, while if a small
gap exists, then Beff = (Bin + Bext)/2 = (Bin + Hext)/2 = (Bin + Hin)/2 = Bin/4, since H
(not B) is parallel to the base, and continuous across its surface if a gap exists.

Using Beff ,base = Bin/4 = 2πM ẑ/3, when the gap exists, the force on the base of the
“left” hemisphere according to the Biot-Savart law is,

Fbase =
πa2

c
KM,base × Beff ,base = πa2(−M x̂) × 2πM

3
ẑ =

2π2a2M2

3
ŷ. (24)

In addition, there is force on the hemispherical surface, whose y-component is, recalling
eq. (21),

Fy,hemi =
1

c

∫
hemi

[KM,hemi × Beff ,hemi]y dArea

= a2

∫ 1

−1

d cos θ

∫ 2π

π

dφ
2πM2

3
sin θ(3 cos2 θ + 1) sin φ

= −4πa2M2

3

∫ 1

−1

d cos θ
√

1 − cos2 θ (3 cos2 θ + 1) = −7π2a2M2

6
, (25)

using Dwight 350.01 and 352.01. Altogether, the force on the left hemisphere is,

Fy = Fy,base + Fy,hemi =
2π2a2M2

3
− 7π2a2M2

6
= −π2a2M2

2
, (26)

as previously found in eqs. (5) and (14).
However, if we used Beff ,base before a small gap opened up, we would obtain a different

result, that Fy,base = 8π2a2M2/3, such that Fy = 3π2a2M2/2. This net positive force im-
plies that a gap would never open up, and that the result (26) would never apply, resulting
in disagreement with the expectations from the other methods of calculation. Hence, one
becomes suspicious that while the Biot-Savart law can be made to work for permanent mag-
nets, supposing that they support bound current densities, this approach does not correctly
identify the location of the force elements within the magnet.
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2.5 Is the Stress Tensor Well Defined for Magnetic Materials?

A permanent magnet is a macroscopic quantum system and cannot be described in detail by
classical electrodynamics. A particular example is an antiferromagnet, which can have zero
macroscopic M, B and H, yet can have microstructure with negative electromagnetic field
energy, as anticipated by Bethe in 1931 [25], and argued by Anderson [26] taking into account
the quantum zero-point energy of the electromagnetic field. The quantum character of the
energy of permanent magnets suggests that a classical description of force (with its relation
to work and energy) will not be generally successful for such materials (nor for electrets14 =
systems with permanent electric dipole moments).

Maxwell’s first discussion of a stress tensor in his Treatise, Art. 639 of [6], was for a
medium for permanent magnetization density M that is placed in an “initial” magnetic
field Hi (= Bi inside the volume occupied by magnetization M). By considerations of an
interaction energy U = −M · Hi (= −M ·Bi), he deduced a (magnetic) stress tensor of the
form,

Tjk =
BjHi,k

4π
− δjk

H2
i

8π
, (27)

where B = Hi + 4πM .15

In the present problem Hi = Bi = 0, so Maxwell’s original stress tensor would not apply
here.

Note that in the present example consistency of a stress tensor inside the uniformly
magnetized sphere with that in a small (vacuum) gap between hemispheres thereof requires
that,

Tzz(r < a, z = 0) =
B2

in

8π
=

8πM2

9
, Tyy(r < a, y = 0) = −H2

in

8π
= −2πM2

9
. (28)

If we supposed that the fields in eq. (27) were the total fields, rather than the “initial”
ones, then we would find Tzz(r < a, z = 0) = −H2

in/4π = −4πM2/9, and Tyy(r < a, y =
0) = −H2

in/8π = −2πM2/9, which agrees with the second of eq. (28), but not with the first.

2.5.1 A Candidate Stress Tensor for Uniform Magnetization

We review the standard derivation [29] of the stress tensor, starting from the Lorentz force
density,

f = ρfreeE +
Jcond

c
× B =

dpmech

dt
, (29)

where ρfree is the free-charge density, Jcond is the conduction/free-current density, and pmech

is the density of mechanical momentum in the medium. Using Maxwell’s equations, this can

14The term electret was coined by Heaviside in 1885, p. 488 of [27].
15This B field is not the total magnetic (induction) field inside the medium, which would be Bi + BM ,

where Bm is the magnetic field of the medium in the absence of the initial field Hi = Bi. For a long, thin
permanent magnet (needle), it happens that BM ≈ 4πM, but this is a special case.
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be written as,

dpmech

dt
=

E

4π
(∇ · D) − B

4π
× (∇× H) +

B

4πc
× ∂D

∂t

= − ∂

∂t

D × B

4πc
+

D

4πc
× ∂B

∂t
+ E(∇ · D) − B

4π
× (∇ × H) (30)

= − ∂

∂t

D × B

4πc
− D

4π
× (∇× E) +

E

4π
(∇ · D) − B

4π
× (∇ × H).

If D and E are linear and isotropic, meaning that D = εE, where the permittivity ε is
constant within subvolumes, then,

∇(E · D) = ε∇(E · E) = 2εE × (∇ × E) + 2ε(E · ∇)E = 2D × (∇ × E) + 2(E ·∇)D,

−D × (∇ × E) = (E · ∇)D − ∇E · D
2

, (31)

and,

[E(∇ · D) − D × (∇ ×E)]i =

[
E(∇ · D) + (E · ∇)D −∇E · D

2

]
i

= Ei
∂Dj

∂xj
+ Ej

∂Di

∂xj
− ∂

∂xi

E · D
2

=
∂

∂xj

(
EiDj − δij

E · D
2

)
. (32)

A departure from the standard derivation is to consider a medium with uniform magneti-
zation within subvolumes, B = H+4πM, then ∂Bi/∂xj = ∂Hi/∂xj within those subvolumes,
and (noting that ∇ · B = ∂Bj/∂xj = 0),

[−B× (∇ × H)]i = [−B× (∇ × B)]i =

[
(B · ∇)H − ∇B2

2

]
i

= Bj
∂Hi

∂xj

− ∂

∂xi

B2

2
=

∂

∂xj

(
HiBj − δij

B2

2

)
. (33)

Altogether, for a medium with linear electrical fields, but uniform permanent magnetization,

dpmech,i

dt
=

1

4π

∂

∂xj

(
EiDj + HiBj − δij

E · D + B2

2

)
=

∂Tji

∂xj
, (34)

where the stress tensor is,16

Tij =
EiDj + BiHj

4π
− δij

E · D + B2

8π
. (35)

For the present example this implies,

Tzz(r < a, z = 0) = −B2
in

8π
− B2

in

8π
= −B2

in

4π
= −16πM2

9
, (36)

Tyy(r < a, y = 0) = −B2
in

8π
= −8πM2

9
, (37)

both of which (perhaps surprisingly) disagree with eq. (28).

A survey of four other stress tensors, and field-energy densities, of possible relevance to
magnetic materials has been given in sec. 5 of [28], and is reviewed below.

16Because ∂Bi/∂xj = ∂Hi/∂xj the term BiHj in eq. (35) could also be written as BiBj. Use of the
resulting form will be considered in sec. 2.5.3 below.
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2.5.2 Linear Materials, with U = B · H/8π

The “classic” stress tensor for linear magnetic media, where B = μH where μ is the magnetic
permeability, was not deduced by Maxwell, but by Lorentz, p. 24 of [29], starting from the
“Lorentz” force density, f = ρE+J/c×B (which had been discussed by Maxwell in Art. 599
of [6] but not used to derive a stress tensor). Recalling sec. 2.5.1 above, we see that for a
linear magnetic medium, the stress tensor would be,

Tij =
BiHj

4π
− δij

B · H
8π

(linear media). (38)

For the present example this implies,

Tzz(r < a, z = 0) = −B2
in

8π
+

B2
in

16π
= −4πM2

9
, (39)

Tyy(r < a, y = 0) =
H2

in

4π
=

4πM2

9
, (40)

both of which (not surprisingly) disagree with eq. (28).

2.5.3 Permanent Magnets with U = B2/8π −B ·M and “M a circulation density
like H”

I am unclear as to the meaning of “M a circulation density like H”.
While the interaction energy density of a magnetization density M in an “external/initial”

field B can be written as Uint = −B · M, it is doubtful that U = B2/8π −B · M represents
to total electromagnetic field energy density.17 But, under this assumption,

Tij =
BiBj

4π
− δij

B2

8π
(permanent magnet, 1) (41)

For the present example this implies,

Tzz(r < a, z = 0) =
B2

in

8π
=

8πM2

9
, (42)

Tyy(r < a, y = 0) = −B2
in

8π
= −H2

in

2π
= −8πM2

9
. (43)

While eq. (42) agrees with eq. (28), eq. (43) does not.

2.5.4 Permanent Magnets with U = B2/8π − B · M and “M a flux density like
B”

I am unclear as to the meaning of “M a flux density like B”.
This form has also been advocated in [31].

Tij =
BiHj + HiBj

8π
− δij

(
B2

8π
− B · M

)
(permanent magnet, 2). (44)

17In [28] a factor of the magnetic permeability μ appears in the energy density, U = B2/8πμ − B · M,
which we omit since the notion of a (linear) permeability seems inconsistent with a permanent magnet.
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For the present example this implies,

Tzz(r < a, z = 0) = −B2
in

8π
− B2

in

8π
+ MBin = −16πM2

9
+

8π2M3

3
=

8πM2

9
, (45)

Tyy(r < a, y = 0) = −B2
in

8π
+ MBin = −8πM2

9
+

8π2M3

3
=

16πM2

9
. (46)

While eq. (45) agrees with eq. (28), eq. (43) does not.

2.5.5 Permanent Magnets with U = H2/8π and “M a circulation density like H”

Tjk =
BiBj

4π
− 4πMiMj − δij

(
B2

8π
− 2πM2

)
(permanent magnet, 3) (47)

For the present example this implies,

Tzz(r < a, z = 0) =
B2

in

8π
− 2πM2 =

8πM2

9
− 2πM2 = −10πM2

9
, (48)

Tyy(r < a, y = 0) = −B2
in

8π
+ 2πM2 =

10πM2

9
, (49)

neither of which agrees with eq. (28).

2.5.6 Substitution of H for B in the Free-Space Stress Tensor

Although there seems to be little theoretical justification for this, we can consider replacing
B by H in the free-space stress tensor to obtain a possible stress tensor for a permanent
magnet,

Tjk =
HiHj

4π
− δij

H2

8π
(permanent magnet, 4) (50)

For the present example this implies,

Tzz(r < a, z = 0) =
H2

in

8π
=

2πM2

9
, (51)

Tyy(r < a, y = 0) = −H2
in

8π
= −2πM2

9
. (52)

Then, eq. (52) agrees with eq. (28), but eq. (51) does not.

Of the six candidate stress tensors surveyed here, eqs. (41) and (50) are the only ones
that have the signs of both Tzz(r < a, z = 0) and Tyy(r < a, y = 0) the same as needed
for a successful computation via a stress tensor inside the magnets of the force between its
hemispheres.

Thus, the survey tends to confirm the impression that a generally applicable stress ten-
sor for permanent magnets cannot be given. It remains that the use of the “virtual-air-gap
method”, together with the stress tensor for air/vacuum seems reliable (despite its “theoret-
ical” lack of elegance).
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3 Solution for Magnetized Hemisphere + Plate

3.1 Perfectly Conducting Plate

Here, we take the view that both the electric and magnetic field vanishes inside a perfect
conductor, and hence any exterior electric/magnetic field must be normal/tangential to its
surface.18

Then, we can devise an image method for a single magnetic dipole above a perfectly
conducting plane, in analogy to the image method for electric charge. Recall that for the
latter, the image of electric charge q at height z above the conducting plane is a charge −q
at distance z below the plane, such that the sum of the electric fields of these two charges is
normal to the surface z = 0 of the perfect conductor. Then, an electric dipole p = p⊥ + p‖
at height z above the surface has image p′ = p⊥ − p‖ as distance z below the surface, as
shown on the left below.

If a magnetic dipole m is regarded as a (Gilbertian) pair of magnetic charges/poles
±qM ,19 then the image of each magnetic charge is a magnetic charge of the same sign, such
that the total magnetic field is parallel to the surface of the perfect conductor, and hence
the image of the dipole is m′ = m‖ − m⊥, as shown above. Alternatively, if the magnetic
dipole is regarded as due to an Ampèrian electric current density J, then the image of this
electric current is an electric current J′ = J⊥ − J‖, such that the image dipole is again
m′ = m‖ − m⊥.20

Turning to the case of a hemisphere of radius a and uniform magnetization M = M ẑ
with base parallel to a perfectly conducting plane at z = 0 and height h above it, the image
is an inverted hemisphere with uniform magnetization M′ = −M, as shown in the figure on
the next page.

The total magnetic force on the hemisphere can be computed by integrating over the
force on its magnetic-dipole elements M dVol due to the elements M′ dVol′ in the image
hemisphere.

18Plasmas are often considered to be perfect conductors, and can be created with a “frozen-in” magnetic
field which is time independent (after the plasma is created). For more discussion, see [32].

19For a review of how we know that permanent magnets do not actually consist of Gilbertian magnetic
dipoles, see [33].

20For applications of these prescriptions to electric and magnetic dipole antennas, see [34, 35].
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Recall that the force on magnetic dipole m due to dipole m′ is,

F = ∇(m ·Bm′) = ∇
(

3(m · r)(m′ · r)
R5

− m · m′

R3

)

= 3
(m · r)m′ + (m′ · r)m + (m · m′)r

R5
− 15

(m ·R)(m′ ·R)R

R7
, (53)

where R = xm − xm′ is the position vector from m′ to m. To compute the force on the
(upper) hemisphere, we use two spherical coordinates systems, (r, θ, φ) centered on the base
of the upper hemisphere, and (r′, θ′φ′) centered on the base of the image hemisphere. Then,
the (x, y, z) components of R are,

Rx = r sin θ cosφ − r′ sin θ′ cos φ′, (54)

Ry = r sin θ sinφ − r′ sin θ′ sinφ′, (55)

Rz = 2h + r cos θ − r′ cos θ′. (56)

The net force has only a z-component,

Fx = ∇(m · Bm′) = ∇
(

3(m · r)(m′ ·R)

r5
− m · m′

R3

)

= M2

∫ a

0

r2 dr

∫ 1

0

d cos θ

∫ 2π

0

dφ

∫ a

0

r′2 dr′
∫ 0

−1

d cos θ′
∫ 2π

0

dφ′
(

15R3
z

R7
− 9Rz

R5

)
.(57)

This integral is positive although not readily evaluated analytically. For a � h it scales as
M2a6/h4, while for h � a it goes as M2a2. A (hemispherical) permanent magnet could be
levitated above a perfectly conducting (superconducting) plane.21

21For a spherical magnet of radius a and vertical magnetization M centered at height h above a horizontal
perfectly conducting plane, the magnetic-levitation force from is 8π2M2a6/3h4. See Appendix B2 of [4],
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3.2 High-Permeability Half Space (Refrigerator Magnet)

In this section we consider permanent magnets in vacuum that are outside a permeable half
space z < 0 in which the (relative) permeability is μ. There are no free/conduction currents
in such examples so ∇×H = 0 everywhere, and it is convenient to write H = −∇ΦM where
ΦM is a scalar potential.

We begin with the case of a (Gilbertian) point magnetic charge qM (even though these
don’t seem to exist in Nature) at (x, y, z) = (0, 0, a). As in sec. 2.1.1 of [36] for an electric
charge plus dielectric half space, a magnetic image method is to suppose that the magnetic
scalar potential ΦM in the region z > 0 is that due to the original point charge qM at (0, 0, a)
plus an image charge q′M at (0, 0,−b),

ΦM(x, 0, z > 0) =
qM

[x2 + (z − a)2]1/2
+

q′M
[x2 + (z + b)2]1/2

, (58)

and that the potential in the region z < 0 (inside the permeable half space) is that due to
the original point charge plus a point charge q′′M at (0, 0, c),

ΦM (x, 0, z < 0) =
qM

[x2 + (z − a)2]1/2
+

q′′M
[x2 + (z − c)2]1/2

, (59)

Continuity of the potential ΦM across the plane z = 0 requires that,

b = c, and q′′M = q′M . (60)

Continuity of Bz across the plane z = 0 requires that Bz(x, 0, 0+) = Hz(x, 0, 0+) = Bz(x, 0, 0−) =
μHz(x, 0, 0−), i.e.,

∂ΦM(x, 0, 0+)

∂z
= μ

∂ΦM (x, 0, 0−)

∂z
, (61)

qMa

[x2 + a2]3/2
− q′Mb

[x2 + b2]3/2
= μ

(
qMa

[x2 + a2]3/2
+

q′Mb

[x2 + b2]3/2

)
, (62)

which implies that,22

a = b = c, and q′′M = q′M = −q
μ − 1

μ + 1
. (63)

The potential and magnetic field H = B/μ in the permeable region z < 0 are as if the
media were vacuum and the original magnetic charge qM were replaced by charge qM +q′′M =
2q/(μ + 1). In the region z > 0 the potential and B = H fields are as for the original charge
qM plus an image charge q′ = q′′ = −q(μ − 1)/(μ + 1), both in vacuum.

In the limit that a = 0 (such that charge qM lies on the surface of the permeable medium
the H field is as if the media were vacuum but the charge were 2qM/(μ + 1). Note that
the H field is radial, and the same in both media despite their differing permeabilities, as

22For a metamaterial with relative permeability μ = −1, eqs. (63) and (64) diverge (as would their
electric equivalents if the relative permittivity were ε = −1). However, metamaterials can have negative
permeability (and/or permittivity) only for nonzero frequencies [37], so technically this divergence cannot
occur. It remains possible that metamaterials could lead to large “image” forces at low frequencies [38].
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is consistent with the requirement that the tangential component of H be continuous at the
interface z = 0.

In the limit that μ → ∞, the potential above the plane is that due to the original charge
plus an image charge −q at (0, 0,−a), and the potential below the plane is zero. However,
this is not the image prescription for a point magnetic charge above a perfectly conducting
plane, where the B field must be tangential to the surface of the conduction plane such that
the image charge is +qM rather than −qM . That is, a magnetic charge is attracted to a half
space of infinite permeability, but repelled from a perfectly conducting (or superconducting)
plane.

A magnetic dipole m can be regarded (insofar as we are only considered with its effect
outside the dipole) as due to a pair of equal and opposite magnetic charges ±qM separated
by distance d = m/qM . If this dipole is in vacuum outside a permeable half space, then the
image method of point magnetic charges tells us that the potential and fields of the dipole
in vacuum are as if the permeably medium were also vacuum but with an image magnetic
dipole,

m′ = (m⊥ − m‖)
μ − 1

μ + 1
, where m = m⊥ + m‖. (64)

And, the H field inside the permeable medium is as if the medium were vacuum but the
original magnetic dipole had strength 2m/(μ + 1).23

For a high-permeability medium (μ � 1) the image dipole is m′ = m⊥ − m‖. In
particular, for a permanent magnet with magnetization perpendicular to the surface of the
permeable medium, the image magnet has the same magnetization m = m⊥ as the actual
magnet. The magnet is attracted to the medium with a force

∫
B2 dArea/8π, where B is

the magnetic field at the symmetry plane of the original magnet plus its image.24 If the
original magnet is a hemisphere of radius a and uniform magnetization M perpendicular to
its base, the combination of original plus image magnet is spherical, and the attractive force
is π2a2M2 as found in eq. (3).
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