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1 Problem

A prominent astronomical fact is that the Moon always shows the same face to the Earth.
This means that the Moon rotates once about its axis each Earth month. It turns out that
the “days” of Mercury and Venus are nearly equal to their respective “years,”1 and that the
periods of axial and orbital revolution are equal for most of the moons of Jupiter, Saturn,
Uranus and Neptune. In 1879, George Darwin (son of Charles) proposed that this has come
about due a coupling between the “day” and month/year via tidal friction [1]-[4] – resistance
of the moon or planet to changes in shape induced by the 1/r2 variation of gravity of the
body at the focus of its orbit, and that eventually the Earth day will equal one month.2,3

In this problem you should deduce a kind of existence proof that a spin-orbit coupling
mechanism leads to changes of the “day” and the “month/year” such that these can even-
tually become equal.

For simplicity, consider a point satellite of mass m that revolves with orbital angular
velocity ω around a planet of mass M in a nearly circular orbit of radius R. The planet
rotates about its axis with “spin” angular velocity Ω, its moment of inertia about this axis
is I , and this axis is perpendicular to the plane of the satellite’s orbit.

Find expressions for the total angular momentum L of the system about its center of
mass, and for the total (kinetic + potential) energy E. Eliminate R from these expressions
to show that,

L = IΩ +
C

ω1/3
, E =

IΩ2

2
− Cω2/3

2
, (1)

and deduce the value of C .
In general, the angular velocities ω and Ω are different. If ω �= Ω then tidal friction

reduces the (kinetic + potential) energy E while conserving angular momentum. Show that
there is a range of initial conditions such that eventually ω0 = Ω0.

4

For the Earth-Moon system, ΩE is decreasing with time. Give an expression for R as a
function of Ω (and not ω) to show that R increases as Ω decreases. Then, by Kepler’s law
for the system, ω must be decreasing also.

Darwin noted that extrapolation of the above scenario into the past suggests there may
have been a time when R = RE and the Earth and Moon were part of a single protoplanet.5

1Mercury’s “day” is 2/3 of its “year.”
2This hypothesis was first postulated by Kant (1754), pp. 6-9 of [5]. Kant’s (verbal) argument is that if

the Earth’s day does not equal a month, then the tidal bulge caused by the Moon rotates with respect to the
Earth and experiences tidal friction, which slows down the Earth’s rotation until the day equals a month.
The present problem is a slight mathematical elaboration of Kant’s argument.

3That the length of a month is increasing seems to have been first noted by Halley (1695), p. 174 of [6].
4Hint: Consider the variable x = C/ω1/3 = orbital angular momentum.
5For a popular review, see [7], and also [8]. Nowadays, the so-called impact-origin hypothesis enjoys
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2 Solution

The center of mass of the planet-satellite system are at distances,

rM =
m

M + m
R, and rm =

M

M + m
R (2)

from the centers of these bodies, respectively, where R = rM + rm. The total angular
momentum of the system (ignoring possible angular momentum associated with rotation
of the satellite about its axis) in the rest frame of the center of mass of the system is the
constant,

L = IΩ + (Mr2
M + mr2

m)ω = IΩ + μR2ω, ω =
L − IΩ

μR2
, (3)

which provides a relation between the orbital angular velocity ω and the “spin” angular
velocity Ω, where,

μ =
mM

M + m
(4)

is the reduced mass of the system. The total kinetic + potential energy of the system is,

E = KE + PE =
IΩ2

2
+

(Mr2
M + mr2

m)ω2

2
− GMm

R
=

IΩ2

2
+

μR2ω2

2
− GMm

R
, (5)

where G is Newton’s gravitational constant.
The equations of motion,

M r̈M = −mr̈m = −GMmR

R2
, R = rM − rm, (6)

lead readily for circular orbits to,

μR2ω2

2
=

GMm

2R
= −PE

2
, R3 =

GMm

μω2
. (7)

The first form of eq. (7) is true in general for a 1/r2 attractive force according to the so-called
virial theorem,6 while the second form is Kepler’s (3rd) law for the system when the orbits
are nearly circular, as assumed here.

If we accept Kant’s comment that the eventual effect of tidal friction is to make the (final)
“spin” angular velocity Ω0 “locked” to the final orbital angular velocity ω0, at which time
the bodies are distance R0 apart, then conservation of angular momentum (3) and Kepler’s
3rd law (7) that R3

i ω
2
i = R3

0ω
2
0 suffice to determine ω0 and R0, according to,

L = IΩi + μR2
i ωi = (I + μR2

0)ω0 ≈ μR2
0ω0 = μR2

i ωi
ω

1/3
0

ω
1/3
i

. (8)

greater favor, although the issue remains unsettled. See, for example, [9, 10].
6See, for example, sec. 10 of [11].
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Thus,

ω0 = Ω0 ≈ ωi

(
1 +

IΩi

μR2
i ωi

)2

for (I � μR2
0). (9)

For the Earth-Moon system, this analysis predicts that the eventual day/month will be 48
present days, as first computed in sec. 276 of [12]. The only known example of a two-body
system that has evolved to a final state in which both “days” equal their common “month”
is Pluto and Charon.

To establish analytically that a final state can exist with ω0 = Ω0, we use eq. (7) in
eq. (3) to write,7

L = IΩ +
(G2μM2m2)1/3

ω1/3
≡ IΩ +

C

ω1/3
≡ IΩ + x, ω =

C3

(L − IΩ)3
, (10)

where x is the orbital angular momentum (which can be taken as positive by suitable choice
of direction of the polar axis),

x = μR2ω =
C

ω1/3
> 0, C = (G2μM2m2)1/3, Ω =

L − x

I
. (11)

Since the angular momentum is constant we can write,

0 =
dL

dx
= I

dΩ

dx
+ 1,

dΩ

dx
= −3ω4/3

C

dΩ

dω
= −1

I
, (12)

which implies that if Ω decreases then so does ω.
The energy (5) can now be written as,

E =
IΩ2

2
− GMm

2R
=

IΩ2

2
− Cω2/3

2
=

IΩ2

2
− C3

2x2
=

(L − x)2

2I
− C3

2x2
. (13)

Note that E(x = 0) = −∞ and that E(x = ∞) = ∞, but that E(x) is not necessarily a
monotonic function. Taking the derivative of eq. (13), we have that,

dE

dx
= −L − x

I
+

C3

x3
= −Ω + ω =

x

I
+

C3

x3
− L

I
. (14)

Hence, if an equilibrium exists, where dE(x0)/dx = 0, we have that Ω0(x0) = ω0(x0), and
the equilibrium “spin” and orbital angular velocities are “locked”.

If we suppose that M represents the Moon and m represents the Earth, the above argu-
ment suggests that the period of rotation of the Moon about its axis should be equal to its
orbital period once a certain kind of equilibrium was established in the past.8 However, we
can also suppose that M represents the Earth and m represents the Moon, in which case we
anticipate that the Earth-Moon system can evolve until the Earth day equals one month,
and both the Earth and the Moon present the same face to one another at all times.

7The remainder of this note follows [1].
8If the Moon consists of matter somehow ejected from the Earth, it is probable that the Moon was

created with the lunar day equal to a month (at that early time).
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The equilibrium, dE/dx = 0, exists in eq. (14) only if,

Min

(
x

I
+

C3

x3

)
= 4

(
C

3I

)3/4

<
L

I
, (15)

L = IΩi + xi > Lmin = 4I

(
C

3I

)3/4

=
4(3C3I)1/4

3
=

4x0,min

3
> 0, (16)

noting that the minimum occurs for x0,min = (3C3I)1/4. The requirement that L be positive
(in the sense of the orbital angular momentum) means that if the “spin” angular momentum
IΩ is opposite to the orbital angular momentum (μR2ω = x) and large, no equilibrium will
exist.9 Furthermore, if the evolution is to involve increasing orbital angular momentum x, as
in the Earth-Moon system, the initial “spin” angular momentum IΩi must be a substantial
fraction of the total for eventual equilibrium with ω0 = Ω0 to exist.

In greater detail, the equilibrium value x0 of the orbital angular momentum is a root of
the quartic equation obtained by setting eq. (14) to zero,

x4 − Lx3 + C3I = 0. (17)

When the condition (16) is satisfied, the so-called discriminant Δ of the quartic equation
(17) is negative, which implies that there are two real roots and two complex roots.

The figure on the previous page, from [1], shows (among others) the lines labeled “curve of
energy” which correspond to eq. (13); the curve on the left is for a case where no equilibrium
exists, while for the curve on the right the stable equilibrium is at b, corresponding to the
root x0 of eq. (17), and the unstable equilibrium is at a, corresponding to the root x1.

9In planetary systems where all objects have a common origin in an initial gas cloud, the sense of the
angular momenta of all objects is typically the same.
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When condition (16) is satisfied, the two real roots are,10

x0,1 =
L

4
− S ±

√
3L2

4
+

L3

8S
− 4S2 , (18)

where,

S =
1

2

√
L2

4
+

1

3

(
Q +

81L4
min

256Q

)
, Q =

(
729L4

min

256

)1/3
(

L2 +
√

L4 − L4
min

2

)1/3

. (19)

As tidal friction decreases the energy of the system, the equilibrium at x0 (where ω0 = Ω0)
can only be reached if the initial value of x is greater than x1; otherwise the system evolves
towards x = 0, which implies increasing ω, increasing Ω, and decreasing R until the two
masses merge.11 Hence, we deduce a condition on the initial orbital angular velocity ωi for
the existence of an equilibrium final state where ω0 = Ω0,

ωi <
C3

x3
1

. (20)

If ωi < C3/x3
0, then as the energy decreases with time x decreases, ω increases, and R

decreases; whereas if C3/x3
0 < ωi < C3/x3

1, then as the energy decreases x increases, ω
decreases, and R increases with time. The Earth-Moon system is of the latter type.

Lastly, we equate the expressions for ω in eqs. (3) and (10) to obtain,

R =
(L − IΩ)2

μ1/2C3/2
,

dR

dΩ
= −2I(L − IΩ)

μ1/2C3/2
= −2μ1/2IωR2

C3/2
, (21)

which implies that if Ω decreases then R increases. Taking the derivative of the first form
of eq. (13), we find,

dE

dΩ
= IΩ +

GMm

2R2

dR

dΩ
= I(Ω − ω), dΩ =

dE

I(Ω− ω)
. (22)

Hence, as tidal friction reduces the kinetic + potential energy E, the “spin” angular velocity
Ω decreases if Ω > ω, as holds for the Earth-Moon system. At the same time, the Earth-Moon
distance R increases according to eq. (21), and the orbital angular frequency ω decreases
according to eq. (12).

Additional discussion of spin-orbit coupling and “locking” is given in, for example, [18]-
[20] in addition to [7]-[10].12

10We use the notation of https://en.wikipedia.org/wiki/Quartic_function
11This behavior has come to be called the satellite paradox, that the effect of an energy-dissipation mecha-

nism in a (gravitational) two-body system can be to increase the kinetic energies of the bodies. For example,
the effect of atmospheric drag on a satellite in a low orbit about the Earth is to increase the speed of the
satellite as it slowly spirals inwards towards the Earth’s surface [13]-[17]. Thus, the intuitive argument of
Kant [5], as seconded by Lord Kelvin [12], that tidal friction lengthens the “day” and the “month/year” is
not true in general.

12Refs. [18, 19] also considered effects of tilts of the axes of the spinning bodies with respect to the orbital
plane.
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This simplified model leaves open the question of the very early history of the Earth-
Moon system, when the Earth day was much shorter than at present, and the Earth-Moon
distance was comparable to the Earth’s radius. The contemporary view that the Moon was
ejected from the Earth during a collision with a large asteroid first gained prominence in
[21].
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