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1 Problem

What is the capacitance of a spherical capacitor with conductors of radii a and b, and
permeability that varies with polar angle θ,

ε(cos θ) = ε0

∞∑
n=0

anPn(cos θ), (1)

for a < r < b in a spherical coordinate system (r, θ, φ). Here, an is a constant and Pn is a
Legendre polynomial (with Pn(1) = 1).

This problem appears as no. 3.11 in [1], and was posed on a recent entrance exam in
Spain for radiologists.

2 Solution

This is a statics problem, so the electric field obeys ∇ × E = 0, and hence can be deduced
from a scalar potential V according to E = −∇V . The problem is axially symmetric, so
V = V (r, θ). However, ∇2V does not equal zero, so,

V (r, θ) �=
∞∑

n=0

(
Anr

n +
Bn

rn+1

)
Pn(cos θ). (2)

As there is no “free” charge in the region a < r < b, the electric displacement field
D = εE obeys,

ρfree = 0 = ∇ · D = ∇ · (εE) = −∇ · (ε∇V ) = −ε∇2V − ∇V · ∇ε, (3)

and hence,

∇2V = − 1

εr2

∂V

∂θ

dε

dθ
= −1 − cos2 θ

r2

∂V

∂ cos θ

ε′

ε
, (4)

where ε′ = dε/d cos θ. This is a linear, second-order differential equation in the potential V .
We seek a separated solution that is the sum of terms of the form V (r, θ) = R(r)Θ(cos θ),
for which eq. (4) implies that,

1

R

d(r2R′)
dr

= − 1

Θ

d[(1 − cos2 θ)Θ′]
d cos θ

− (1 − cos2 θ)
Θ′

Θ

ε′

ε
≡ n(n + 1), (5)

where R′ = dR/dr, Θ′ = dΘ/d cos θ and n is a separation constant. As usual, the radial
function R has the form,

Rn = Anr +
Bn

rn+1
, (6)
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where An and Bn are constants. The θ equation is,

d[(1 − cos2 θ)Θ′]
d cos θ

+ (1 − cos2 θ)
ε′

ε
Θ′ + n(n + 1)Θ = 0, (7)

We label the solutions to eq. (7) by fn(cos θ), and note that f0 = 1. The potential V can
now be written as,

V (r, θ) =
∑

n

(
Anr

n +
Bn

rn+1

)
fn(cos θ), (8)

where the index n might be either continuous or discrete. The coefficient A0 of the constant
term in the potential can be set to zero, as only potential differences are relevant to the
electric field (and to capacitance).

The nonzero electric-field components are (Eφ = 0 for azimuthal symmetry),

Er = −∂V

∂r
= −

∑
n

(
nAnr

n−1 − (n + 1)Bn

rn+2

)
fn(cos θ) , (9)

Eθ = −1

r

∂V

∂θ
= −

∑
n

(
Anr

n−1 +
Bn

rn+2

)
dfn(cos θ)

dθ
. (10)

The tangential electric field must vanish on the conductors,

Eθ(r = a) = 0 = Eθ(r = b), (11)

which suggests that An = 0 = Bn for all nonzero n (for which dfn(cos θ)/dθ is nonzero and
varies with θ).1 That is, the electric field is purely radial, and isotropic despite the form (1)
of the permeability,2

Er =
B0

r2
, Eθ = 0, Eφ = 0 (a < r < b). (12)

Hence, the components of the electric displacement field D = εE are,

Dr =
ε0B0

r2

∞∑
n=0

anPn(cos θ), Dθ = 0, Dφ = 0 (a < r < b) (13)

(such that ∇ · D = ρfree = 0 for a < r < b).3

1This is the one possibly doubtful step in the solution. If index n takes on only a countable set of values
the claim surely holds (as Eθ = 0 for all values of θ, which is a continuous parameter), but if n has continuous
values the claim is less obvious.

2The solution given in [1] assumes this, and that Er ∝ 1/r2, to be obvious, given the conditions (11).
However, The electric field outside a conducting sphere does not, in general, have this form, as, for example,
in case of an external point charge + conducting sphere. The key to the present problem is the presence of
two concentric, conducting spherical surfaces.

3This verifies that all equations related to D = εE are satisfied, and we can be confident that the solution
is unique, despite the one step above that was not strictly “proven”.
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In case of a spherical capacitor, we consider that “free” charge Q is placed on the surface
r = a, and “free” charge −Q on the surface r = b. The “free” charge Q on the surface r = a
is then related by,

Q =

∫
r=a

Dr(r = a) dArea = 2πa2

∫ 1

−1

d cos θ
ε0B0

a2

∞∑
n=0

anPn(cos θ) = 4πε0a0B0. (14)

Integration of Dr over the surface r = b leads to the same relation. Hence,

B0 =
Q

4πε0a0
. (15)

The potential difference between the two conductors is,

ΔV = −
∫ b

a

Er dr = −B0

∫ b

a

dr

r2
= B0

(
1

a
− 1

b

)
=

Q

4πε0a0

b − a

ab
, (16)

and the capacitance C is,

C =
Q

ΔV
= 4πε0a0

ab

b − a
. (17)

The capacitance (and the electric field) is the same as if the permeability were uniform with
value ε = ε0a0. That is, for permeability which depends only on polar angle θ, only its
uniform component (in an expansion in Legendre polynomials as in eq. (1)) influences the
capacitance of a spherical capacitor.4

The solution can be extended to the case that the permeability varies according to,

ε(cos θ, φ) =
√

4πε0

∞∑
l=0

l∑
m=−l

almYlm(cos θ, φ), (18)

with the capacitance then being,

C =
Q

ΔV
= 4πε0a00

ab

b − a
. (19)

That is, the potential can again be written in a separated form,

V (r, θ) =
∑
l,m

(
Almrl +

Blm

rl+1

)
fm

l (cos θ)gm(φ), (20)

where A00 can be set to 0 and f0
0 = 1 = g0, so we can again argue that the vanishing of the

tangential electric field at r = a and b implies that all coefficients except B00 vanish.
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